A Population Firing Rate Model of Reverberatory Activity in Neuronal Networks

Zofia Koscielniak^{1, 2} G. Bard Ermentrout³

 Bioengineering and Bioinformatics Summer Institute, Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA 15213
 Carnegie Mellon University, Pittsburgh, PA 15213
 Department of Mathematics, University of Pittsburgh, Pittsburgh, PA

Reverberatory Activity

- Neural networks are able to maintain persistent activity after temporary inputs
- Input must have sufficient strength
- If so, network will go into longterm stable oscillation

Lau, Pak-Ming, and Guo-Qiang Bi. "Synaptic Mechanisms of Persistent Reverberatory Activity in Neuronal Networks." (2005)

Fast and Slow Synaptic Activity

Fast Activity

- Regulated by neurotransmitter signals
- Result of action potential in adjacent neuron
- Come in short bursts and cause depolarization that is quickly reverted back to resting state
- ~ 5ms

Slow Activity

- Regulated by calcium ions
- Elevates potential of membrane slightly
- Takes much longer to return to resting state
- ~200 ms

Spike Frequency Adaptation and Synaptic Depression

Spike Frequency Adaptation Gradual reduction of firing frequency Implicated in habituation

Synaptic Depression

- As a cell fires continuously, it does not have enough time after firing to fully recover neurotransmitter level
- Signals it releases become progressively weaker

Goals

- Create firing rate models of reverberatory activity in neurons incorporating fast synaptic activity, slow synaptic activity, and spike frequency adaptation or synaptic depression
- Analyze models for accuracy and robustness
- Create networks of coupled neurons based on the firing rate models

Deriving a Population Firing Rate Model

Total response of post-synaptic cell at time t

$$\alpha(t-t_1) + \ldots + \alpha(t-t_n) = \sum_{j=1}^{n} \alpha(t-t_j)$$

• The total response of all cells becomes

$$I(t) = \int_{0}^{t} \alpha(t-s) (\sum_{j=1}^{n} pr(s=t_{j})) ds$$

Let μ(t) equal the firing rate
 In a population model, the probability equals the firing rate

$$I(t) = \int \alpha(t-s)\mu(s)ds$$

Deriving a Population Firing Rate Model

 The firing rate of the post-synaptic cell is determined by the firing patterns of the pre-synaptic cell

$$\mu_{post}(t) = F(I_{post}(t)) = F(\int_0^t \alpha(t-s)\mu_{pre}(s)ds$$

• F is some nonlinear function of inputs • In population models, $\mu_{pre} = \mu_{post}$, so

$$\mu(t) = F\left(\int_{0}^{t} \alpha(t-s)\mu(s)ds\right)$$

Spike Frequency Adaptation Model

$$F(x) = \sqrt{\frac{x}{1 - e^{-bx}}}$$

tf

 $sa(t) + \mu(t)$

ta

SŤ

SS

sa

$$\mu(t) = \sqrt{\frac{(gf * sf + gs * ss - ga * sa - ithr)}{1 - e^{-b(gf * sf + gs * ss - ga * sa - ithr)}}$$

 $ss(t) + \mu(t)(1 - ss(t))$

ts

Parameters

- tf=2
- ts=200
- ta=50
- gf=5
- gs=2
- ga=4
- b=8
- ithr=1

Spike Frequency Adaptation Model

Model showed stable, long-term oscillation

⁻ast: blue, Slow: yellow, Adaptation: green

Time (ms)

Spike Frequency Adaptation Model

 Nullclines show two equilibrium points, one stable and one unstable

Nullclines

Integrated

Analysis: Spike Frequency Adaptation Model

Need to make sure oscillation is robust, and not a fluke occurrence
Treat SS as a parameter, conduct bifurcation analysis
SS as parameter should be same as

average of SS in oscillations

Analysis: Spike Frequency Adaptation Model

SS (parameter)

Intersection occurs at .438

Synaptic Depression Model

$$F(x) = \sqrt{\frac{x}{1 - e^{-bx}}}$$

$$\mu(t) = \sqrt{\frac{(gf * sf + gs * ss) * q - ithr}{1 - e^{-b((gf * sf + gs * ss) * q - ithr)}}}$$

$$sf' = \frac{-sf(t) + \mu(t)}{tf}$$

$$ss' = \frac{-ss(t) + as * \mu(t)^{p} * (1 - ss(t))}{ts}$$

$$q' = \frac{1 - q(t) - alpha * q(t) * \mu(t)}{tq}$$

$$rac{F(x)}{F(x)}$$

S

Synaptic Depression Model

Model showed stable, long-term oscillation

Time (ms)

Synaptic Depression Model

 Nullclines show two equilibrium points, one stable and one unstable

Nullclines

Integrated

Analysis: Synaptic Depression Model

Bifurcation diagram with extended Hopf bifurcation

Intersection of average value of SS the parameter and SS the variable

SS (parameter)

Intersection occurs at .890

The Coupling Terms $sf[1] = \frac{sf[1] + beta * sf[2]}{1 + beta}$ $sf[2...19] = \frac{sf[j] + beta * (sf[j+1] + sf[j-1])}{1 + 2*beta}$ $sf[20] = \frac{sf[20] + beta * sf[19]}{1 + beta}$ $ss[1] = \frac{ss[1] + beta * ss[2]}{1 + beta}$ $ss[2...19] = \frac{ss[j] + beta * (ss[j+1] + ss[j-1])}{1 + 2*beta}$ $ss[20] = \frac{ss[20] + beta * ss[19]}{1 + beta}$

Adaptation of Uncoupled Model

$$F(x) = \sqrt{\frac{x}{1 - e^{-bx}}}$$

$$\mu[1..20] = \sqrt{\frac{gf * sf[j] + gs * ss[j] - ga * sa[j] - ithr}{1 - e^{-b(gf * sf[j] + gs * ss[j] - ga * sa[j] - ithr)}}$$

$$sf[1..20]' = \frac{-sf[j] + \mu[j]}{tf}$$

$$ss[1..20]' = \frac{-ss[j] + \mu[j] * (1 - ss[j])}{ts}$$

$$sa[1..20]' = \frac{-sa[j] + \mu[j]}{ta}$$

$$sa[1..20]' = \frac{-sa[j] + \mu[j]}{ta}$$

$$sa[1..20]' = \frac{-sa[j] + \mu[j]}{ta}$$

•Initial conditions: sf[1]=.4, the rest 0

 Synchronization was observed even with very small beta

Synaptic Depression Network

Coupling terms same

$$F(x) = \sqrt{\frac{x}{1 - e^{-bx}}}$$

$$\mu[1..20] = \sqrt{\frac{(gf * sf[j] + gs * ss[j]) * q[j] - ithr}{1 - e^{-b((gf * sf[j] + gs * ss[j]) * q[j] - ithr)}}$$

$$sf[1..20]' = \frac{-sf[j] + \mu[j]}{if}$$

$$ss[1..20]' = \frac{-ss[j] + as * \mu[j]^p * (1 - ss[j])}{is}$$

$$q[1..20]' = \frac{1 - q[j] - alpha * q[j] * \mu[j]}{iq}$$

Parameters

- beta = .2
- tf=2
- ts=2000
- gf=4
- gs=2.2
- tq=700
- alpha=5
- b=40
- ithr=1.3
- as=40
-) p=1

Synaptic Depression Network

Initial conditions: sf[1]=.5, q[1..20]=1, rest 0

Conclusions

- Neural activity incorporating fast synaptic activity, slow synaptic activity, spike frequency adaptation and synaptic depression can be modeled with population firing rate models
- These models are accurate and robust
- Network models simulate the activity of multiple systems incorporating these factors

References

"Action Potentials." <u>Wikipedia</u>. 19 July 2006 <http://en.wikipedia.org/wiki/Action_potential>.

Δ

- Benda, Jan, Longtin Andre, and Len Maler. "Spike-Frequency Adaptation Separates Transient Communication Signals From Background Oscillations." <u>The Journal of</u> <u>Neuroscience</u> 25 (2005): 2312-2321.
 - De La Rocha, Jaime, and Nestor Parga. "Short-Term Synaptic Depression Causes a Non-Monotonic Response to Correlated Stimuli." <u>The Journal of Neuroscience</u> 25 (2005): 8416-8431.
- Edelstein-Keshet, Leah. <u>Mathematical Models in Biology</u>. 1st ed. New York: The Random House/Birkhauser Mathematics Series, 1988.
- Ermentrout, G. Bard. "Neural Networks as Spatio-Terminal Pattern-Forming Systems." <u>Reports on Progress in Physics</u> 61 (1998): 353-430.
 - Lau, Pak-Ming, and Guo-Qiang Bi. "Synaptic Mechanisms of Persistent Reverberatory Activity in Neuronal Networks." <u>Proceedings of the National Academy of Sciences of the</u> <u>United States of America</u> 102 (2005): 10333-10338.

Questions?

