Data Visualization

Joel R. Stiles, MD, PhD

PITTSBURGH
SUPERCOMPUTING
C E N T E R

What is the goal?
A generalized environment for
manipulation and visualization of
What is real? multidimensional data

Examples of some mind-bending
optical illusions enabled by

More generally -

computer graphics. A means to map N-dimensional
data onto 2-D or 3-D spaces, and
visualize as a 2-D projection

Examples of Common Datasets: Introduction to OpenDX (www.opendx.org)

* Atmospheric data A “Complete Visualization Environment”
Oceanographic data Conceptually based on underlying abstract data
model
) Three visual programming support components:
Genomic sequences e Graphical program editor - visual programs
Protein sequences e Core set of supplied data transformations —
Protein structures modules
Light & electron microscope images o Client-server executi(_)n modt_el — user interfa}ce
Medical imaging (CAT, MRI, PET, Ultrasound, etc.) SBPEEe frorr} re_ndermg englne (D ssoutye)
Advanced features:
Models e User-defined macros
Simulation data e Scripting language
o Full API (Application Programming Interface)

Geological data

ﬂ Data Explorer |_ (O] x]

Import Data...

Run Visual Programs...

ﬂDala Explorer =] B3

’ Import Data...

Run Visual Programs...

Edit Visual Programs...

Edit Visual Programs...

Run Tutorial...

Run Tutorial...

|
|
|
New Visual Program... |
|
Samples... I

|
|
New Visual Program... |
|
|

Samples...

Quit Help

[E205t3 Prompter
File Edit Options.

Quit Help

Datafile CildsamplesidataMRL.data (=]
i Header wotngies | [

sanasm [T < <
—

< # of Points

Dataformat ASCH(Tex) — | Most Signlcant yte Fis —
Data order Row [[f] column =]

Teaing _Blosk o (g b

o
Field list 4 Hove

Field name fieldo.

o o=

Structure sealar | siring size ||

Dependency positions |

asetes o [st [cots [

Series
nterieaving

s wotbyies |
Sepinatr

Gt 1o Completely requlr
requins | origin. delta [0, 1
g | oo <cre) [
et = | orgndeve. [EEE
et = | orgndeve. [ENER

Stepou sy [T [
tock s [T acten [wiaw [
na et | oty | beee

1 Record Separator

v sane between all records

wotmes =] [T
I worbyes | [0

~ between secords:

[Visu Program

& File Edit Execute Windows Connection Options Help |

Categories: Untitied

||

DXLit
Debugging
Flow Control

import and Export
interactor
interface Control
facros
Realization

pecial
tructuring

(ALL)Tools:

{AmbientLight
Append
Arr:
ArrangeMember
Attribute
AutoAxes
it

(o—

AutoColor
AutoGlyph

AutoGrid
AutoScale
BSpline

an
BandColors
Camera

Caption
egorize
CategoryStatistics

ChangeGroupType |/

FiData Prompter [_[O] %]

File

Options Help |

Data file name

i

Data Explorer file

QLXK

Select the format of your data:

CDF format

NetCDF format file

HDF format

Image file

Grid or Scattered file (General Array Format)

Spreadsheet format file
Hints

mDala Explorer H[=] B3

Import Data... I

Run Visual Programs... I

Edit Visual Programs... I

New Visual Program...

Run Tutorial...

Samples...

Quit Help

W] Data Explorer |_ (O] x|

Import Data...

Run Visual Programs...

Edit Visual Programs...

New Visual Program...

Run Tutorial...

Samples...

isual Program E ditor

& File Edit Execute Windows Connection Options
Untitled
-

Import and Export.

ractor
Interface Control

facros
Realization _
endering u|
E ecial {AutoColor|
tructuring 4 —
(ALL)Tools:

rid
Histogram
image

image2

[
ImportSpreadsheet

insetimage

tegerList
InterpolatePositions
Isolate

Tutorials | and Il are designed so that you can
proceed from one topic to another in whatever
order you choose.

If you have not used Data Explorer before, we
recommend that you start here with Tutorial |, which
will quickly introduce you to many of the basic
features of the user interface, as well as to many of
the most commonly used Data Explorer functions.

If you already know how to run Data Explorer and
int more information on how to edit and create
ith

beginning of that tutorial.

If you need to learn how to start Data Explorer, see
!

Tutorial | consists of three parts:

oStarting Data Explorer

ck

SHolp

Import

Category

Function

Reads an extemal data file.

Syntax

data = Import (name, variable, format, start, end, delta) ;
Default
none

Description
rameoteconngdsta e

e extension o content: -ax""general “netcdt”"CDF?
= “ha "

frstirame st data frame tobe imported
Tastirame last Gata frame o be imported

1 increment between frames

escription
object contaning requested vaisles

Functional Details

o Back |

W] Data Explorer |_ (O] x|

Import Data...

Run Visual Programs...

Edit Visual Programs

New Visual Program...

Run Tutorial.

Samples...

Quit Help

Edit Execute Windows Connection Options

Untitied

Context-Sensitive Help}

import and Export
interactor
interface Control
facros =
e |AutoColor
pecial
tructuring

(ALL)Tools:

Tnbiioe | moe |
Append =
lArrange

(o—

Attribute
AutoAxes
it

AutoColor
AutoGlyph

AutoGrid
AutoScale
Spline

and
BandColors
Camera

Caption
ategorize

Product Information...
Technical Support...

Application Comment,

Overview (of Window)..]
Table of Contents...
Using

Tutorial..

Import Data...

Run Visual Programs...

Edit Visual Programs

New Visual Program...

Run Tutorial.

Samples...

Quit Help

Filter
C:DXisamplesfprogramsf*.net.

Directories Files

net

c net
AnnotationGlyphs.net
ange.net

es.net
AutoAxesSpecifyTicks.net
AutoColor.net
IAutoGlyph.net
/AutoGrid.net

and.net
BandedColors.net
Bounce.net
Cappediso.net
Caption.net
\Categorical.net
CensusData.net
Color.net
ColorBar.net

= — =} JE—]
Selection
| ciiDxisamptesiprograms]

oK |

Pinhole Camera Basics

Light
Source

Foreground
obscures
Background

R o >
Direction of

Inverted and Light Travel

Reversed Image with

Infinite Depth of Field

The computer renderer works like a virtual pinhole camera,

Far Clip Plane —“—

Near Clip Plane

Scene
Objects

Frustum
(viewable'warld boundaries,
truncated pyramid)

Camera Location
(focal point)

Screen (pixels)

Overview of Computer Rendering
- Or -

How does a computer make a picture?

Pinhole Camera Basics

Object
Height
Image)
Object | Eocal lLengiizf))
H?;]Q)ht Y Object| Distance (o)

Serean Focal Point

Location

Perspective

hy
Tramstormasion | e = o

Except that:

Light Travel
is Reversed

Screen is Repositioned so Image is Not Reversed

Projection & n

Hidden Surface i
Algorithm Imagmg

Floating-point Colors & Coverage P| p el Ine
Filter, Sample

Floating-point Pixels Floating-point Depth Values

Exposure

Floating-point Pixels

Floating-point Pixels Floating-point Depth Values

Color Depth
Quantizer Quantizer

Fixed-point Fixed-point
Pixels Depth Values

Image Depthmap
File/Device File/Device

Projection & An
Hidden Surface |maging
Pipeline
Filter, Sal
Floating-point Pixels Floating-point Depth Values
Exposure:

Floating-point Pixels

Imager

Floating-point Pixels Floating-point Depth Values

Fixed-point Fixed-point
Pixels Depth Values

Imag
e/Device

Orthographic
Rendering
(Surface)

\

An
Imaging
Pipeline

e Scan-line Renderer
e Ray-tracing Renderer
Floa o | ights
e Surface/Material Properties
° Shading 1t Depth Values
e CPU Rendering vs. Video
Hardware Rendering
Im
Floating-point Pixels Floating-point Depth Values

Color Depth
Quantizer Quantizer

Fixed-point Fixed-point
Pixels Depth Values

Image Depthmap
File/Device File/Device

Perspective
Rendering
(Surface)

Orthographic
Rendering
(Volume)

\

Projection & A
Hidden Surface
Wireframe
Rendering

> Imaging
Floating-point Colors & Coverage

Pipeline
Filter,

] Floating-point Pixels Floating-point Depth Values

(X { 2

AR 3

R %

NS

AV,

Exposure

Floating-point Pixels

Imager
Floating-point Pixels

Floating-point Depth Values

Color
Quantizer Quan

Fixed-point Fixed-point
Pixels

Image
File/Device

Depth Values

Depthmap
File/Device

Projection & An
Hidden Surface |maging
o Floating-point Colors & Coverage P| p el ne
Wireframe
Rendering
with Dep Floating-point Pixels

Cueing

Floating-point Depth Values
Exposure
Floating-point Pixels

Imager
Floating-point Pixels

Floating-point Depth Values

Fixed-point Fixed-point
Pixels

Depth Values
Image Depthmap
File/Device File/Device

Projection &

A
Imaging
Floating-point Colors & Coverage P| p el | ne
Filter,

Floating-point Pixels Floating-point Depth Values

Exposure

Floating-point Pixels

Antialiased

Floating-point Pixels

Floating-point Depth Values
Wireframe \ / Ak A
f X Fixed-point Fixed-point
RF:‘[E dDe” nt?] Pixels Depth Values
Wi ep
Cueing

Image
File/Device

S

24-bit color/pixel PerSpec_“VE

[red, green, blue] Rendering
[0-255, 0-255, 0-255] (Surface)
16.8 million colors

Multidimensional Data Representation
and Manipulation

Atmospheric data

Oceanographic data

Geological data

Genomic sequences

Protein sequences

Protein structures

Light & electron microscope images

Medical imaging (CAT, MRI, PET, Ultrasound, etc.)
Models

Simulation data

Discretized Meshes

Discretized Meshes (Grids) are characterized by their
dimensionality and the pattern of connections between
points:

Regular — defined by an origin point, deltas (distance

between points) in each dimension, and counts (number of
points) in each dimension

Element type = lines %

Element type = quads

Element type = quads

Element type = cuboids

Perspective
8-bit color/pixel Rendering

[0-255] (Surface)
256 colors

Measurement, Modeling, Simulation,
Visualization Project Flow

1 —> Primitive Surfaces:
Quadric - sphere, cone, cylinder,
hyperboloid, paraboloid, torus
Parametric - bilinear & bicubic
patches, patch surfaces, non-uniform
rational B-spline surfaces (NURBs)

Simulation

Analysis

Discretized Meshes

Discretized Meshes (Grids) are characterized by their
dimensionality and the pattern of connections between
points:
Deformed Regular — regular connections between points
that do not have constant linear deltas

Element type = quads

Discretized Meshes

Discretized Meshes (Grids) are characterized by their
dimensionality and the pattern of connections between
points:

Irregular — set of points and explicitly defined connections

Element type = triangles

Data Dependency

Data values (integer, real, complex, scalar, vector, matrix,
tensor, text,...) can be mapped to either grid points
(position-dependent) or grid elements (connection-
dependent).

Connection-dependent = cell-centered

OpenDX Data Model
Generally uses 6 types of descriptive objects:

1. Attribute: names an association between an OpenDX
object (array, component, field, or group) and a (simple or
compound) value. A typical use for an attribute is to
associate “metadata” with a data set.

2. Array: a basic data carrying structure that holds actual
data. OpenDX uses one-dimensional arrays and permits
the array elements to be of any type, so an array object
can be described simply by listing the number of items it
contains. Array elements are referenced by index.

Data Dependency

Data values (integer, real, complex, scalar, vector, matrix,
tensor, text,...) can be mapped to either grid points
(position-dependent) or grid elements (connection-
dependent).

Position-dependent = node-centered, location-centered

OpenDX Data Model

An N-dimensional abstract data space from which the user
takes 2-D and 3-D visual “snapshots” to create viewable
images.

Uses an object-oriented, self-describing approach to
defining the datasets imported, used, and manipulated by
the system.

OpenDX Data Model

Generally uses 6 types of descriptive objects:

3. Component: an element of a field with a specific role in
data description; a component is typically associated with
an array object with a specific associated name.

4. Field: a fundamental compound object in OpenDX, used
to collect and encapsulate related components. All its
elements must be components.

OpenDX Data Model

Generally uses 6 types of descriptive objects:

5. Group: compound object used to collect members that
themselves may be fields and/or groups; it cannot collect
components (a field is used for that purpose). A member
of a group may be referenced either by name or index.

6. Special: used to describe special attributes or
characteristics of objects used in the rendering process,
e.g., Camera, Light, Transform, etc.

OpenDX Data Model

Attributes:

Formalize the attachment of metadata to specific parts of a data set.
Examples of predefined attributes:

“dep” specifies the component on which the given component depends,
e.g., a “data” component can be dependent upon “positions”

ref” specifies the component to which the given component refers, e.g
a “connections” component will typically refer to the “positions”
component.

“der” specifies that a component is derived from another component, and

so should be recalculated or deleted when the component it is derived
from changes, e.g., the “box” component typically has a “der” attribute
naming the “positions” component.

“element type” is an attribute of the “connections” component, and
names the type of interpolation primitive.

“shade” indicates whether or not to shade the object if a “normals”
component is present.

OpenDX Data Model

Field Objects consist of component arrays. Typical predefined field
components:

e “positions” stores the coordinates of a set of positions in an n-
dimensional space

e “connections” provides a means for explicitly relating individual
collections of positions (e.g., representing lines, surfaces, etc.) and
interpolating data values between positions.

“data” stores actual data values. Only one component can be named

“data” in a field, but other components can be used to store alternate data

and can be switched with existing “data” at any time.

“box”, “colors”, “front colors”, “back color ormals”, “opacity”,
“opacities”, etc., provide specific information that directs the renderer’s
operation.

OpenDX Data Model

Object Diagram:
Croup) CALHIEE

Field) CAtnbuE

Component Component
Field Field

Conmponent Component) (Compenent) (Component) CAlbUE

OpenDX Data Model

Array Objects:
e |tems are referenced consecutively starting at zero.

e “type” attribute describes the internal numerical format to be used for the
array’s data. Predefined type values include double, float, int, uint, short,
ushort, byte, ubyte, and string

“category” attribute specifies which of two possible floating point
representations is to be used, real or complex.

rank” attribute refers to element order dimensionality, where rai
indicates a scalar, 1 a vector, 2 a matrix or rank-2 tensor, and 3 or higher a
higher-order tensor.

“shape” attribute defines the dimensionality in each of the order
dimensions of the structure. Thus, for rank-0 items (scalars), there is no
shape. For rank-1 structures (vectors), the shape is a single number
corresponding to the number of dimensions. For rank-2 structures, shape
is two numbers, and so on.

OpenDX Data Model

Objects consist of members. There are four specific group types:
Generic” group (standard),

“Multigrid” group is a collection of separate fields, each with its own grid
(with common element type) but treated as a single field, rather than as a
group

“Composite field” group is similar to multigrid group, used primarily to
segment fields to permit parts of the field/group to be processed in
parallel

“Series” group is a generic group that stores a series value (e.g., time
step) for each member.

