# Solvent and mutation effects on the nucleation of amyloid β-protein folding

Presented by Rusty A. Stough June 14, 2007

# **Background on Alzheimer's**

- Progressive mental disorder
  - Confusion
  - Memory Failure
  - Disorientation
  - Restlessness
  - Agnosia
  - Speech disturbances
  - Inability to carry out purposeful movement

# **Understanding Alzheimer's**

- Amyloid cascade hypothesis
  - the deposition of amyloid fibrils is the seminal event in the pathogenesis of Alzheimer's disease
  - Proposed in the 1990's



# **Amyloid** β-protein Theory

- Developed around the millennium
- Studies suggest that amyloid β–protein could be responsible for Alzheimer's
  - Non-toxic in monomeric form
  - Inhibiting amyloid—protein polymerization into oligomers could prove to be an effective treatment
  - For this to occur there needs to be a better understanding of amyloid  $\beta$ -protein

# **Experimental difficulty**

- Process is solvent dependent
  - Alpha-helical in ionic solution
  - Helixes and Beta sheets in aqueous solution



# **Stability and Folding**

- Solution state NMR and diffusion ordered spectroscopy show variation in anionic strength in the buffer shifts equilibrium between monomer and oligomer
- Amino acid structure at specific sites influences ability to form oligomer
- Ile-41 Ala-42 responsible for biophysical behaviors of  $A\beta_{1-42}$  and  $A\beta_{1-40}$
- Oxidation of Met-35 affects  $A\beta_{1-40}$

but not Aβ

### **Structural Basics**

- A protease resistant segment has been found
  - Ala-21 Ala30
  - Decapeptide shows same resistance
- A loop that is stabilized by hydrophobic interactions in the Val-24 –Lys28 region exists
- A high degree of flexibility in the termini
- Electrostatic interactions between the charged groups
  - Glu-22, Asp-23, and Lys-28 that modulate the stability of the folded structure

## **Purposes of the experiment**

- Test whether the stability of the Val-24 –Lys-28 loop persists in all simulations
- To determine the effects of solvent alterations on the folding dynamics
- To investigate changes in dynamics caused by amino acid substitutions
- Study the dynamics of a monomer with a specific mutation

#### **Molecular Dynamic Simulations**

- Long-time MD simulations of monomer
  - In water at normal and reduced density
  - Normal density with dissociated salt ions
  - Mutated in normal density
- All atoms with potential energy given by CHARMM-27 force field were considered
- TIP3P model for water molecules
- Same temperature as in vitro tests

# Molecular simulations cont'd

- Solvated each monomer
  - 43 angstrom cube of water
  - Around 2500 water molecules
- 25 dissociated molecules of NaCl put in resulting in a system of around 2400 water molecules

## **Structural Determinants**

- 2 quantities used to characterize the structure of protein
  - Distance between the two alpha Carbon atoms of Ala-21 and Ala-30
  - The radius of gyration

$$R_{g}^{2} = \sum_{i} m_{i} (|\vec{r}_{i} - \vec{r}_{c}|)^{2} / \sum_{i} m_{i},$$

## Results

- Distances found to be fluctuating
- Events lasted for extended periods of time with small fluctuations are seen

Table 1. Total accumulated times of events in each of the five trajectories

| najectory |                                            |                                                                       |  |  |  |  |  |
|-----------|--------------------------------------------|-----------------------------------------------------------------------|--|--|--|--|--|
| [P2]      | [DU]                                       | [RCS]                                                                 |  |  |  |  |  |
| 83.6      | 80.0                                       | 145.0                                                                 |  |  |  |  |  |
|           |                                            |                                                                       |  |  |  |  |  |
| 27.0      | 12.6                                       | 34.0                                                                  |  |  |  |  |  |
| 21.4      | 9.6                                        | 30.8                                                                  |  |  |  |  |  |
| 5.9       | 0.4                                        | 19.0                                                                  |  |  |  |  |  |
| 1.7       | 1.7                                        | 18.0                                                                  |  |  |  |  |  |
|           | [P2]<br>83.6<br>27.0<br>21.4<br>5.9<br>1.7 | [P2] [DU]<br>83.6 80.0<br>27.0 12.6<br>21.4 9.6<br>5.9 0.4<br>1.7 1.7 |  |  |  |  |  |

Field I as other in



Fig. 1. Distances between C<sub>a</sub> atoms of Val-24 and Lys-28 [R(4,8)], charged atoms of Glu-22–Lys-28 [R(2,8), black], Asp-23–Lys-28 [R(3,8), gray], and radius of gyration R<sub>g</sub> as a function of time for each trajectory. All of the distances are measured in Å.

## **Temporal overlap**

- Each overlap divided into 2 columns
  One for each of the events
- The first overlap column shows that S\* and R\* (4,8) are correlated
  - Proximity of Val-24 and Lys-28 linked to hydrophobic interaction

|            | Overlaps      |          |               |      |                          |         |                     |          |
|------------|---------------|----------|---------------|------|--------------------------|---------|---------------------|----------|
|            | S* ∩ R* (4,8) |          | R* (4,8) ∩ SB |      | $R^*$ (4,8) $\cap R_g^*$ |         | R* (2,8) ∩ R* (3,8) |          |
| Trajectory | S*            | R* (4,8) | R* (4,8)      | SB   | R* (4,8)                 | $R_g^*$ | R* (2,8)            | R* (3,8) |
| [RC]       | 91.9          | 96.7     | 34.9          | 90.8 | 72.3                     | 79.7    | 0.0                 | 0.0      |
| [P1]       | 97.1          | 95.6     | 40.6          | 84.9 | 95.9                     | 85.8    | 5.3                 | 2.9      |
| [P2]       | 76.0          | 95.8     | 1.2           | 3.4  | 73.9                     | 45.7    | 0.0                 | 0.0      |
| [DU]       | 72.6          | 95.7     | 4.3           | 19.7 | 68.1                     | 41.3    | 5.7                 | 1.4      |
| [RCS]      | 85.7          | 94.6     | 54.1          | 70.4 | 81.1                     | 60.2    | 70.1                | 73.9     |

Table 2. Percentage of overlap between pairs of events per trajectory

## **Secondary Structure**

- The pi-helix correlates with with lowered values of all the R(2,8) R(3,8) and R(4,8) distances
  - Similar correlation found during helix formation
  - Helices formed in both [P1] and [P2] formed under a pre-existing R\*(4,8) event

# **Discussion and conclusions**

- For five trajectories hydrophobic events predominate over electrostatic events
  - Hydrophobic caused by packing of isopropyl groups
  - Highly correlated with smaller value for radius of gyration
- Loop is formed in reduced density water
- In normal density water SBs play a prominent role in stabilization of loop