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ABSTRACT

Motivation: Protein complexes integrate multiple gene products to
coordinate many biological functions. Given a graph representing
pairwise protein interaction data one can search for subgraphs
representing protein complexes. Previous methods for performing
such search relied on the assumption that complexes form a clique
in that graph. While this assumption is true for some complexes, it
does not hold for many others. New algorithms are required in order
to recover complexes with other types of topological structure.
Results: We present an algorithm for inferring protein complexes
from weighted interaction graphs. By using graph topological
patterns and biological properties as features, we model each
complex subgraph by a probabilistic Bayesian network (BN). We
use a training set of known complexes to learn the parameters
of this BN model. The log-likelihood ratio derived from the BN is
then used to score subgraphs in the protein interaction graph and
identify new complexes. We applied our method to protein interaction
data in yeast. As we show our algorithm achieved a considerable
improvement over clique based algorithms in terms of its ability to
recover known complexes. We discuss some of the new complexes
predicted by our algorithm and determine that they likely represent
true complexes.
Availability: Matlab implementation is available on the supporting
website: www.cs.cmu.edu/∼qyj/SuperComplex
Contact: zivbj@cs.cmu.edu

1 INTRODUCTION
Protein–protein interactions (PPI) are fundamental to the biological
processes within a cell. Correctly identifying the interaction
network among proteins in an organism is useful for deciphering
the molecular mechanisms underlying given biological functions.
Beyond individual interactions, there is a lot more systematic
information contained in protein interaction graphs. Complex
formation is one of the typical patterns in this graph and many
cellular functions are performed by these complexes containing
multiple protein interaction partners. As the number of species for
which global high throughput protein interaction data is measured
becomes larger (Ito et al., 2001; Rual et al., 2003; Stelzl et al., 2005;
Uetz et al., 2000), methods for accurately identifying complexes
from such data become a bottleneck for further analysis of the
resulting interaction graphs.
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High-throughput experimental approaches aiming to specifically
determine the components of protein complexes on a proteome-
wide scale suffer from high false positive and false negative
rates (von Mering et al., 2002). In particular, mass spectrometry
methods (Gavin et al., 2002; Ho et al., 2002) may miss complexes
that are not present under the given conditions; tagging may
disturb complex formation and weakly associated components may
dissociate and escape detections. Therefore, accurately identifying
protein complexes remains a challenge.

The logical connections between proteins in complexes can be
best represented as a graph where the nodes correspond to proteins
and the edges correspond to the interactions. Extracting the set
of protein complexes from these graphs can help obtain insights
into both the topological properties and functional organization of
protein networks in cells. Previous attempts at automatic complex
identification have mainly involved the use of binary protein–
protein interaction graphs. Most methods utilized unsupervised
graph clustering for this task by trying to discover densely connected
subgraphs.

Automatic complex identification approaches can be divided into
five categories: (1) Graph segmentation. To identify complexes
King et al. (2004) partitioned the nodes of a given graph into
distinct clusters using a cost-based local search algorithm. Zotenko
et al. (2006) proposed a graph-theoretical approach to identify
functional groups and provided a representation of overlaps between
functional groups in the form of the ‘Tree of Complexes’.
(2) Overlapping clustering. Since some proteins participate in
multiple complexes or functional modules, a number of approaches
allow overlapping clusters. Bader et al. (2003b) detected densely
connected regions in large PPI networks using vertex weights
representing local neighborhood density. Pereira-Leal et al. (2004)
used the line graph strategy of the network (where a node represents
an interaction between two proteins and edges share interactors
between interactions) to produce an overlapping graph partitioning
of the original PPI network. Adamcsek et al. (2006) identified
overlapping densely interconnected groups in a given undirected
graph using the k-clique percolation clusters in the network.
Spirin et al. (2003) discovered molecular modules that are densely
connected with themselves but sparsely connected with the rest of
the network by analyzing the multibody structure of the PPI network.
(3) New similarity measures. Rives et al. (2003) applied standard
clustering algorithms to group similar nodes on the interaction graph.
The cluster similarity is calculated on vectors of nodes’ attributes,
such as their shortest path distances to other nodes. (4) Conservation
across species. Sharan et al. (2005) used conservation alignment
to find protein complexes that are common to yeast and bacteria.
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Fig. 1. Projection of selected yeast MIPS complexes on our PPI graph (weight thresholded). (a) Example of a clique. All nodes are connected by edges. (b)
Example of a star-shape, also referred to as the spoke model. (c) Example of a linear shape. (d). Example for a hybrid shape where small cliques are connected
by a common node.

They formulated a log-likelihood ratio model to represent individual
edges between proteins and assumed a clique structure for a protein
complex. (5) Spatial constraints analysis. By utilizing the spatial
aspects of complex formation, Scholtens et al. (2005) applied a
local modeling method to better estimate the protein complex
membership from direct mass spectrometry complex data and Y2H
binary interaction data. Chu et al. (2006) proposed an infinite latent
feature model to identify protein complexes and their constituents
from large-scale direct mass spectrometry sets.

The methods presented above are based on the assumption that
complexes form a clique in the interaction graph. While this is true
for many complexes, there are many other topological structures that
may represent a complex on a PPI graph. One example is a ‘star’
or ‘spoke’ model, in which all vertices connect to a ‘Bait’ protein
(Bader et al., 2003a). Another possible topology is a structure that
links several small densely connected components with loose linked
edges. This topology is especially attractive for large complexes: due
to spatial limitations, it is unlikely that all proteins in a large complex
can interact with all others. See Figure 1 for some examples of real
complexes with different topologies.

While some previous work was carried out to identify such
structures in PPI networks [most notable by looking for network
motifs (Yeger-Lotem et al., 2004)], these structure were not
exploited for complex discovery. In this article we present a
computational framework that can identify complexes without
making strong assumptions about their topology. Instead of the
‘cliqueness’ assumption, we derive several properties from known
complexes, and use these properties to search for new complexes.
Since our method relies on real complexes, it does not assume any
prior model for complexes. Our algorithm is probabilistic. Following
training to determine the importance of different properties, it can
assign a score to any subgraph in the graph. By thresholding
this likelihood ratio score we can label some of the subgraphs
as complexes. Our model results in a significantly improved F1-
score when compared to the density-based approaches. Using a
cross validation analysis we show that the graphs discovered by
our method highly coincide with complexes from the hand-curated
MIPS database and a recent high confidence mass spectrometry
dataset (Gavin et al., 2006). The top-ranked new complexes are
likely to provide novel hypotheses for the mechanism of action

or definition of function of proteins within the predicted complex as
we discuss in Section 3.

2 METHODS
The main feature of our method is that it considers the possibility of multiple
factors defining complexes in protein interaction graphs. Instead of assuming
a specific topological model, we design a general framework which learns to
weigh possible subgraph patterns based on the available known complexes.

Previous analysis of known PPI graphs has already revealed multiple
shapes forming subgraphs. For example, Bader et al. (2003a) proposed two
topological models in the context of protein complexes. The first is the
‘matrix model’ which assumes that each of the members in the complex
physically interact with all other members (leading to a clique-like structure).
The second shape is the ‘spoke model’ that assumes that all proteins in
a complex directly interact with one ‘bait’ protein leading to a star shape.
Hybrids of these or other models are also possible, resulting in more complex
topologies.

Besides graph structures, there could be other features that characterize
complexes. In particular, complexes have certain biological, chemical
or physical properties that distinguish them from non-complexes. For
example, the physical size of a complex may be an important feature.
There is a physical limitation of creating large complexes because inner
proteins become inaccessible and therefore more difficult to regulate.
By incorporating such additional features into our supervised learning
framework, the proposed model is able to integrate multiple evidence sources
to identify new complexes in the PPI graph.

The input to our algorithm is a weighted graph of interacting proteins.
The network is modeled as a graph, where vertexes represent proteins and
edges represent interactions. Edge weights represent the likelihoods for
the interactions. Since the current data does not provide any directionality
information, the PPI graph considered in this article is a weighted
undirected graph. Our objective is to recover the protein complexes from
this undirected PPI graph. Computationally speaking, complexes are one
special kind of subgraphs on the PPI network. A subgraph represents
a subset of nodes with a specific set of edges connecting them. The number
of distinct subgraphs, or clusters, grows exponentially with the number of
nodes.

2.1 Complex features
Extracting appropriate features for subgraphs representing complexes is
related to the problem of measuring the similarity between complex
subgraphs. This task has been studied for other networks, specifically social
networks (Chakrabarti et al., 2005; Robins et al., 2005; Virtanen, 2003).
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Table 1. Features for representing protein complex properties

No Group Reference Graph type Num. features

1 Node size Chakrabarti et al. (2005) Binary 1
2 Graph density Chakrabarti et al. (2005) Binary 1
3 Degree statistics Barabasi et al. (2004) Binary 4
4 Edge weight statistics Chakrabarti et al. (2005) Weight 4
5 Density wrt. weight cutoffs Chakrabarti et al. (2005) Weight 7
6 Degree correlation statistics Stelzl et al. (2005) Binary 3
7 Clustering coefficient statistics Barabasi et al. (2004) Binary 3
8 Topological coefficient statistics Stelzl et al. (2005) Binary 3
9 First Eigenvalues Chakrabarti et al. (2005) Binary 3
10 Protein weight/size statistics Cherry et al. (1997) 4

Each row represents a group of similar features. We use 33 features divided into 10 groups. See supporting website for more details. The second column lists the name of the feature
group and the third column provides the references. The fourth column specifies which type of graph is used to derive the property.

In general, these previous approaches either (1) utilize properties of nodes
or edges (indegree, outdegree, cliqueness (Borgwardt et al., 2007), or (2) rely
on comparing non-trivial substructures such as triangles or rectangles (Przulj
et al., 2007; Yan et al., 2002). We use both types to arrive at a list of properties
for a feature vector that describes a subgraph in the PPI network. The
properties include topological measurements about the subgraph structures
and biological properties of the group of proteins in the subgraph.

Table 1 presents the set of features we use. We rely in part on prior work
(Bader et al., 2003b; Barabasi et al., 2004; Chakrabarti et al., 2005; Stelzl
et al., 2005; Zhu et al., 2005) to determine which features may be useful for
this complex identification task. Each row in Table 1 represents one group
of features. Totally 33 features were extracted from 10 groups.

Below we briefly discuss each of the feature types used. The numbers
match the numbers in Table 1.

1. Given a complex subgraph G= (V ,E), with |V | vertexes and |E| edges,
the first property we considered is the number of nodes in the subgraph:
|V |.

2. The density is defined as |E| divided by the theoretical maximum
number of possible edges |E|max. Since we do not consider self
interactions in the input weighted PPI graph, |E|max =|V |∗(|V |−1)/2.
As mentioned above, in the ‘matrix’ model the graph density is
expected to be very high, whereas it may be lower for the ‘spoke’
shape.

3. Degree statistics are calculated from the degree of nodes in the
candidate subgraph. Degree is defined as the number of partners for
a node. This group includes mean degree, degree variance, degree
median and degree maximum.

4. The edge weight feature includes mean and variance of edge weights
considering two different cases (with and without missing edges).

5. Density of weight cutoffs evaluate the possibility of topological
changes under different weight cutoffs.

6. Degree correlation property measures the neighborhood connectivity
of nodes within the subgraph. For each node it is defined as the average
number of links of the nearest neighbors of the protein. We use mean,
variance and maximum of this property in the feature set.

7. Clustering coefficient (CC) measures the number of triangles that go
through nodes. To compute this feature we calculate the number of
neighbors (q) and the number of links (t) connecting the q neighboring
nodes. We set CC =2t/q(q−1). This feature will have a small value
for ‘star’ or ‘linear’ shapes while ‘matrix’ or ‘hybrid’ shapes receive
a higher value.

8. The topological coefficient (TC) is a relative measure of the extent
to which a protein shares interaction partners with other proteins.
It reflects the number of rectangles that pass through a node. See
supporting website for details.

9. The first three largest singular values (SV) of the candidate subgraph’s
adjacency matrix. Different shapes have distinct value distributions for
these three SV. For instance when comparing subgraphs with the same
size, the ‘matrix’ shape has higher value for the first SV than other
shapes and the ’star’ shape has a lower value of the third SV. See
supporting website for details.

As for biological properties (No. 10), we use average and maximum
protein length and average and maximum protein weight of each subgraph.
This feature is based on the intuition that protein complexes are unlikely
to grow indefinitely, because proteins within the center of large complexes
become inaccessible to interactions with other putative partners.

Our framework described below is general and it is straightforward to add
other features if they are deemed relevant.

2.2 A supervised Bayesian network (BN) to model
complexes

We assume a generative probabilistic model for complexes. Figure 2 presents
an overview framework of our model. Our method uses a BN model. Features
are generated, independently, based on two parameters, (1) whether the
subgraph is a complex or not (C) and (2) the number of nodes in the subgraph
(N). The main reason we pay special attention to N and do not model it as
another complex property is because of the tendency of other properties to
depend on N . For example, the larger the complex the more unlikely it is that
all members will interact with each other (due to spatial constraints). Thus,
the density property is directly related to the size. Similarly other properties
such as ‘mean of edge weight’ and ‘average clustering coefficient’ also
depend on N . While it would have been useful to assume more dependency
among other features, the more dependencies our model has the more data we
need in order to estimate its parameters. We believe that the current model
strikes a good balance between the need to encode feature dependencies
and the available training data. Thus, other feature descriptors, X1 ...Xm

are assumed to be independent given the size (N) and the label (C) of the
subgraph.

For a subgraph in our PPI network we can compute the conditional
probability of how likely it represents a complex using the following
Equation (4).

p(ci =1|n,x1,x2,...,xm) (1)

= p(n,x1,x2,...,xm|ci =1)p(ci =1)

p(n,x1,x2,...,xm)
(2)

= p(x1,x2,...,xm|n,ci =1)p(n|ci =1)p(ci =1)

p(n,x1,x2,...,xm)
(3)

=
∏m

k=1 p(xk |n,ci =1)p(n|ci =1)p(ci =1)

p(n,x1,x2,...,xm)
(4)
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The second row uses Bayes rule. The third row utilizes the chain rule.
The fourth equation uses the conditional independence encoded in our
graphical model to decompose the probability to products of different
features. Similarly, we can compute a posterior probability for a non complex
by replacing 1 with 0 in the above equation.

Using these two posteriors we can compute a log likelihood ratio score
for each candidate subgraph:

L= log
p(c1|n,x1,x2,...,xm)

p(c0|n,x1,x2,...,xm)
(5)

= log
p(n|c1)p(c1)

∏m
k=1 p(xk |n,c1)

p(n|c0)p(c0)
∏m

k=1 p(xk |n,c0)
(6)

Applying Bayes’ rule and canceling common terms in the numerator and
denominator, the only terms we need to compute for the likelihood ratio L
are the prior probability P(Ci) and the conditional probabilities P(N |C) and
P(Xk |N,Ci).

Maximum likelihood estimation is used for learning these conditional
dependencies from training data. We first discretized the continuous features
and then used the multinomial distribution to model their probabilities. We
uniformly discretized each feature into 10 equal width bins in the experiments
presented in Section 3. Due to the small sample size of the training data, we
apply a Bayesian Beta Prior to smooth the multinomial parameters in extreme
cases (Manning et al., 1999). As for the prior p(C =1) of complexes, we
assign a default value of 0.0001 which leads to good performance in cross
validation experiments.

The BN structure in Figure 2 was manually selected. We have also tried
to learn the BN structure using tree augmented structure learning techniques
(Witten et al., 2000). However, the resulting performance of the learned
network is not significantly better than our proposed structure (Fig. 2). Since
our structure is simpler we omit the related results here. However potential
improvements may be possible with more training examples and better BN
structure learning approaches.

2.3 Searching for new complexes
The above model can be used to evaluate candidate subgraphs. If the log-
likelihood ratio exceeds a certain threshold the subgraph is predicted to be
a complex. This reduces the problem of identifying proteins complexes to
the problem of searching for high scoring subgraphs in our PPI network.
However, as we prove in the following lemma this search problem is
NP-hard.

Lemma 2.1. Identifying the set of maximally scoring subgraph in our PPI
graph is NP-hard

Proof. We prove this by reducing our search problem to max-clique, a NP
hard problem (Cormen et al., 2001). To reduce our model to max-clique we
will assume that we are only using one property, the graph density and that

all edges in our graph have a weight of 1. Furthermore, we set the probability
of a complex given a subgraph to:

p(C|N,X)=N/N +1 if X =1

p(C|N,X)=0 if X <1

For this model, the only subgraphs with positive scores are the cliques in our
graph. In addition, the bigger the clique the higher our score and so finding
the highest scoring subgraph is equivalent to finding the maximal clique.

The NP-hardness implies that there are no efficient (polynomial time)
algorithms that can find an optimal solution for the search problem defined
above. Thus, heuristic algorithms are needed. There are many approaches for
local graph search proposed in the literature, which include hill climbing,
simulated annealing, heuristic based greedy search, or tabu-search heuristic
(Virtanen, 2003).All these strategies try to find local optima for certain fitness
functions.

Here we choose to employ the iterated simulated annealing (ISA) search
(Ideker et al., 2002; Virtanen, 2003), using the complex ratio score as the
objective function (see Equation (6)). The basic idea for ISA is: after each
round of modifying the current cluster, we accept the new cluster candidate
if it has a higher score L′ than the current score L, but even if the score
decreases, we accept the new cluster with probability exp((L−L′)/T ), where
T is the temperature of the system. This allows the algorithm to avoid local
minima in some cases. After each round, the temperature is decreased by a
scaling factor α by setting T ′ =αT . The initial temperature T0, the scaling
factor α, and the number of rounds are parameters of the search process.
After the algorithm terminates the highest scoring subgraph is returned and
the search continues. Ideker et al. (2002) pointed out that given a suitable
parameter setting, ISA could identify the global optimum even though this
setting is generally unknown and can be impractically hard to find.

At the beginning, we connect each seeding protein to its highest weight
neighbor and then use the pair as the starting cluster. Beginning from
these clusters, we pursue the cluster modification process and the simulated
annealing search. A number of heuristics could be used for modifying the
current cluster. The order in which we add new proteins to the cluster is
based on their impact on the cluster ratio score. We also explore the option
of removing nodes from the cluster and merging of two clusters. We chose
to limit the rounds of iterative search to 20. This restricts the size of the
complexes we search for is between 3 and 20. We use cross validation to
choose best values for the temperature and scaling factor parameters. To
avoid revisiting the same/similar clusters, we keep checking the overlap
ratio between the current cluster to the investigated clusters so far. If the
ratio is higher than a threshold, we stop searching for the current seed. See
supporting website for details about the complexity of the algorithm and
values for the parameters it uses.

The complete proposed algorithm for complex identification is presented
in Table 2. Our input is the weighted PPI graph and a set of known complexes
and non-complexes (random collections of genes) as training data. First, we

Fig. 2. A Bayesian probabilistic model for scoring a subgraph in our framework. The root node ‘Label’ is the binary indicator for complexes (1 if this subgraph
is a complex, 0 otherwise). The second level node ‘nodeSize’ represents the number of nodes in the subgraph. The remaining nodes are all located on the
third level and each represents a feature property described in Table 1.
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learn model parameters for the probabilistic BN model from the training
data. Next, we search for subgraphs to identify candidate complexes. The
final output clusters are those clusters found to have a ratio score larger than
a predefined threshold.

2.4 Weighted undirected PPI graph
As discussed above, we assume that our model input is a weighted undirected
graph representing the PPI network. The edge weight describes how likely an
interaction happens between the two related proteins based on the following
rationale: While high-throughput experimental data for PPI is available, it has
suffered from high false positive and false negative rates (von Mering et al.,
2002). In addition to direct experimental interaction data there are many
indirect sources that may contain information about protein interactions. As
has been shown in a number of recent papers (Jansen et al., 2003), such
indirect data can be combined with the direct data to improve the accuracy
of protein interaction prediction. This type of analysis usually results in an
interaction probability or confidence score assigned to each protein pair.
Edges in our graph are weighted using this interaction probability which
is computed as follows. In previous work (Qi et al., 2006), we assembled a
large set of biological features (a total of 162 features representing 17 distinct
groups of biological data sources) for the task of pairwise protein interaction
prediction. Considering our current goal of complex identification we remove
the features derived from the two high throughput mass spectrometry data
sets (Gavin et al., 2002; Ho et al., 2002). Training is based on the small
scale physical PPI data in the DIP database (Xenarios et al., 2002). Based
on our previous evaluation, the support vector machine (SVM) classifier
(Joachims et al., 2002) performs as well or better than any of the other
classifiers suggested for this physical interaction task. We have thus used the
results of our SVM analysis [see details in Qi et al. (2006)] to obtain weights
for edges in our graph. Weights range from minus infinity to infinity where
larger values indicate a higher likelihood to be an interacting pair. To reduce
the number of edges in our graph we apply a cutoff and remove all edges
with weights below the cutoff. We have chosen a cutoff of 1.0 such that the
number of remaining edges roughly corresponds to previous estimates of the
number of protein interaction pairs in yeast (von Mering et al., 2002).

To further improve the quality of the PPI graph we filter the predicted
weighted graph using a newly published Yeast interaction data set from
Reguly et al. (2006). For each of the remaining interactions we keep
the weight learned from our integrated data analysis. This data contains
a comprehensive database of genetic and protein interactions in yeast,
manually curated from over 31 793 abstracts and online publications.
A total of 35 244 interactions are reported, including literature curated

Table 2. Protein complex identification algorithm

Input
- Weighted PPI matrix;
- A training set of complexes and non-complexes;

Output
- Discovered list of protein complexes;

Complex model parameter estimation
- Extract property features from positive and negative

training examples;
- Discretize the continuous features;
- Calculate the BN MLE parameters for different features

properties on the multinomial distribution;
Search for complexes

- Starting from the seeding subgraphs, apply simulated
annealing search to expand and identify candidate
complexes;

- Output subgraphs with ratio scores exceeding a certain
threshold

and high throughput interactions. To allow fair comparisons we removed
those interactions coming from the high-throughput mass spectrometry
experiments in this data set.

3 EXPERIMENTS AND RESULTS

3.1 Reference sets
The MIPS (Mewes et al., 2004) protein complex catalog is a
curated set of 260 protein complexes for yeast that was compiled
from the literature and is thus more accurate than large scale mass
spectrometry complex data. After filtering away those complexes
composed of a single or a pair of proteins, 101 complexes in MIPS
remained. The size of the complexes in MIPS is distributed as a
power law, with most of the complexes having fewer than five
proteins. We use the projection of the MIPS complexes on our
PPI graphs as the positive training examples. See Figure 1 for four
examples of such a projection.

As another independent positive set we used the core set of protein
complexes from a newly published TAP-MS experiment (Gavin
et al., 2006), one of the most comprehensive genome-wide screens
for complexes in budding yeast.Again, we removed those complexes
with only two proteins leading to 152 complexes that were used as
positive examples to test our method.

Since we are using a supervised learning method we also need
negative training data, which we generated by randomly selecting
nodes in the graph. The size distribution of these non-complexes
follows the same power law distribution of the known complexes
in MIPS. Figure 3 presents the histogram of these distributions
for each of the three reference sets: ‘MIPS’, ‘TAP06’ and ‘Non-
complexes’. As can be seen, all roughly follow the same ‘power
law’ distributions.

Figure 4 presents the distribution of two classes for real complexes
(blue) versus negative examples (red) when projected on the first
three principal coordinates after applying SVD on the features. The
distribution strongly indicates that the proposed features can separate
the two sets reasonably.

3.2 Performance measures
In order to quantify the success of different methods in recovering
the set of known complexes we define three descriptors for each

Fig. 3. Histogram of number of proteins in each of the three reference sets:
‘MIPS’, ‘TAP06’ and ‘Non-complexes’. Note that all resemble ‘power law’
distributions. Horizontal axis is the number of proteins. Vertical axis is the
number of subgraphs (complexes).
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Fig. 4. Reference examples’ distribution when projected with the first three
principle components after applying SVD to the features.

pair of a known and predicted complex:

• A: Number of proteins only in the predicted complex

• B: Number of proteins only in the known complex

• C: Number of proteins in the overlap between two

We say that a predicted complex recovers a known complex if

C

A+C
>p and

C

B+C
>p (7)

where p is an input parameter between 0 and 1 which we set to 0.5.
Thus we require that the majority of the proteins in the complex
be recovered and that the majority of the proteins in the predicted
complex belong to that known complex.

Based on the above definition, three evaluation criteria are applied
to quantify the quality of different protein complex identification
methods:

• Recall (r): Measures the fraction of known complexes detected
by predicted complexes, divided by the total number of positive
examples in the test set.

• Precision (p): Measures the fraction of the predicted complexes
that match the positive complexes among all predicted
complexes.

• F1: The F1 score combines the precision and recall scores. It
is defined as 2pr/(p+r).

All three values range from 0 to 1, with 1 being the best score. Recall
quantifies the extent to which a solution set captures the labeled
examples. Precision measures the accuracy of the solution set. A
good protein complex detector should have both high precision and
high recall. The F1 measure provides a reasonable combination for
both precision and recall. These three criterions are frequently used
in many computational areas (Jones et al., 1981).

3.3 Performance comparison
To assess the performance in complex identification, we conducted
experiments using MIPS as the positive training set and TAP06
as a test set and vice versa. There are a total of 1376 proteins in
the MIPS and TAP06 complexes. Thus, we applied our train-test

Table 3. Performance comparison between our algorithm (‘SCI-BN’), SVM
with the same set of features (‘SCI-SVM’), Clique based method using only
the density feature (‘Density’) and the ‘MCODE’ methods (Bader et al.,
2003b) (‘MCODE’)

Train Test Method Precision Recall F1

MIPS TAP06 Density 0.217 0.409 0.283
MIPS TAP06 MCODE 0.293 0.088 0.135
MIPS TAP06 SCI-SVM 0.247 0.377 0.298
MIPS TAP06 SCI-BN 0.312 0.489 0.381

TAP06 MIPS Density 0.143 0.515 0.224
TAP06 MIPS MCODE 0.146 0.063 0.088
TAP06 MIPS SCI-SVM 0.176 0.379 0.240
TAP06 MIPS SCI-BN 0.219 0.537 0.312

Evaluation is based on precision, recall and the F1 measure. Experiments carried out
with either MIPS as positive training set and TAP06 as test set, or vice versa.

analysis on a PPI graph containing theses genes. The resulting graph
used contains 1376 proteins and 10 918 weighted edges.

We have compared our method, referred to as ‘SCI-BN’,
with three other methods suggested for complex identification.
(1) ‘Density’ uses the the same search algorithm discussed in
Section 2. However, unlike our method which maximizes the BN
likelihood ratio, for ‘Density’ we simply try to find the maximally
dense subgraphs in the graph. (2) The ‘MCODE’ complex detection
method was proposed by Bader et al. (2003b). MCODE finds
clusters (highly interconnected regions) in any network loaded into
Cytoscape. The method was developed for PPI in which these
clusters correspond to protein complexes (Bader et al., 2003b).
(3) ‘SCI-SVM’ is used to determine whether the BN structure helps
in identifying complexes. It uses the same features as our method
but instead of using a BN it uses a SVM (Joachims et al., 2002).

The performance comparison is presented in Table 3. For each
method, we report the precision, recall and F1, separately. As can
be seen our method dominates all other methods in all measures.
The recall rate of our method is around 50%. This number is
impressive when considering the fact that the training and testing
were done on different datasets. Our precision is lower (between
20–30%). However, since many of the complexes are not included
in either gold standard sets, this precision value can be the result of
correct predictions that are not included in the available data. We
discuss some of these complexes below. As for the other methods,
surprisingly, the recall and F1 values reported by MCODE are
much lower than both the ‘Density’ and ‘SCI-SVM’ methods. We
investigated the clusters identified by ‘MCODE’ and determined
that they were relatively large compared to clusters determined by
other methods which may have hurt performance. Interestingly the
performance of ‘SCI-SVM’ is not as good as ‘SCI-BN’. This is
largely caused by the unique way BN can handle the ‘node size’
feature. For the ‘Density’ approach, it performs reasonably well for
the Recall measure but not as good in terms of precision.

4 VALIDATION
Using a threshold of 1.0 for the weights of the edges, our
yeast PPI network contains 5234 proteins and 19 246 interaction
edges. To identify and validate new complexes within this
network graph, we trained a new BN model on all of the MIPS
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Fig. 5. Projection of predicted complexes on our weighted PPI graph. The edge weights are thresholded and color coded. See color legend (top right corner
bar) for edge weights. Descriptions for each predicted complex are provided in the ‘Validation’ section.

manual complexes as positive examples and used 2000 randomly
selected non-complexes subgraphs as negative examples. Within the
resulting full graph, we predict 987 complexes using the ‘SCI-BN’
search method.

To identify new complexes within the predicted graph, we
compared the predicted clusters with those reported in five reference
datasets, the manually curated MIPS dataset (Mewes et al.,
2004) and four large-scale complex datasets obtained using high-
throughput experimental approaches (Gavin et al., 2002, 2006;
Ho et al., 2002; Krogan et al., 2006). After filtering those
clusters matching reference complexes, we are left with 570 novel
predictions. These are either entirely new complexes or extensions
to known complexes by adding new proteins.

Amongst the new complexes, most highly ranked were of size
3–4. The size distribution agrees with the distribution of known
complexes. While many of these top scoring complexes took the
shape of cliques, others displayed more diverse shapes. Examples
are shown in Figure 5. Black edges in Figure 5 represent interactions
with SVM score higher than 4.0 (indicating strong evidence for
interactions between proteins).

The clique complex shown in Figure 5a represents a protein
complex involved in translation. CDC33, also known as eIF4E, is
a translation initiation factor. PAB1 is a Poly(A)-binding protein.
TIF4632 is the 130-kD subunit of translation initiation factor
eIF4F/G. TIF4631 is the 150-kD subunit of the same translation
initiation factor, eIF4F/G. Being two subunits of the same protein,
we expect the evidence for this binary interaction to be very
strong, represented by the black edge connecting these two proteins.
eIF4F/G needs to interact with eIF4E to mediate cap-dependent
mRNA translation. eIF4F/G can also interact with p20, but p20

competes with eIF4F/G for binding to eIF4E. Thus, in a complex
involving eIF4E (CDC33), we expect to find CDC33 or p20 but not
all three proteins together. This is what is indeed observed in this
complex.

Figure 5b shows a high scoring cluster that is not a clique. This
cluster contains four proteins with known or presumed roles in actin
cytoskeleton structure, and a complex formation between them is
quite likely.

Figure 5c shows a cluster that is not listed in any of the
databases used but is actually a known complex: the heterotrimeric
G-protein [with alpha(GPA1)-, beta(STE4)- and gamma(STE18)-
subunits] binds to activated pheromone alpha-factor receptor(STE2)
(Whiteway et al., 1989). This is a transient complex and would
not be identified by high-throughput screening methods, although
the formation of this complex is a requirement for G protein
coupled signal transduction (not only in yeast, but in all G protein
coupled receptor signaling). The identification of this cluster by
our methodology is particularly encouraging, as such transient
complexes can have crucial cellular roles. The G protein coupled
receptors are the most abundant cell surface receptors in human,
and some 60% of currently marketed drugs are targeted at them
(Muller, 2000).

The shape shown in Figure 5d constitutes several small cliques
connected via common edges or nodes. This predicted cluster
therefore potentially gives a higher-level view of the local
functionalities for related proteins. Most proteins in this complex
have defined roles in transcription regulation, and a subset of
these was already known to form a complex earlier (SIN3, RPD3,
SDS3, UME6, SAP30 are part of the histone deacetylase complex).
The function of SRP1 (karyopherin-alpha) is somewhat engimatic
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with diverse roles in nuclear import on the one hand and protein
degradation on the other hand. The prediction of SRP1 being part of
this complex would be interesting to verify experimentally because
it would potentially link multiple processes.

Although the detected cluster shown in Figure 5e is a subcluster
of a very large cluster previously detected by high-throughput
methodology (Gavin et al., 2002), we present it here because of its
interesting shape of two clusters (triangle SEC27, COP1, CDC39)
and (rectangle CAF40, POP2, CCR4, CDC39) being connected by a
common binding partner (CDC39). The first cluster contains proteins
that are part of secretory pathway vesicles (SEC27, COP1), while the
second cluster contains proteins mostly with roles in transcription.
CDC39 linking these two groups is itself a protein also involved
in transcription. Its linking role to secretory pathway proteins is
unsuspected and should be investigated experimentally.

5 CONCLUSIONS AND DISCUSSIONS
In this article we presented a probabilistic algorithm for discovering
complexes in a supervised manner. Specifically we extract features
that can be used to distinguish complex versus non-complexes and
train a classifier using these features to identify new complexes
in the PPI graph. Unlike previous methods that relied on the
‘dense’ assumption of complex subgraphs, our algorithm integrates
subgraph topologies and biological evidence, and learns the
importance of each of the features from known complexes. This
allows our algorithm to identify complexes with topologies that are
missed by previous methods. We have shown that our algorithm can
achieve better precision and recall rates for previously identified
complexes. Finally, we discussed examples of new complexes
determined by our algorithm and their possible function.

Our framework of feature representation is general. It is
straightforward to add other topological properties that are found
to be relevant for this problem. It is also possible to add other types
of features. For example, information about the function of proteins
can be encoded in our framework as well.

We hope to extend this work and improve both feature
representation and search so that we can detect other types
of interaction groups. Besides complexes, pathways of logically
connected proteins also play a major role in both cellular metabolism
and signaling. How to detect interesting pathways on PPI graph
in our framework is an interesting direction to pursue. Another
interesting direction is to apply this method to other species for
which protein interaction data became available recently, including
humans.
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