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Method

The methods for this project are based upon a series of trials
explained in detail in the paper by Qi, Bar-Joseph, and Klein-
Seetharaman, which concluded that the Random Forest method of
classification yielded results with the lowest propensity for false-
positives and negatives. In order to make predictions about the
interactions of protein pairs, publicly available information was
used to “learn” the software.

The learning of the software was based on two main
datasets. The positive set defined the set of proteins already
known, through experimental methods, to interact. The negative
set was generated by a random sample of all possible
combinations of the master list of genes.

The feature sets were created using other

Abstract

A recent study conducted by this
research group concluded that using the
correct combination of classifiers and
features, supervised machine learning could
be used to make predictions regarding
protein interactions based on direct and
indirect biological datasets for yeast cells.
We sought to repeat these results for
Arabidopsis thaliana, a model organism for
flowering plants.

Preliminary Conclusions

The results at this stage are insufficient to make
generalizations about the different classification
methods available. As the project progresses,
additional feature sets will be added and the
advantages and disadvantages of each will become
more apparent and distinct. For example:

eBecause there is not a distinctive difference in the
patterns of the distributions of the microarray

visualization, this feature alone could not be used to
make an interaction prediction.

eEach of the classifiers gave the same results regarding
accuracy in predicting interacting pairs (74%). This is
due to the fact that there are not enough feature sets to
distinguish the training (see table below).

To investigate systematically the utility
of different data sources and the way the
data is encoded as features for predicting

Classifier # Correct Instances Percent Correct

Proteinl Protein

o
o
i
—
H
o
=
o]
—
o]
oo

Microarray

H . . bled a | 7.7 information about the genes of the organism, W 225 75550406
these interactions, we assembled a large set “% including ortholog and gene expression data. T T
of biological features and varied their Logistic 2265 75.5504%

Using these, comparisons between datasets
| were , in general, made to assign scores of
... one (1) or zero (0) to the pairs for interacting
| or non-interacting predictions, respectively.
w5 This is not always the case, however, as in the
.~ Mmicroarray data,_ real values_ of average Arabidopsis thaliana
intensity were assigned to the pairs.
.20 The set of scores and a label column (one for positive set,
e zero for negative) were combined into an array that could then
be used as input into the Weka software, essentially making a
Generated input file for prediction about the regarding the probability of the interaction

Weka software of the two proteins in the specified pair.

SMO 2265 75.5504%

AT3IGZ20740 AT4316645
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AT4G0Z440 AT4G02570
ATI1GS5670 ATCGO0340
AT1G45249 AT3G57530
AT3G17590 AT4:16280
AT1G6Z2360 AT4E332980
AT1G52240 AT3351300
ATIRZRR?N ATIATNSIN

encoding.

The result value (75 percent corrected predicted)
indicates that even with just two features, it is
possible to predict the protein interaction pairs in AT.
This partially proves the applicability of extending the
method on this species. Adding additional features
would definitely achieve better performance.

Introduction

The interactions that occur between
two proteins are essential parts of biological
systems. Through a combination of modern
robotics, data processing and control
software, liquid handling devices, and
sensitive detectors, high-throughput
methods allow a researcher to effectively
conduct millions of biochemical, genetic, or
pharmacological tests in a short period of
time. Through this process one can rapidly
identify active compounds, antibodies or
genes which modulate a particular
biomolecular pathway. The results of these
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interactions can be extended for organisms
where little direct high-throughput
information is available, for example, in
humans or plants, such as Arabidopsis
thaliana.
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