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Background - Potential

Electrostatic Potential why important?
-electrostatic forces are derived from this
-changes with each configuration change

- clearly the potential is a vital yet complex
calculation which needs to be performed

optimally
-solved with the Poisson Boltzmann equation



Background — Poisson
Boltzmann Equation

The Poisson Boltzmann Equation (PBE) is a complex
second order non-linear partial differential eguation used
the electrostatic potential. It takes the following form.
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The hyperbolic sine term can be linearized resulting In
the Linearized PBE (LPBE)
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Background- Molecular Case
of the LPBE

e Discontinuous piecewise

constant dielectric term /— M
e Discrete individual point | e\ &

charges on molecule \ g\ el
e The LPBE splits into the \ oty 0\
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Background- Boundary
Element Method

e Using Green’s function we can convert the
previous system of 2"d order PDES to a system
of surface integrals of the following form
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This system is approximated using finite
element methods creating a non sparse matrix



Project Idea

e Computational Speed and Efficiency
-Matrix Compression :

ACA algorithm

e Accuracy
-Flexible approximation techniques:

we can specify the order of
approximating polynomial

-Accurate functional representation:
Spherical Harmonics




Project Idea part 1.
Implementing ACA Algorithm

Matrix manipulations are often the most
computationally expensive

Finite Element and Finite Difference Methods
e Sparse large matrices

Boundary Element Method

e Smaller matrix but not sparse

ACA compresses nearly singular portions of a
surface integral matrix

ACA programming and setting up the surface
Integral matrix consists of the bulk of the project




Project Idea part 2: Implementing
Spherical Harmonics

e Clearly the solution of the PBE hinges on
surface Iintegrals

e To Iintegrate over the surface we need a
functional representation of the surface

e previously naive attempts were made fitting
an ellipse over target molecule

e Spherical Harmonics can produce better
shapes



Spherical Harmonics-What are
they?

e an ortho-normal series of functions defined
on the unit sphere (defined for all (phi,theta))

e a generalization of the Fourier series to the
sphere

e an Infinite dimension basis for all continuous
functions defined on the unit sphere
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Spherical Harmonics-Why use
them?

e We can express the radius of a star surface
with a central point as a function of (phi,theta)

e this function can be then be written as an
Infinite sum of spherical harmonics

e we can specify the degree of accuracy by the
adding harmonics

e for star shaped objects the spherical
harmonics should converge to the shape



Spherical Harmonics-
Coefficients

For each function there exists a unique spherical
harmonic coefficient for each harmonic

= [ F(0,0) Ym0, p)de

The coefficients obey the following property
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The coefficients also minimize the following quantity
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Spherical Harmonics- Process

e Start with a PDB file containing atomic
coordinates of the nuclei of the
molecule/protein

e Use Dr. Connolly’s msroll program to
generate a larger series of coordinates
representing the dot surface of the
molecule/protein

e Run spherical harmonics approximation of
the desired degree



Results : Simple Amino Acids

e Alanine: only 13 atoms, a common residue




Results : Complex Amino
Acids

e Tryptophan: 27 atoms
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Results: Secondary Structure

Beta Pleated Sheets
~ 15 residues




Results- Simple Proteins

Due to slightly more regular shape these fit fairly well
Crambin: only 46 residues

Lz 14 EL -90 -5



Results —Not so simple protein

e Lysozyme: 129 Residues
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Results - Summary

e Single Amino Acids: excellent fit

e Secondary Structure: way off because of
poor shape

e Proteins: doesn’t capture everything, but
gives a pretty good general idea

e Overall fairly successful attempt
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