A Model Based Analysis of Steady-State versus Dynamic Aspects of the Relationship between Calcium and Force

Casey L. Overby

Bioengineering and Bioinformatics Summer Institute 2007, University of Pittsburgh

Sanjeev G. Shroff (Mentor)

Department of Bioengineering, University of Pittsburgh

Background Cardiac Contraction - The Role of Calcium

• Calcium is required for contractile activation

Background

Static vs. Dynamic calcium-force relationship

- Myofilament response to calcium is often studied in skinned fibers
- Data produced using this technique is presented as force-pCa curves
- May exist characteristics of the calcium-force relationship not described well by a force pCa curve

Gao W D, Perez N G, Marban E: Calcium cycling and contractile activation in intact mouse cardiac muscle. *J of Physiol* (1998), 507.1, pp. 175-184

Purpose

- Interested in studying both dynamic and steady-state aspects of the calcium-force relationship simultaneously
- Interested in studying how changing different cellular processes affect steady-state and dynamic characteristics
- Cellular processes: calcium binding kinetics, crossbridge kinetics, and cooperativity feedback mechanism

Methods The Four State Model – Determining Parameter Sets

MacGowan, Kirk, Evans, Shroff. The four-state model. (*Am J Physiol Heart Circ Physiol*. 290: H2614-H2624. 2006)

Process	Parameter Set
Calcium-Troponin interaction	K ₁ , K ₂ , K ₃ , K ₄
Crossbridge cycling	f, g, g'
Cooperativity feedback mechanism	$\alpha_1, \alpha_f, \beta_1, \beta_f$

Methods

Determination of Baseline values

- Used time-varying and constant calcium inputs to represent dynamic and steady-state calcium input
- Model produces graphs based off of chosen baseline parameters
- Adjust values until fit experimental data in the literature

Methods

Evaluation of Force Response Waveforms

Indices describing steady-state and dynamic aspects

Steady State Indices	Description
F _{max}	Force at maximum activation.
pCa ₅₀	The $[Ca^{2+}]$ at which force is 50% of F_{max} and represents a
	compound affinity constant (i.e., the calcium sensitivity index).
nH	The Hill coefficient is the maximal slope of pCa ₅₀ and a
	quantitative measure of cooperativity.

Dynamic Indicies	Description
F _{max}	The maximum force for the full range of calcium concentrations
T _{rise}	The time to rise from baseline to F _{max}
T _{relax}	The time to relax from F _{max} to baseline
dF/dt _{min}	The maximal rate of falling force (during relaxation)
dF/dt _{max}	The maximal rate of rising force (during contraction)

Results

Force Response Waveforms

Baseline Data

Parameter Set Values Parameter Set Values

Results Effect on Steady-State vs. Dynamic Indices

Set #	Process
Set 1	Calcium-Troponin Interaction
Set 2	Crossbridge cycling
Set 3	Cooperativity feedback mechanism

 Recognized a 2.3 to 21.4 fold increase (P = 0.011) in sensitivity to change in dynamic indices compared to steady-state indices

Results Systematic Varying of Parameters

Conclusions

- Changes in all three processes (calcium binding kinetics, crossbridge kinetics, and cooperativity) affected both steady-state and dynamic aspects
- Relative sensitivity of changes in dynamic aspects were significantly greater
- Dynamic aspects of calcium-force relationship is physiologically important in cardiac contraction
- Model-based analysis may help guide future experimental work

Acknowledgements

- Dr. Sanjeev G. Shroff (Research Advisor)
- Jonathan A. Kirk (Graduate Student, Dr. Shroff's Lab)
- University of Pittsburgh (Department of Bioengineering Dept. & Department of Computational Biology)
- Duquesne University
- Bioengineering and Bioinformatics Summer Institute, University of Pittsburgh (BBSI @ Pitt)
- National Institute of Health/National Science Foundation

