
5/24/2007 BBSI 2007, Computing Primer

Computing Primer
Or:

How

I Learned

To

Stop

Worrying

And

Love

The

Command Line

Jason Boles

5/24/2007 BBSI 2007, Computing Primer

Overview

• Windows Command Line

• Brief Unix History

• Logging in to unix

• File system(s)

• Common shell commands

• Advanced shell commands/scripting

• Questions?

5/24/2007 BBSI 2007, Computing Primer

Keyboard Shortcuts

Tab, Shift+Tab Go to Next, Previous Field

Ctrl+C, Ctrl+X, Ctrl+V Copy, Cut, Paste (different

on unix, more later)

PrntScrn Screen capture to clipboard

Alt+Letter Choose any command

whose Letter is underlined

+E Start Explorer

+R Run…

+M, +Shift+M Minimize all, Unminimize

+F Find…

5/24/2007 BBSI 2007, Computing Primer

Windows Command Line

• Run… “cmd”

5/24/2007 BBSI 2007, Computing Primer

cmd/DOS commands

dir List files

cd Go to another folder

cls Clears screen

help Lists available commands

set Views/sets variables

copy Copy a file

del Delete a file

Any .exe, .bat, etc Runs the executable

exit Leave the prompt

5/24/2007 BBSI 2007, Computing Primer

Exercise 1

• Using command prompt, create a new text

document hello.bat.

– Use the “edit” command

• Or “notepad hello.bat”

– Contents of hello.bat:

@echo off

echo %USERNAME% says hello from %COMPUTERNAME%

pause

– Run hello.bat (double click, or just type hello)

5/24/2007 BBSI 2007, Computing Primer

Brief History of Unix

• 1965

– Bell Telephone Laboratories(AT&T), General

Electric and MIT join forces (Project MAC) to

develop a new operating system called

MULTICS.

• MULTICS = MULTiplexed Information and

Computing Service.

5/24/2007 BBSI 2007, Computing Primer

Brief History of Unix

Multics goals

– Provide simultaneous computer access to a

large community of users (multiuser).

– Provide sufficient computational power and

data storage.

– Allow users to share data easily.

5/24/2007 BBSI 2007, Computing Primer

UNIX

• 1969, Bell Labs

– Kenneth Thompson and Dennis Ritchie
develop new OS

• First implemented on PDP-7 minicomputer

• The name

– A member of the Computing Science
Research Center, Brian Kernighan, gave it the
name UNICS(UNiplexed Iinformation and
Computing Service) as a pun on MULTICS.

– Spelling later changed to UNIX

5/24/2007 BBSI 2007, Computing Primer

An extended history of UNIX

• Look at the wall for the unix family tree

and history and all the different versions

• Don’t really worry about this

– There are subtle differences, but it’s easy to

learn other Unix flavors when you know one.

5/24/2007 BBSI 2007, Computing Primer

For the rest of the lab…

• We will use “unix”

– Cygwin on Windows

• Unix environment emulator

– Unixs.cis.pitt.edu

• Remote access to Solaris

– Via SSH

– VMware Scientific Linux

• VMware emulates an entire PC, lets you run

multiple OS simultaneously

5/24/2007 BBSI 2007, Computing Primer

Cygwin

• Double Click the Cygwin Icon

• This starts a new shell

5/24/2007 BBSI 2007, Computing Primer

Common Shells

• Cygwin uses Bash (bourne again shell) –

some other common shells are:

1. Bourne shell - sh

2. Korn shell ksh or zsh(enhanced ksh)

3. C shell csh or tcsh(slightly enhanced csh)

4. Z shell zsh

5/24/2007 BBSI 2007, Computing Primer

Logging in to Unixs via SSH

• Start the SSH client, click on Quick

Connect

• Unixs.cis.pitt.edu

• Use your pitt ID

5/24/2007 BBSI 2007, Computing Primer

SSH cont’d

• When connected, you will see

– UnixsN $

5/24/2007 BBSI 2007, Computing Primer

X11 / Xwin

• Local and Remote Window System (GUI)

– Used in most unix

• except in mac os X

• Start local one by double clicking XWin

shortcut on your desktop

– This is localhost:0

5/24/2007 BBSI 2007, Computing Primer

Using SSH to Tunnel X11

5/24/2007 BBSI 2007, Computing Primer

Environment variables

• env to see all

• export varname=value

– Bash syntax, other shells differ

• echo $DISPLAY

– Should say localhost:10 or higher.

5/24/2007 BBSI 2007, Computing Primer

Interactive

• I’m gonna go through some (a lot) of

commands, just follow along

• 2 breaks

– 2:30

– 3:30

5/24/2007 BBSI 2007, Computing Primer

Future Questions…

• My Office is 3070 BST3 (near classroom)

– Stop by anytime

• jBoles@ccbb.pitt.edu

mailto:jBoles@ccbb.pitt.edu

The shell

The last line on the previous slide is the com-

mand prompt. A special program call the shell

is running, in your name, waiting for you to give

it something to do.

The shell is your command interpreter and a

high-level language(more on that later).

12

Some common shells:

1. Bourne shell - sh

2. Bourne Again SHell - bash

3. Korn shell ksh or zsh(enhanced ksh)

4. C shell csh or tcsh(slightly enhanced csh)

13

What shell are you using?

(1) unixs1 $ echo $SHELL

/bin/bash

(2) unixs1 $

The unixs machine has sh, bash, ksh, zsh, csh

and tcsh.

14

Where are you in the file system?

(3) unixs1 $ pwd

/afs/pitt.edu/home/r/b/rbell

(4) unixs1 $

The UNIX file system is a upside down tree.

15

The UNIX file system is hierarchical - an up-

side down tree.

/

etc dev home afs

pitt.edu

home

a r

0 b

rbell

z

z

cs.pitt.edu

mnt tmp usr var

16

Listing the contents of a directory.

The ls command lists the contents of the given

directory or another directory if specified.

The following command lists the contents of
the current directory.

(3) unixs1 $ ls
Backup c News private SQ620481.TXT
bin dead.letter nsmail public test
(4) unixs1 $

17

or one can list the contents of any other di-

rectory (assuming that you have the correct

permissions to view it).

(4) unixs1 $ ls c
crypto fibon.c output prog2.4.c runit
crypto.c header prog1.c prog3.c test
(5) unixs1 $

Back to listing my home directory.

There are more files than those that appear

with the simple ls command. ls with the -a

option will display the so-called hidden files.

These are files that some applications use to

store various configuration information regard-

ing your use of them.

18

(5) unixs1 $ ls -a

. .dt .pinerc c

.. .dtprofile .preferences dead.letter

.addressbook .hotjava .profile News

.addressbook.lu .login .sh_history nsmail

.alias .logout .signature private

.bash_history .mailcap .solregis public

.bash_profile .netscape .ssh SQ620481.TXT

.bashrc .pine-debug1 .TTauthority test

.bin .pine-debug2 .Xauthority

.cshrc .pine-debug3 Backup

.cyrus-user .pine-debug4 bin

(6) unixs1 $

If you are using the bash shell, then your envi-

ronment configuration files is .bash profile.

If you are using the (t)csh shell, then your

environment configuration files are .login and

.cshrc.

19

The ls listing option I use is:

(6) unixs1 $ ls -alF
total 324
drwxr-xr-x 15 rbell UNKNOWN2 4096 Aug 30 23:53 ./
drwxr-xr-x 2 root root 6144 Aug 27 09:51 ../
-rw-r--r-- 1 rbell UNKNOWN2 1014 Aug 9 11:35 .addressbook
-rw------- 1 rbell UNKNOWN2 3197 Aug 9 11:35 .addressbook.lu
-rw-r--r-- 1 rbell UNKNOWN2 46 Nov 22 1999 .alias
-rw-r--r-- 1 rbell UNKNOWN2 0 Aug 30 23:59 .bash_history
-rwxr-xr-x 1 rbell UNKNOWN2 11531 Aug 31 00:00 .bash_profile*
-rw-r--r-- 1 rbell UNKNOWN2 13 Aug 31 00:00 .bashrc
-rwxr-xr-x 1 rbell UNKNOWN2 5096 Oct 21 1999 .cshrc*
-rwxr-xr-x 1 rbell UNKNOWN2 7474 Aug 18 1991 .login*
-rwxr-xr-x 1 rbell UNKNOWN2 1619 Jun 11 1991 .logout*
drwx------ 5 rbell UNKNOWN2 2048 Oct 6 2001 .netscape/
-rw-r--r-- 1 rbell UNKNOWN2 16686 Aug 18 19:38 .pinerc
-rw-r--r-- 1 rbell UNKNOWN2 280 Feb 26 1992 .preferences
-rw------- 1 rbell UNKNOWN2 12 Sep 7 2000 .sh_history
-rw-r--r-- 1 rbell UNKNOWN2 513 Jul 19 10:55 .signature
drwx------ 2 rbell UNKNOWN2 2048 Oct 5 2001 .ssh/
lrwxr-xr-x 1 rbell UNKNOWN2 33 Sep 22 1999 Backup->../../../../
backup/home/r/b/rbell
lrwxr-xr-x 1 rbell UNKNOWN2 9 Sep 22 1999 bin -> .bin/@sys/
drwxr-xr-x 3 rbell UNKNOWN2 2048 Aug 29 22:49 c/
drwx------ 2 rbell UNKNOWN2 2048 Sep 22 1999 News/
drwx------ 2 rbell UNKNOWN2 2048 Sep 4 2001 nsmail/
drwx------ 3 rbell UNKNOWN2 2048 Sep 4 2001 private/
-rw-r--r-- 1 rbell UNKNOWN2 2107 Jul 19 09:59 SQ620481.TXT
drwxr-xr-x 5 rbell UNKNOWN2 2048 Aug 29 22:54 test/
(7) unixs1 $

If you are using the bash shell, then your environment configuration
files is .bash profile.

If you are using the (t)csh shell, then your environment configura-
tion files are .login and .(t)cshrc.

20

Getting information about commands

Use the man command for “manual.”

(8) unixs1 $ man ls

User Commands ls(1)

NAME

ls - list contents of directory

SYNOPSIS

/usr/bin/ls [-aAbcCdfFgilLmnopqrRstux1] [file ...]

/usr/xpg4/bin/ls [-aAbcCdfFgilLmnopqrRstux1] [file ...]

DESCRIPTION

For each file that is a directory, ls lists the contents of

the directory; for each file that is an ordinary file, ls
repeats its name and any other information requested. The

output is sorted alphabetically by default. When no argument

is given, the current directory is listed. When several

arguments are given, the arguments are first sorted

...

(6) unixs1 $

This man output will continue for many pages; to quit type a q or
to view subsequent pages, hit the space bar.

21

Viewing files

Use the cat or more commands. The cat com-
mand:

(8) unixs1 $ cat sometext.txt
--
--

How to Install using autoconf’ed PBS.

- untar the tar file and cd to the top level directory

- run "./configure" with the options set appropriately for your
installation. (See note 1 below)

- run "make" (See note 2 below)

- run "make install"

Note 1: It is advisable to create a simple shell script
that calls configure with the appropriate options so that you
can save typing on reconfigures. If you have already run configure
you can remake all of the Makefiles by running "./config.status".
Also, looking at the first few lines of config.status will
tell you the options that were set when configure was run.
To figure out which options one can set run "./configure --help"
...

(9) unixs1 $

This man output will continue for many pages; to quit type a q or
to view subsequent pages, hit the space bar.

22

Changing your password

Use the passwd command.

(9) unixs1 $ passwd
Changing password for rbell
(current) UNIX password:
New password:
Retype new password:
passwd: all authentication tokens updated successfully
(10) unixs1 $

In unsecure systems, the user password is stored
in the password file /etc/passwd. This file is
world readable which means that anyone can
read it. Before changing my password, the line
in the password file might have looked like:

rbell:W$O7werGQ:97953:2006:RBELL:/afs/pitt.edu/home/r/b/rbell:/bin/bash

After the change is it might look like:

rbell:r@&)du#tY:97953:2006:RBELL:/afs/pitt.edu/home/r/b/rbell:/bin/bash

23

Moving around the file system

The command for this is cd or chdir.

A cd without any arguments will automatically

return you to your home directory no matter

where you are in the file system.

For example, if my current directory is

/afs/pitt.edu/home/r/b/rbell/c/vfstab

and I want to go to my home directory, I could

simply type:

prompt> pwd

/afs/pitt.edu/home/r/b/rbell/c/vfstab

prompt> cd

prompt> pwd

/afs/pitt.edu/home/r/b/rbell

prompt>

24

What if I want to get back to the c/vfstab di-

rectory?

Relative or absolute paths?

This can be done several ways.

prompt> cd c

prompt> pwd

/afs/pitt.edu/home/r/b/rbell/c

prompt> cd vfstab

prompt> pwd

/afs/pitt.edu/home/r/b/rbell/c/vfstab

25

prompt> cd c/vfstab

prompt> pwd

/afs/pitt.edu/home/r/b/rbell/c/vfstab

prompt>

or, less likely, by absolute path

prompt> cd /afs/pitt.edu/home/r/b/rbell/c/vfstab

prompt> pwd

/afs/pitt.edu/home/r/b/rbell/c/vfstab

prompt>

26

If I am in /afs/pitt.edu/home/r/b/rbell/c/vfstab,

an ls -l command reveals ‘.’ and “..”.

prompt> ls -l
total 34
drwxr-xr-x 3 rbell UNKNOWN2 2048 Sep 18 00:51 ./
drwx------ 4 rbell UNKNOWN2 2048 Sep 18 00:51 ../
drwxr-xr-x 3 rbell UNKNOWN2 2048 Sep 18 00:56 media/
-rw-r--r-- 1 rbell UNKNOWN2 1984 Oct 11 2000 output
-rwxr-xr-x 1 rbell UNKNOWN2 8380 Oct 29 2000 runit*

The “dot”(.) always refers to the current work-

ing directory. It is a shortcut notation for

vfstab.

27

What if I want to copy the password file to

temp? The password file is in the /etc direc-

tory.

Keeping in mind that the current working di-

rectory is vfstab, I can type:

prompt>cp /etc/passwd .

or the more cumbersome

prompt>cp /etc/passwd /afs/pitt.edu/home/r/b/rbell/c/vfstab

28

Suppose I want to cd to the next higher direc-

tory, /afs/pitt.edu/home/r/b/rbell/c.

This is where the “..” comes in.

prompt> cd ..

prompt> pwd

/afs/pitt.edu/home/r/b/rbell/c

prompt>

Similarly, what if I want to go to my home

directory from vfstab/.

prompt> cd ../..

prompt> pwd

/afs/pitt.edu/home/r/b/rbell

prompt>

30

If my current directory is book/, I can get to c/

by typing:

prompt> pwd

/afs/pitt.edu/home/r/b/rbell/book

prompt> cd ../c

prompt> pwd

/afs/pitt.edu/home/r/b/rbell/c

prompt>

31

Access Permissions

There are three types of users who can access

a given file.

• owner

• group (of which owner is a member)

• other (anyone else not owner or group mem-

ber)

32

An ordinary file can be accessed in three ways.

• read the file

• write to the file (modify the file)

• execute the file

33

Take the file tmac in rbell/c/vfstab/media/tmac

as an example. A long listing shows:

prompt> ls -l
total 61
drwxr-xr-x 3 rbell UNKNOWN2 2048 Sep 18 01:10 ./
drwx------ 4 rbell UNKNOWN2 2048 Sep 18 00:51 ../
drwxr-xr-x 3 rbell UNKNOWN2 2048 Sep 18 00:56 snmp/
-rw-r--r-- 1 rbell UNKNOWN2 1984 Oct 11 2000 z
-rw-r--r-- 1 rbell UNKNOWN2 3145728 Sep 18 01:10 tmac
prompt>

In the left column, you should see fields of 10

contiguous characters.

34

The far left character tells you what kind of file

it is. In this case, there is a “minus/dash” (-)

character which indicates that this is a plain

file(not a directory).

drwxr-xr-x 3 rbell UNKNOWN2 2048 Sep 18 01:10 ./
drwx------ 4 rbell UNKNOWN2 2048 Sep 18 00:51 ../
drwxr-xr-x 3 rbell UNKNOWN2 2048 Sep 18 00:56 snmp/
-rw-r--r-- 1 rbell UNKNOWN2 1984 Oct 11 2000 z
-rw-r--r-- 1 rbell UNKNOWN2 23861 Sep 18 01:10 tmac

A ‘d’ indicates that the file is a directory.

35

Focusing on the tmac file, the next three char-

acter positions indicate the owner’s access per-

missions.

In this case they are rw-.

• left position (read - ‘r’)

• middle position (write - ‘w’)

• right position (execute - ‘x’)

36

Really these can be viewed as bits; either on,

for permission granted, or off, for permission

denied.

• left position (‘r’ = 1(on), ‘-’ = 0(off))

• middle position (‘w’ = 1(on), ‘-’ = 0(off))

• right position (‘x’ = 1(on), ‘-’ = 0(off))

37

The permissions on the tmac file indicate the I

am able to read the file (view its contents) and

write to the file (that is modify the file). Since

the execute bit is on set then I can’t execute

the file.

Note: The execute permission can be turned

on but since it is a text file there is noth-

ing to execute. Execute means that I could

type its name at the command prompt and

the file/program could run.

38

Again, for the tmac file, the next three(middle)

character positions indicate the group’s access

permissions, which are are r--.

The next three(middle) character positions in-

dicate the other’s access permissions, which

are are r--.

-rw-r--r-- 1 rbell UNKNOWN2 23861 Sep 18 01:10 tmac

39

Changing the access permissions with the chmod

utility.

You can change the access permissions of files

you own.

There are four basic flags you can set for

chmod.

u - user

g - group

o - other

a - all = u + g + o

40

Back to the tmac file, what if I wanted to give

the group(g) write permission.

prompt> ls -l tmac
-rw-r--r-- 1 rbell UNKNOWN2 23861 Sep 18 01:10 tmac
prompt> chmod g+w tmac

And similarly for user(u) and other(o).

41

Suppose that tmac has permissions:

-rw------- and I want to give group and other

write permission.

prompt> chmod go+rw tmac
prompt> ls -l tmac
-rw-rw-rw- 1 rbell UNKNOWN2 23861 Sep 18 01:10 tmac

Permissions can be revoked in the same way

using the ‘-’ character.

42

As for user, group and other, multiple permis-

sions can be set in the same command.

prompt> chmod ugo+rwx tmac

prompt> chmod a-rwx tmac

The last command would leave tmac with the

following permission set.

prompt> ls -l tmac
---------- 1 rbell UNKNOWN2 23861 Sep 18 01:10 tmac

43

And finally, permissions can be set on directo-

ries as well but the execute permission has a

different meaning for directories.

Since a directory can never be executed, the

execute permission means that it can you can

cd into it.

44

Making directories

Use the mkdir command.

(10) unixs1 $ mkdir cs_0132

(11) unixs1 $ ls -alF
total 324

drwxr-xr-x 15 rbell UNKNOWN2 4096 Aug 30 23:53 ./

drwxr-xr-x 2 root root 6144 Aug 27 09:51 ../

-rw-r--r-- 1 rbell UNKNOWN2 1014 Aug 9 11:35 .addressbook

-rw------- 1 rbell UNKNOWN2 3197 Aug 9 11:35 .addressbook.lu

-rw-r--r-- 1 rbell UNKNOWN2 46 Nov 22 1999 .alias
-rw-r--r-- 1 rbell UNKNOWN2 0 Aug 30 23:59 .bash_history

-rwxr-xr-x 1 rbell UNKNOWN2 11531 Aug 31 00:00 .bash_profile*

-rw-r--r-- 1 rbell UNKNOWN2 13 Aug 31 00:00 .bashrc

-rwxr-xr-x 1 rbell UNKNOWN2 5096 Oct 21 1999 .cshrc*

-rwxr-xr-x 1 rbell UNKNOWN2 7474 Aug 18 1991 .login*

-rwxr-xr-x 1 rbell UNKNOWN2 1619 Jun 11 1991 .logout*
drwx------ 5 rbell UNKNOWN2 2048 Oct 6 2001 .netscape/

-rw-r--r-- 1 rbell UNKNOWN2 16686 Aug 18 19:38 .pinerc

-rw-r--r-- 1 rbell UNKNOWN2 280 Feb 26 1992 .preferences

-rw------- 1 rbell UNKNOWN2 12 Sep 7 2000 .sh_history

-rw-r--r-- 1 rbell UNKNOWN2 513 Jul 19 10:55 .signature

drwx------ 2 rbell UNKNOWN2 2048 Oct 5 2001 .ssh/
lrwxr-xr-x 1 rbell UNKNOWN2 33 Sep 22 1999 Backup -> ../../../../back

up/home/r/b/rbell/

lrwxr-xr-x 1 rbell UNKNOWN2 9 Sep 22 1999 bin -> .bin/@sys/

drwxr-xr-x 3 rbell UNKNOWN2 2048 Aug 29 22:49 c/

drwxr-xr-x 2 rbell UNKNOWN2 2048 Aug 31 01:04 cs_0132/

drwx------ 2 rbell UNKNOWN2 2048 Sep 22 1999 News/
drwx------ 2 rbell UNKNOWN2 2048 Sep 4 2001 nsmail/

drwx------ 3 rbell UNKNOWN2 2048 Sep 4 2001 private/

-rw-r--r-- 1 rbell UNKNOWN2 2107 Jul 19 09:59 SQ620481.TXT

drwxr-xr-x 5 rbell UNKNOWN2 2048 Aug 29 22:54 test/

45

Removing files and directories

Use the rm command for regular files; rmdir for
directories or rm -r.

(10) unixs1 $ rmdir cs_0132

or

(10) unixs1 $ rm -r cs_0132

To remove a regular file

(11) unixs1 $ rm somefile.txt

46

cp command

The cp command copies files.

prompt> cp file1 file2 < return >

where file1 is an existing file(source file) and file2 is
the file created(target file) as a copy of the first argu-
ment.

47

mv command

The mv command renames files.

prompt> mv file1 file2 < return >

where file1 is an existing file and file2 is the new name
of file1.

48

Introduction to Links

File components:

• name

• contents

• administrative information - stored in data

structures called inodes

49

indoes

Inodes really are the files. The directory hierar-

chy provides convenient names for files. Each

inode has a unique i-number in a particular de-

vice(eg. /dev/hda2).

Each directory entry contains a file name and

it’s associated i-number. This is the link a

filename has to the actual file.

The same i-number can appear more than once

in a given directory or in more than one direc-

tory.

50

There are two types of links:

• hard - pointer to a file

• soft (symbolic) - indirect pointer to a file

51

The link command(ln) command makes a link

to an existing file.

For a hard link:

ln existing-file-name new-file-name

The purpose of the link is to give two or more

names to the same file.

52

For a symbolic link:

ln -s existing-file-name new-file-name

Symbolic links are indirect because it is a di-

rectory entry that contains the pathname of

the pointed-to file.

53

Processes and Shells

What happens when you login?
Processes on unixs.cis.pitt.edu.

>ps -ef | more

UID PID PPID C STIME TTY TIME CMD

root 0 0 0 Sep 01 ? 0:03 sched

root 1 0 0 Sep 01 ? 5:42 /etc/init -

root 2 0 0 Sep 01 ? 0:30 pageout

root 3 0 1 Sep 01 ? 1000:42 fsflush
root 161 1 0 Sep 01 ? 5:46 /usr/sbin/inetd -s

root 171 1 0 Sep 01 ? 10:09 /usr/vice/etc/afsd -stat

root 138 1 0 Sep 01 ? 0:01 /usr/sbin/rpcbind

root 196 1 0 Sep 01 ? 0:03 /usr/sbin/cron

nobody 844 1 0 Sep 01 ? 0:01 /usr/sbin/in.fingerd

root 854 816 0 Sep 21 ? 0:01 /usr/local/sbin/sshd

wivst1 16984 16411 0 11:47:14 pts/239 0:00 pine
dsorescu 25844 24212 0 10:31:06 pts/245 0:39 netscape

rux2 9797 9728 0 Sep 01 pts/18 0:00 ftp bert.cs.pitt.edu

knp5 741 530 0 Sep 01 pts/31 0:01 emacs emacs.txt

root 772 161 0 12:00:46 ? 0:00 in.ftpd

root 2171 161 0 11:01:15 ? 0:00 in.telnetd

knp5 530 528 0 Sep 01 pts/31 0:01 -bash
root 1539 161 0 09:36:11 ? 0:00 in.telnetd

root 8652 161 0 12:12:08 ? 0:00 in.telnetd

.

.

.

solomon1 24488 24325 0 10:26:56 pts/143 0:01 rxvt -bg black -fg white
root 580 161 0 Sep 22 ? 0:00 in.telnetd

54

Note the PID(Process IDentification) and PPID(Parent
Process IDentification) heading and numbers.

Note: A process is an instance of a program/executable in
execution.

In UNIX, the process structure is hierarchical. There is
one root process from which all other processes are spawned;
processes can spawn other processes in a "parent-child"
relationship.

This hierarchy can be seen in the process table. The root
process has a PID of 0(zero).

UID PID PPID C STIME TTY TIME CMD
root 0 0 0 Sep 01 ? 0:03 sched
root 1 0 0 Sep 01 ? 5:42 /etc/init -
root 2 0 0 Sep 01 ? 0:30 pageout
root 3 0 1 Sep 01 ? 1000:42 fsflush
root 221 1 0 Sep 01 ? 25:55 /usr/sbin/nscd
root 161 1 0 Sep 01 ? 5:46 /usr/sbin/inetd

.

.

.

57

As can be seen, process 0 spawns processes 1,

2 and 3. Process 1 goes on to start the vari-

ous system daemons that provide basic system

services such as the telnet daemon that starts

up your login process.
boot process

&%
'$

0

�����������

HHHHHHHHHHH

&%
'$

2

&%
'$

1

&%
'$

3

&%
'$
161

�����������

HHHHHHHHHHH

&%
'$
2171 ...

&%
'$
8652

continued

...
&%
'$
1539

58

Using the Shell

Exectue the script command then exectue the

who command.

prompt> script

Script started, file is typescript

prompt> who

aker pts/69 Oct 29 21:56

evm8 pts/276 Oct 29 16:58

ews5 pts/270 Oct 29 21:22

rey3 pts/70 Oct 13 15:38

cbtst7 pts/142 Oct 29 18:55

lmp52 pts/29 Oct 13 10:38

smp17 pts/148 Oct 18 20:51

mat20 pts/245 Oct 28 19:12

.

.

.

prompt>

Commands usually are ended with a newline(return). A
semicolon(;) is also a command terminator.

60

Exectue the date command.

prompt> date;

Tue Oct 29 22:01:09 EST 2002

prompt> date; who

Tue Oct 29 22:02:06 EST 2002

aker pts/69 Oct 29 21:56

evm8 pts/276 Oct 29 16:58

ews5 pts/270 Oct 29 21:22

rey3 pts/70 Oct 13 15:38

cbtst7 pts/142 Oct 29 18:55

lmp52 pts/29 Oct 13 10:38

smp17 pts/148 Oct 18 20:51

mat20 pts/245 Oct 28 19:12

.

.

.

prompt>

This is identical to typing the two commands

on different lines.

61

Send the output of date; who through a pipe:

prompt> date; who | wc

Tue Oct 29 22:08:16 EST 2002

187 935 5797

prompt>

Only the output of who goes to wc. Only who

and wc are in the pipeline. The semicolon ter-

minated the the previous command with date.

The precedence of | is higher that that of ;

as the shell parses you command line.

62

Parentheses can be used to group commands.

Group date and who.

prompt> (date; who)

Tue Oct 29 22:20:14 EST 2002

evm8 pts/276 Oct 29 16:58

aamst14 pts/34 Oct 29 22:17

rey3 pts/70 Oct 13 15:38

cbtst7 pts/142 Oct 29 18:55

lmp52 pts/29 Oct 13 10:38

smp17 pts/148 Oct 18 20:51

mat20 pts/245 Oct 28 19:12

.

.

.

prompt>

63

The outputs of date and who are concatenated

into a single stream that can be sent down a

pipe.

prompt> (date; who) | wc

185 926 5733

prompt>

64

Exit the script command(shell) with a exit.

prompt> exit

exit

Script done, file is typescript

prompt>

View the contents of the typescript file.

prompt> more typescript

Script started on Tue 29 Oct 2002 10:26:51 PM EST

(1) unixs1 $ who

dak74 pts/111 Oct 29 22:28

evm8 pts/276 Oct 29 16:58

atmst16 pts/39 Oct 29 22:28

rey3 pts/70 Oct 13 15:38

cbtst7 pts/142 Oct 29 18:55

lmp52 pts/29 Oct 13 10:38

smp17 pts/148 Oct 18 20:51

mat20 pts/245 Oct 28 19:12

.

.

.

prompt>

65

The data flowing through a pipe can be tapped

and placed in a file with the tee command.

Use tee in the pipe.

prompt> (date; who) | tee output.file | wc

171 856 5299

prompt> cat output.file

Tue Oct 29 22:45:11 EST 2002

lionel pts/98 Oct 29 22:42

evm8 pts/276 Oct 29 16:58

atmst16 pts/39 Oct 29 22:28

rey3 pts/70 Oct 13 15:38

cbtst7 pts/142 Oct 29 18:55

lmp52 pts/29 Oct 13 10:38

smp17 pts/148 Oct 18 20:51

mat20 pts/245 Oct 28 19:12

.

.

.

prompt>

66

Re-direct output.file to wc.

prompt> wc < output.file

171 856 5299

prompt>

67

Another command terminator is the amper-

sand &. This is used when running long com-

mands and you desire the prompt back. It runs

the command in the background.

Typically this is executed in the following man-

ner:

prompt> long-running-command &

[1] process-id

prompt>

68

Use of the sleep command demonstrates the

use of background processes.

Run the sleep command for 5 seconds.

prompt> sleep 5

prompt>

prompt> (sleep 5; date) & date

[1] 19298

Tue Oct 29 23:01:47 EST 2002

prompt> Tue Oct 29 23:01:52 EST 2002

[1]+ Done (sleep 5; date)

prompt>

69

Execute a handy reminder.

prompt> (sleep 300; echo Tea is ready) &

[1] 19781

prompt>

After 5 minutes:

prompt> Tea is ready

[1]+ Done (sleep 300; echo Tea is ready)

prompt>

70

The & terminator can be used to run pipelines

in the background.

prompt> (date; who) | tee output.file | wc &

It could be type as follows but requires more

typing.

prompt> ((date; who) | tee output.file | wc) &

prompt>

71

Creating new commands.

This is useful when you have a sequence of

commands that are repeated many times.

prompt> who | wc -l

Must create an ordinary text file that contains

that command.

prompt> echo ’who | wc -l’ > nuwho

prompt>

72

Look at the new command.

prompt> more nuwho

who | wc -l

prompt>

73

Since the shell is a program like wc or cat, its

input can be re-directed. It can be made to

execute the contents of nuwho.

prompt> bash < nuwho

74

The shell can take a filename as input. You

could have typed the following.

prompt> bash nuwho

160

prompt>

75

It’s not necessary to have to type bash to exe-

cute the commands in a text file.

You can make the file an executable.

prompt> chmod u+x nuwho

prompt> ./nuwho

152

prompt>

76

There are two ways you can save your shell

the trouble of trying and failing to execute the

shell script.

1. sh before the script name

2. insert special sequence of commands at

start of file

80

This special sequence of characters will tell the

OS that it is a shell script and that it is not

necessary to even make an attempt to execute

it.

The #! characters at the beginning of the

script tell the system to interpret the charac-

ters that follow as the absolute path to the

shell program that should execute the com-

mands in the script.

81

Place the appropriate characters at the begin-

ning of the nuwho file.

prompt> more nuwho

#!/bin/bash

who | wc -l

82

What if your shell can’t find the command?

prompt> nuwho

bash: nuwho: command not found

How does the shell know where to look for

commands?

83

Shell variables. There are two types.

1. Shell variables.

2. User-created variables.

84

Some common shell variables. These are set

by the shell itself.

prompt> env
PWD=/afs/pitt.edu/home/r/b/rbell
HOSTNAME=unixs1.cis.pitt.edu
PS1=(\!) \h \$
PS2=more>
HOST=unixs1.cis.pitt.edu
DISPLAY=localhost:0.0
LOGNAME=rbell
SHELL=/bin/bash
HOME=/afs/pitt.edu/home/r/b/rbell
TERM=vt100
PATH=/afs/pitt.edu/home/r/b/rbell/bin:/usr/patch/bin:/usr/loc
al/bin:/usr/pitt/bin:/usr/contrib/bin:/usr/afsws/bin:/usr/and
rew/bin:/usr/bin/X11:/opt/SUNWspro/bin:/bin:/usr/bin:/usr/ccs
/bin:/usr/ucb

85

You can view these individually.

prompt> echo $HOME

/afs/pitt.edu/home/r/b/rbell

prompt> echo $PATH

/afs/pitt.edu/home/r/b/rbell/bin:/usr/patch/bin:

/usr/local/bin: ... /usr/ccs/bin:/usr/ucb

86

You can modify the PATH variable so that it

includes the directory you are in at the time

(echo $PWD).

prompt> PATH=$PATH:.

prompt> echo $PATH

/afs/pitt.edu/home/r/b/rbell/bin:/usr/patch/bin:

/usr/local/bin: ... /usr/ccs/bin:/usr/ucb:.

87

You should now be able to type nuwho without

incident.

prompt> ./nuwho

284

prompt>

88

Every time you login, your login shell reads the

.bash profile. In this file are commands that

set your initial environment, which is reflected

in your shell variables.

prompt> more .bash_profile

echo "reading .bash_profile..."

#
$Source: /afs/.pitt.edu/common/uss/skel/RCS/bash_profile,v $

#

$Author: jjc $

#

This is the user’s login script for the GNU Bourne Again Shell (bash)

#
$Id: bash_profile,v 2.5 1991/10/10 16:05:29 jjc Exp $

#

.

.

.

prompt>

90

Somewhere in this file is the command:

prompt> more .bash_profile

.

.

.

###
EXECUTION OF GLOBAL LOGIN FILE

###

#

The following command will execute the global login script. This

script will do things such as set your terminal type.

source /afs/pitt.edu/common/etc/bash_profile.global

###

$Id: bash_profile,v 2.5 1991/10/10 16:05:29 jjc Exp $

#--

DO NOT EDIT ABOVE THIS LINE!!!!!!!!!
###

.

.

.

prompt>

This file is “sourced” by your shell. It means that you shell is
initialized by reading this file.

91

You can change the PATH variable so that it

includes the directory you are in at the time

(echo $PWD).

prompt> PATH=$PATH:.

prompt> echo $PATH

/afs/pitt.edu/home/r/b/rbell/bin:/usr/patch/bin:

/usr/local/bin: ... /usr/ccs/bin:/usr/ucb:.

92

How can you make this change to the PATH

variable “permanent”?

How about every time you login, your PATH vari-

able is automatically fixed to include your cur-

rent location?

We’ll want to make only one minor addition to

.bash profile.

Let’s just take the position that we’ll make

whatever modifications we need to in a differ-

ent file.

94

There is another option. You don’t have to

logout and login again to see the changes.

prompt> source ~/.bashrc

or

prompt> source ~/.bash_profile

99

User-created Variables

You can define and set your own

shell variables.

(10:20:59)rbell@unixs1|~> person=alex

(10:22:39)rbell@unixs1|~> echo person

person

(10:22:45)rbell@unixs1|~> echo $person

alex

(10:22:52)rbell@unixs1|~>

103

(10:25:50)rbell@unixs1|~> echo $person

alex

(10:26:00)rbell@unixs1|~> echo "$person"

alex

(10:26:12)rbell@unixs1|~> echo ’$person’

$person

(10:26:24)rbell@unixs1|~> echo \$person

$person

(10:26:32)rbell@unixs1|~>

104

What if you want to set a variable with spaces

or tabs in it?

(10:26:32)rbell@unixs1|~> person="alex and jenny"

(10:35:19)rbell@unixs1|~> echo $person

alex and jenny

They are kept.

105

(10:35:53)rbell@unixs1|~> person="alex and jenny"

(10:36:13)rbell@unixs1|~> echo $person

alex and jenny

Note the missing two spaces!

106

If you want to keep the spaces, you have to sur-

round the the variable name in double quotes.

(10:43:21)rbell@unixs1|~> echo "$person"

alex and jenny

(10:43:25)rbell@unixs1|~>

Note that the two spaces are there.

107

You can clear a variable with the unset com-

mand.

(10:55:16)rbell@unixs1|~> person=

(10:57:20)rbell@unixs1|~> echo $person

(10:57:58)rbell@unixs1|~>

Note that nothing is printed.

(11:00:46)rbell@unixs1|~> unset person

(11:00:58)rbell@unixs1|~> echo $person

(11:01:01)rbell@unixs1|~>

108

You can prevent a variable from being changed

with the readonly command.

(11:01:01)rbell@unixs1|~> person=alex

(11:03:31)rbell@unixs1|~> echo $person

alex

(11:03:34)rbell@unixs1|~> person=helen

(11:04:12)rbell@unixs1|~> echo $person

helen

(11:04:14)rbell@unixs1|~> person=alex

(11:05:18)rbell@unixs1|~> readonly person

(11:05:25)rbell@unixs1|~> person=helen

bash: person: readonly variable

(11:05:31)rbell@unixs1|~>

109

Use the export command to allow subshells to

“see” a particular environment variable.

(11:16:22)rbell@unixs1|~> IOP=12345

(11:16:42)rbell@unixs1|~> echo $IOP

12345

(11:16:52)rbell@unixs1|~>

110

Start another shell.

(11:18:39)rbell@unixs1|~> bash

reading .bashrc...

(11:18:46)rbell@unixs1|~> echo $IOP

(11:18:57)rbell@unixs1|~> exit

exit

(11:19:03)rbell@unixs1|~>

111

Make it so that the subshell has the value for

IOP.

(11:34:58)rbell@unixs1|~> export IOP=12345

(11:35:15)rbell@unixs1|~> echo $IOP

12345

(11:35:22)rbell@unixs1|~> bash

reading .bashrc...

(11:35:28)rbell@unixs1|~> echo $IOP

12345

(11:35:35)rbell@unixs1|~>

112

Readonly Shell Variables

It is possible to give a shell script arguments

from the command line.

The shell stores the first ten command line

parameters in the variables; $0, $1, $2, $3,

$4, $5, $6, $7, $8, $9.

126

Create a script that will display the contents

of some of these variables.

|rbell@unixs1|~/cs/cs_0132/.../examples> more display_5args

#!/bin/bash
echo The first five command line

echo arguments are $1 $2 $3 $4 $5

|rbell@unixs1|~/cs/cs_0132/.../examples>

127

Enter a few command line arguments.

|rbell@unixs1|~/cs/cs_0132/.../examples> display_5args jenny alex helen

The first five command line

arguments are jenny alex helen
|rbell@unixs1|~/cs/cs_0132/.../examples>

128

Control Flow Commands

Branching and looping.

if then

if test thing to be tested

then

command(s)

fi

142

Create a simple shell script that will test for

equality.

|rbell@unixs1|~/cs/cs_0132/.../examples> more if1

#!/bin/bash

echo -n "word 1: "

read word1

echo -n "word 2: "

read word2

start of test

if test "$word1" == "$word2"

then

echo Match

fi

echo End of program

|rbell@unixs1|~/cs/cs_0132/.../examples>

143

	Computing Primer 07
	5-26_rb

