Modeling Ion Transport through Biological Channels:

Rob D. Coalson University of Pittsburgh Pittsburgh, PA 15260 USA

Transmembrane Transport

neural systems:

- a) communication among neurons
 * action potential
 * synaptic signaling
 - b) receptor brain communication
- heart muscle
 - signaling and regulatory processes

Channel malfunction

Cystic fibrosis Epilepsy Diabetes Migraines Neuro-toxins

50% of drugs on the market target ion channels!

Recording Single Channel Ion Currents

Patch-Clamp Experiment

Plotting Current-Voltage Curve

Typical Ion Channels with Known Structure:

K⁺ channel (KCSA)

Acetylcholine receptor transmembrane domain

Types of ion channels:

- ✓ Simple pores (GA, GAP junctions)
- ✓ Substrate gated channels (Nicotinic receptor)
- ✓ Voltage-gated channels (K-channels)
- ✓ Pumps (ATP-synthase, K⁺,Na⁺-ATPase)

Membrane Surface-Charge Titration Probed by Gramicidin A Channel Conductance -- Rostovtseva et al., Biophys. J. <u>75</u>, 1783 (1998).

Poisson - Nernst -Planck Theory (PNP)

 Dielectric slab with a pore in electrolyte solution

 $\begin{array}{c} Membrane \ \varepsilon_m = 2 \\ Water \ \varepsilon_B = 80 \end{array}$

✓ $j_1=0$ no flux through the channel wall

Flux:Nernst-Planck (NP) $div(\vec{j}_i) = 0$ <--Steady state current</td> $\vec{j}_i = -D_i \vec{\nabla} c_i - D_i q_i c_i \beta \vec{\nabla} \varphi$ Electrostatics:Poisson (P) $\vec{\nabla} \cdot (\varepsilon \vec{\nabla} \varphi) = -4\pi (\sum_{j=1}^{protein} \rho_j + \sum_{i=1}^{ions} z_i ec_i)$

Boundary Conditions: at the box boundaries

- ✓ Applied Potential $\phi_L, \phi_R = \text{const} \text{dirichlet bc for potential}$
- ✓ Known salt concentrations
 c_L, c_R =const dirichlet bc for concentrations

Gramicidin A in DMPC lipid bilayer and water

✓ Antibiotic peptide

Forms a pore in the cell wall of a bacteria and lets out monovalent cations (K+, Na+) Membrane potential disappears and bacteria dies.

✓ 15 amino acids, helical
✓ Channel is formed by a headto-head dimer

NMR structure of protein with <u>partial charges</u>
 water, membrane and mobile ions - continuum

Cation Density in Gramicidin A Channel From PNP Calculation

Cation density maxima indicate possible binding sites inside the channel protein

Theory/Modeling results from: A.E. Cárdenas, R. D. Coalson and M. G. Kurnikova, "3D Poisson-Nernst-Planck Theory Studies: Influence of Membrane Electrostatics on Gramicidin A Channel Conductance", Biophys. J. **79**, 80-93 (2000).

• GA with charges and dipoles embedded on the membrane surface

GA

PC (uncharged)/ PS (charged) Lipid Bilayer

GMO (non-dipolar) Lipid Bilayer

I-V curves for GA embedded in PC (uncharged) and PS (charged) Membranes at neutral pH

Legend: open triangle = 1.0M (charges); open diamond = 0.1M (charges); closed triangle = 1.0M (neutral); closed diamond = 0.1M (neutral)

Conductance for GA in mixed bilayers at neutral pH [CsCl] = 0.1M

* Rostovtseva et al.