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Introduction: 

 The field of mathematics has made tremendous impact on the study of 

neuroscience.  The electrochemical activity of neurons is precisely timed and executed, 

and thus ideal for mathematical modeling.  Mathematicians are able to model neural 

activity that can be experimentally confirmed with startling accuracy.  Mathematical 

models also give insight into how certain factors can affect neural activity.  As computer 

technology improves and computation time decreases, mathematicians are able to 

construct more complicated and realistic models.  Today, various approaches to modeling 

the activity of the nervous system exist.  They include investigating electrical and 

chemical activity inside an individual neuron as well as a network of cells.  All these 

models provide valuable insight into how the nervous system functions.    

 The structure of a neuron is specifically designed to propagate the fast spread of 

chemical signals.  At the resting state, the cytoplasm inside the neuron has a slightly 

negative charge.  When the cell receives a signal of sufficient strength from another cell, 

they it depolarized enough to allow a signal to travel down the axon, causing the neuron 

to fire.  The electrical potential difference travels down the length of the axon, and causes 

the synaptic vesicles to release a neurotransmitter signal, and potentially exciting the 

dendrites of an adjacent neuron (3).   

 A stated before, the potential inside a neuron has to be sufficiently increased 

before a signal can propagate down the axon.  This initial depolarization is caused by the 

neurotransmitter signal form another neuron.  These signals come in short bursts and the 



depolarization is reverted back to resting state quickly.  Another kind of signal, called 

asynchronous synaptic transmission, has been shown to elevate the potential of the cell 

slightly, and take a much longer time to return to resting state then the regular 

neurotransmitter signal (5).  This signal raises the potential of the cell more than the 

regular signal would by itself, and can cause the cell to reach the depolarization 

threshold.  The cell then fires an action potential that it would not have without 

asynchronous synaptic transmission.  There in addition to sources of excitation, there are 

also negative feedback mechanisms which prevent “run-away” activity in networks.  In 

my research, I plan on developing a neural firing rate population model that explores two 

such sources, spike frequency adaptation, synaptic depression, and whether these, in 

combination with asynchronous release are sufficient to explain synchronous population 

bursts in cell culture networks.   

 

Methods: Population Firing Rate Model 

A population firing rate model is based on determining a function for the firing 

rate of a group of neurons given their inputs.  This function meant to characterize the 

probability of action potentials (4).  The basic model begins with a designated set of 

times, t1 to tn (representing the spike times of a neuron), and an empirically-determined α-

function that represents the responses of post-synaptic cells to pre-synaptic spikes.  The 

total response of the post-synaptic cell at a time t becomes )(
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population model, however, that probability equals the firing rate because it represents 

the potential of a typical neuron receiving a re-synaptic spike, so this integral can be 

written as ∫ −=Φ
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synaptic cell is a non-linear function of the response of that cell based on the inputs it 

encounters.  One of the fundamental assumptions of a population model is that the firing 

rates of all neurons are the same, thus postpre μμ = , and the firing rate can be written as 
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)()()( μαμ .  All population models use this basic problem structure, but 

vary in the selection of the α function.   

 

Methods: A Population Firing Rate Model of Spike Frequency Adaptation  

 My first model of reverberatory activity will be based on spike frequency 

adaptation.  Spike frequency adaptation is the gradual reduction of firing frequency of a 

neuron with continuous inputs (1).  Instead of one response function Φ, I will now have 

three, representing responses to regular, fast signals, asynchronous synaptic transmission, 

and spike frequency adaptation.  The firing rate now 

becomes )()( adapslowfast CBAFt Φ−Φ+Φ=μ , 



where ∫ −=Φ
t

fastfast dssst
0

)()( μα , ∫ −=Φ
t

slowslow dssst
0

)()( μα , and 

∫ −=Φ
t

adapadap dssst
0
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C are the maximum magnitudes of corresponding responses.  Since this model will 

represent a gradual decrease in firing frequency, it makes sense for the α functions to be 

decaying exponentially.  Thus,
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τslow, and τadap are time constants determined from empirical data.  The first fundamental 

theorem of calculus can be used to determine the first derivatives of the response 

functions.  The derivatives become: 
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stated, )()( adapslowfast CBAFt Φ−Φ+Φ=μ , so these functions become 
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with three first-order differential equations.  My research will include a full analysis of 

this system.   

 



Methods: A Population Firing Rate Model of Synaptic Depression  

 The synaptic depression model is characterized by many components of the spike 

frequency adaptation model.  Short-term synaptic depression refers to the observation 

that, as a cell fires at some rate μ(t), it does not have enough time afterwards to fully 

recover to the neurotransmitter level it had before (2).  Letting σ represent the amount of 

exhaustible resources in the cell at any time, and f be the fraction of those resources after 

every fire that is lost, change in σ(t) becomes σμ
τ
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constant determined empirically.  Assuming that synaptic depression only affects the fast 

reaction, and not asynchronous synaptic transmission, μ(t) becomes 

)()( slowfast BAFt Φ+Φ= σμ , reducing the system to three differential equations: 
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Methods: Analyzing Systems of Differential Equations 

 The first step in analyzing either of these systems is solving them.  From there, it 

is necessary to find parameters that cause the system to exhibit the oscillating behavior 

seen experimentally.  From there, I plan on performing a bifurcation analysis on time 

constants (τ), maximum reaction constants (A, B, C), and the depression constant (f).  A 

bifurcation analysis involves examining the consequences of varying parameters on the 



stability and steady states of a system (3).  Finally, I plan to couple these systems together 

and study how spike frequency adaptation and synaptic depression affect each other in 

the population model.  A mathematical model of reverberatory activity in neural 

networks will provide powerful insights into the function of the system.   
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