
The limits of protein sequence comparison?
William R Pearson and Michael L Sierk
Modern sequence alignment algorithms are used routinely to

identify homologous proteins, proteins that share a common

ancestor. Homologous proteins always share similar structures

and often have similar functions. Over the past 20 years,

sequence comparison has become both more sensitive, largely

because of profile-based methods, and more reliable, because

of more accurate statistical estimates. As sequence and

structure databases become larger, and comparison methods

become more powerful, reliable statistical estimates will

become even more important for distinguishing similarities that

are due to homology from those that are due to analogy

(convergence). The newest sequence alignment methods are

more sensitive than older methods, but more accurate

statistical estimates are needed for their full power to be

realized.
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Introduction
It has been more than 20 years since the first rapid

biological sequence comparison programs were devel-

oped [1,2]. These programs, and their descendants

[3,4], together with freely available DNA and protein

sequence databases [5,6], have revolutionized the prac-

tice of biochemistry, and molecular and evolutionary

biology. Early sequence comparisons revealed extraor-

dinary evolutionary relationships (e.g. the homology

shared by v-sis and platelet-derived growth factor) [7].

Since then, the inference of homology from significant

sequence similarity has become routine and considerably

more reliable.

Nonetheless, the inference of homology from similarity

can be controversial. Perhaps this should be expected, as

such inferences often make assertions about molecules in

organisms that lived billions of years in the past. More-
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over, some of the links between similarity and homology

include implicit assumptions about a fundamental biolo-

gical process — the emergence of new (non-homologous)

protein structures and new protein families.

In this short review, we describe a logically consistent

rationale for sequence and structure comparison, and

some guidelines for evaluating whether the inference

of homology is likely to be justified. We show that

SSEARCH, PSI-BLAST and the DALI structure align-

ment program provide accurate statistical estimates that

can be used to infer homology. Some of the newer

methods, although apparently more sensitive, are cur-

rently less useful in practice due to their unreliable

statistical estimates. We suggest that future improve-

ments in sequence-, profile- and structure-based homolog

identification will involve a better understanding of ran-

dom alignment scores.

Homology and statistical significance – the
argument from parsimony
Whenever two protein sequences or protein structures

seem very similar, the similarity can be explained by one

of two alternatives: the two proteins are similar because

they are homologous — both are descendants from a

common ancestor; or the proteins are not related — they

are similar because some set of structural or functional

constraints caused them to converge from independent

origins to the observed similarity. Thus, in Figure 1a–c,

the three trypsin-like serine proteases appear to be very

similar to each other; this similarity is supported by

statistical estimates (E(2775)) from DALI [8] and weakly

supported by VAST [9] (Table 1). Structurally, all three

trypsin-like serine proteases share the same symmetric b-

barrel structure; they have two a helices in similar posi-

tions and the structures of the active sites are the same.

Just as importantly, these serine protease structures look

very different from the structures of other protein

families. Trypsin-like serine proteases belong to the

mainly-b CATH [10] class of proteins, which includes

23 different mainly b-barrel topologies distinct from the

trypsin-like fold — ribbons, prisms, rolls, sandwiches and

propellers — and 813 different topologies altogether.

Trypsin-like serine proteases have structures that are

both similar to each other and different from other pro-

teins.

The simplest — most parsimonious — explanation for

this structural similarity is that the trypsin-like serine

protease structure arose once in evolution and the pro-

teins that share this structure do so because they diverged

from that first trypsin-like serine protease. The alterna-
Current Opinion in Structural Biology 2005, 15:1–7
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Figure 1

(a)

(d) (e)

(b) (c)
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Homologs, analogs(?) and convergent evolution. Three-dimensional structures of five serine proteases: (a) bovine trypsin (PDB code 5PTP),

(b) Streptomyces griseus trypsin (PDB code 1SGT), (c) S. griseus protease A (PDB code 2SGA), (d) viral serine protease (PDB code 1BEF) and

(e) subtilisin (PDB code 1SBT). The CATH structure classification places 5PTP, 1SGT and 2SGA in the same homology category, whereas

1BEF has the same topology, but is classified as non-homologous to 5PTP. SCOP places 1BEF in the same superfamily as 5PTP. Subtilisin

(1SBT) has a very different structure to the trypsin-like serine proteases and is clearly non-homologous. However, the active sites of subtilisin

and trypsin are examples of convergent evolution.
tive explanation — that the trypsin-like serine protease

structure arose several times independently — requires

the structure to be re-discovered, or re-invented, several

times over evolutionary time — a less parsimonious

explanation. Thus, there is a fundamental tension

between homology, descent from a common ancestor,

and analogy, convergence from independent origins: is

the observed similarity sufficiently great that it seems

unlikely that it could have occurred several times inde-

pendently?

Subtilisin is also a serine protease, with exactly the same

catalytic triad in its active site; however, it demonstrates

the alternative to homology — convergent evolution. Its

overall three-dimensional structure is completely differ-

ent from that of trypsin (CATH classifies subtilisin as an

a-b-a sandwich protein with a Rossmann fold topology).

With thousands of other proteins more structurally similar

to subtilisin than trypsin, it would be more parsimonious

to produce the subtilisin structure from some other

protein family. Subtilisin and trypsin are examples of
Current Opinion in Structural Biology 2005, 15:1–7
convergent evolution to a common active site from inde-

pendent origins.

However, the case for independent origins is often more

subtle. In the CATH classification of trypsin-like serine

proteases, there are two additional families of proteins

with a trypsin-like topology; however, these differ from

trypsin sufficiently to suggest that they arose indepen-

dently. One comprises viral proteases (Figure 1d), the

other ATP phosphorylases. Whereas all three families

have similar b-barrel topologies, the details of the strand

geometry of the barrels suggest that the three different

families probably did not diverge from a common ances-

tor. SCOP [11] places the viral proteases in the same

homologous superfamily as trypsin, perhaps due to their

similar functions. Thus, the inference of homology —

that two proteins share a common ancestor rather than

arising independently — is based on both the degree

of similarity that they share and some sense of how

unlikely it is that this similarity could have arisen inde-

pendently. From this perspective, the inference of
www.sciencedirect.com
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Table 1

Similarity for homologs and non-homologsa.

5PTP versus: 1SGT 2SGA 1BEF 1SBT

DALI Z 32.7 13.7 8.8 <2

E(2775) 10�14 10�4 0.02 >100

Nalign (%id) 209 (34) 147 (19) 131 (10) NA

RMSD (Å) 1.4 2.8 2.9 NA

VAST E(2775) 10�21 0.017b 1.94 NA

Nalign (%id) 208 (34) 130 (22) 122 (14) NA

RMSD (Å) 1.5 2.3 2.8 NA

COMPASS E(10 000) 10�114 10�13 0.056 13

PSI-BLAST E(2775) 10�48 2.5 >10 >10

Nalign 231 40 NA NA

SSEARCH E(10 000) 10�19 2.6 >10 >10

Nalign (%id) 223 (36) 181 (25) 68 (33) 159 (25)

a Nalign is the number of aligned residues, %id is the percent

sequence identity and RMSD is the root mean square distance.

E(N) is the expectation value, the number of times a score is expected

by chance in a search of a database of size N. 5PTP, 1SGT and 2SGA

are trypsin-like serine protease homologs; 1BEF is a viral protease

that CATH says is not homologous to the trypsin-like proteases, but

SCOP says is homologous to them. 1SBT is subtilisin, which has the

same catalytic triad as the trypsin-like serine proteases, but a com-

pletely different global domain structure.
b Based on alignment with 5SGA, which is 100% sequence identical

to 2SGA. NA: not available — no alignment was calculated.
homology should be supported by some measure of

statistical significance.

Sequence similarity statistics
The need to base the inference of homology on statisti-

cally significant similarity was recognized in the earliest

days of protein sequence comparison, when it was rea-

lized that segments from unrelated proteins, or segments

compared to random positions within the same protein,

produced similarity scores that were indistinguishable

from those produced from a normal distribution [12].

Today’s most widely used sequence comparison algo-

rithms [3,4,13,14] calculate local sequence alignment

scores that are described by the extreme value distribu-

tion [15,16]. Once again, unrelated sequences have local

alignment similarity scores that are very accurately

described by mathematical models of random sequences

[17]. This leads to a fundamental observation on pairwise

sequence similarity searching:
� S
ww
equence alignment scores for unrelated sequences are

indistinguishable from scores for random sequences.
� T
hus, if a similarity score is not random, then the

sequences must be not unrelated.
� T
herefore, sequences that share statistically significant

similarity are homologous.

This syllogism does not make any statements about se-
quences that do not share statistically significant similar-

ity; they may be related or unrelated. It simply states that,

because unrelated sequences have similarity scores that
w.sciencedirect.com
are indistinguishable from the scores of random sequen-

ces, statistically significant similarities come from homo-

logous sequences. Implicit in this view is the assumption

that similarities between protein sequences readily ap-

pear by chance.

For structure comparison, however, there is less consensus

that similar structures can arise independently. When

surprising structural similarities are found, it is often

suggested that these similarities may represent unrecog-

nized ancient homologies [18,19�] or common functional

roles. From this perspective, the re-discovery of a struc-

tural motif is extremely unusual, such that similar struc-

tural motifs may reflect either common ancestry or

convergence to a common (possibly structural) function.

We believe that this perspective blurs the distinction

between homology and analogy, by invoking the argument

from parsimony for objects that do not share statistically

significant similarity. In this review, we invoke parsimony

(and infer homology) only when sequences or structures

share more similarity than is expected by chance.

Similarity, significance and alignments
Recently, several authors have suggested that the accu-

racy of structure alignments, rather than search sensitiv-

ity, is a more useful measure of the effectiveness of

sequence [20,21] and structure [22] comparison methods.

Sequence similarity scores are calculated from implicit

alignments; however, sensitivity — the ability to assign

statistically significant similarity scores to distant homo-

logs — is distinct from alignment accuracy. Methods that

produce the most statistically significant scores for distant

homologs balance two competing goals: producing good

scores for homologs and, at the same time, producing

significantly worse scores for non-homologs. By contrast,

alignment quality depends on the behavior of the method

on homologs only. Although it is now routine to identify

homologs that share considerably less than 25% amino

acid identity, it can still be difficult to produce accurate

structure alignments for proteins that share less than 30–

40% identity [23,24].

This focus on alignment quality underscores the differ-

ence between the inference of homology and the asso-

ciated alignment. For the molecular biologist or genome

annotator, the identification of a homologous sequence

from a database search guarantees that the two proteins

have similar structures and often provides preliminary

functional insights, even if the underlying alignment is

wrong. But for the structural biologist interested in struc-

ture-function relationships or homology modeling, an

accurate alignment, even between non-homologous pro-

teins, is more important than significant similarity.

Progress in sequence similarity searching
The development of Karlin–Altschul extreme value

statistics [15] and their incorporation into the BLAST
Current Opinion in Structural Biology 2005, 15:1–7
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Figure 2
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Accuracy of statistical estimates. The expected Poisson probability

of seeing the reported E()-value versus the observed probability of

seeing a domain with a different fold according to CATH (i.e. the

domains have different CATH topology classifications) for SSEARCH,

PSI-BLAST, COMPASS, DALI and VAST. The E()-values for the

highest scoring false-positive (different topology) for each of 86

queries from different CATH homologous superfamilies are shown.

The Z-scores reported by DALI were converted into E()-values

assuming an extreme value distribution (see [51��] for details). The

numbers in parentheses show the number of non-homologs with

reported E()<0.001.
program [3] provided a firm statistical foundation for the

inference of homology from local sequence similarity.

Moreover, it provided the statistical foundation for addi-

tional improvements in search sensitivity for other align-

ment programs as well [17,25]. In addition, new vectorized

implementations of the Smith–Waterman algorithm

[26,27] have made it possible to carry out optimal protein

similarity searches with sequences or profiles in a matter of

minutes for comprehensive protein databases. Although

additional improvements in pairwise sequence comparison

statistics may be possible by treating compositionally

biased regions more accurately [28], it seems likely that

the limits of searching with single sequences are near.

Today, the most powerful sequence-based comparison

methods use sets of aligned sequences, either as profiles

[29], hidden Markov models (HMMs) [30–32] or position-

specific scoring matrices (PSSMs) [4,33]. There are also

several profile databases, including PFAM [34], SUPER-

FAMILY [35] and IMPALA [36], which can be searched

using these methods.

PSI-BLAST [4,37] is an extremely sensitive comparison

tool that has revealed homologies between sequences

that previously were recognized only from structure

comparison [38]. PSI-BLAST seeks to provide accurate

statistical estimates for the similarities it finds [37],

although it occasionally gives good scores to unrelated

sequences (Figure 2). This sometimes produces mislead-

ing results, as the iterative nature of PSI-BLAST makes

the inclusion of a non-homologous sequence in the PSSM

difficult to detect.

Profile/HMM/PSSM methods are more sensitive than

single-sequence comparison methods because they sum-

marize the evolutionary history of a family, identifying

more and less conserved positions within the protein [39].

Recently, profile/HMM/PSSM-based methods have been

extended to provide profile-profile based comparisons

[19�,40–43]. Like the profile-sequence based searching

methods before them, they can provide tantalizing exam-

ples of unrecognized sequence similarities that may

reflect structural similarity and homology [44]. Evaluation

of profile-profile comparison methods using receiver

operator characteristic (ROC) curves (see below) suggests

that profile-profile methods can identify about 20–30%

more homologs than PSI-BLAST [19�,41,42,45].

Nonetheless, profile-profile methods still fail to correctly

identify similarities that can be identified through three-

dimensional structure alignment (Figure 3) with pro-

grams such as CE [46], DALI [8], Structal [47] and VAST

[9]. The magnitude of the difference in performance,

however, depends greatly on both the level of selectivity

specified and how overall performance is summarized.

There are also large differences in the accuracy of the

statistical estimates provided by the different approaches.
Current Opinion in Structural Biology 2005, 15:1–7
Evaluating search algorithms
If the inference of homology requires statistically signifi-

cant sequence or structural similarity, then the best

comparison methods must: assign higher scores to homo-

logous protein pairs than to non-homologs; and provide

accurate statistical estimates, so that non-homologous

proteins do not ‘appear’ homologous as a result of an

overestimate of statistical significance. Many evaluations

of sequence and structural comparison methods focus on

the first criterion, the ability to rank related sequences

above unrelated ones, frequently using ROC curves,

which plot the relationship between the number of

false-positives and true positives (or false-negatives)

[19�,21,37,39,42,48–50,51��,52�,53].

Although ROC curves provide useful comparisons of

different methods, the identification of distant homologs

poses some special problems. Firstly, if all pairwise align-

ments from the database are plotted, protein families with
www.sciencedirect.com
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Figure 3
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E() >= 0.01 E() >= 1 First non-homolog First non-topolog

Homologs found by different search methods. Box plot of the CATH homolog coverage achieved by 86 query domains from different CATH

homologous superfamilies under different error criteria for SSEARCH [54], PSI-BLAST [4], COMPASS [19�], DALI [8] and VAST [9]. The upper and

lower edges of the boxes are at the 75th and 25th percentile, respectively, with the upper and lower whiskers at the 90th and 10th percentile.

The middle line is the median amount of coverage and the circles are the outliers. The fractions of CATH homologs identified at four thresholds

are shown: reported E()>0.01 (gray boxes); E()>1 (blue); the first non-homolog according to CATH (red); the first non-topolog (different fold)

according to CATH (green).
many diverse members (e.g. globins, immunoglobulins,

serine proteases) contribute considerably more to the

curve than families with fewer known structures. Sec-

ondly, even when only one query is selected from each

family, differences in family diversity can produce dra-

matically different ROC curves for different families

[49,51��]. Thirdly, some ROC curves provide very little

information about performance at the low error rates

typically used in sequence comparison, for example,

E()<0.01 or one error per one hundred queries (one error

per 10 000 true positives, assuming 100 homologs per

query). Finally, ROC curves provide comparative infor-

mation when the correct answer is known, but they do not

provide useful guidelines on how to select a score or

statistical significance threshold that will produce the

desired performance for novel protein families or protein

families lacking homologous three-dimensional struc-

tures.

To infer homology or to identify pairs of sequences that

are likely to have informative alignments, one needs an

explicit statistical threshold that accurately predicts the
www.sciencedirect.com
performance of the method on novel protein families. For

protein sequence comparison, the expectation or E()-

value calculated by SSEARCH provides a very accurate

estimate of whether an alignment score is likely to occur

by chance [17,48,49,51��]. PSI-BLAST [4] provides less

accurate estimates [51��], but the false-positive rate is

quite low (Figure 2). DALI [8] performs about as well as

PSI-BLAST and provides estimates that are considerably

more accurate than other structure alignment methods

(Figure 2) [51��]. By contrast, the estimates produced by

COMPASS [19�] and VAST [9] cannot be reliably used to

identify homologs, because proteins with different topol-

ogies (which are very unlikely to share a common ances-

tor) can have similarities with expectation values many

orders of magnitude lower than expected by chance.

The consequences of family diversity and the need for

accurate statistical thresholds are illustrated in Figure 3.

Two criteria for identifying homologs are shown: reported

statistical significance (E()<0.01 and E()<1) and empiri-

cal error rate (the first non-homolog or first non-topolog,

using the CATH classification — the non-topolog
Current Opinion in Structural Biology 2005, 15:1–7
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criterion should avoid misclassified non-homologs). The

median bars in the middle of the boxes in Figure 3 show

the overall trends for the different search methods: the

pairwise Smith–Waterman algorithm identifies only

about 25% of homologous proteins for the median per-

forming family, whereas PSI-BLAST finds about 40% of

homologs at the median, COMPASS finds around 60%,

DALI almost 98% before the first non-topolog error and

VAST 50–60%, depending on the error criterion.

Although the overall trend is clear — structure compar-

ison is better than profile-profile comparison, which is

better than profile-sequence comparison, which is better

than sequence-sequence comparison — the details of the

trend are more complex. For example, the worst perform-

ing family with DALI identifies fewer homologs with

any criterion than the worst performing family with

SSEARCH or PSI-BLAST. As expected for accurate

statistical estimates, the median coverage of homologs

for SSEARCH, PSI-BLAST and DALI at E()<1 is very

close to the coverage at the first non-homolog (as the first

non-homolog should have E()�1, Figure 2). By contrast,

both COMPASS and VAST appear to identify many more

homologs at E()<1 than at the first non-homolog thresh-

old, consistent with the observation that their statistical

calculations greatly underestimate the number of false-

positives (and thus overestimate statistical significance).

Whereas COMPASS, which uses only sequence informa-

tion, is capable of finding many more homologs than

SSEARCH or PSI-BLAST before scoring the first non-

homolog, the statistical estimates it provides cannot be

used to set a reliable error threshold.

Figures 2 and 3 suggest that recent profile-profile com-

parison methods can identify distant relationships that

cannot be detected by profile-sequence comparison

methods. To be reliable in practice, however, these

methods need much more accurate statistical estimates.

More accurate statistics may reduce their apparent sensi-

tivity; for COMPASS, median coverage drops from about

85 to 60% at the first non-homolog, which is worse than

DALI, but considerably better than PSI-BLAST.

Conclusions
Using the argument from parsimony, proteins can be

inferred to be homologous — to share a common ancestor

— when they share statistically significant similarity or

more similarity than is expected by chance. Although

many structure alignment methods calculate unreliable

statistical estimates [51��], DALI estimates are compar-

able to those calculated by PSI-BLAST (Figure 2). The

observation that one of the most sensitive structure

comparison methods can also produce statistical estimates

comparable in accuracy to a reliable sequence-based

method, PSI-BLAST, supports the argument that the

relationship between excess similarity and homology is

not fundamentally different for sequences and structures.
Current Opinion in Structural Biology 2005, 15:1–7
From this perspective, similar structures can occur inde-

pendently by chance, just as similar sequences do, and

arguments for homology, particularly for short domains in

different structural contexts, should be supported with

accurate statistical estimates. Over the past 15 years,

many of the most dramatic improvements in sequence

similarity searching involved a better understanding of

the statistical properties of unrelated sequences. It seems

likely that future improvements in profile-profile search-

ing and in structure comparison will also involve a better

understanding of the statistical behavior of unrelated

structures.
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