Monte Carlo Simulations of Protein Folding using Lattice Models

Ryan Cheng^{1,2} and Kenneth Jordan^{1,3}

 ¹Bioengineering and Bioinformatics Summer Institute, Department of Computational Biology, University of Pittsburgh, Pittsburgh, PA 15261
 ²Department of Chemistry, Carnegie Mellon University, Pittsburgh, PA 15213
 ³Department of Chemistry, University of Pittsburgh, Pittsburgh PA, 15261

Goals

- Investigate folding of peptide sequences through simulation
- Gain insight on computational algorithms in protein folding
 - Random walk
 - MC-based Simulated Annealing

Introduction

Protein native state

- Direct relationship between conformation and biological function
- Conformation located at global energy minimum on complex energy landscape
- Methods of interest include computational techniques for optimization
- "Levinthal's Paradox"
- Need for simplifying models (i.e., lattice models)

Lattice Model

Two-dimensional square lattice
 Periodic boundary conditions—"Infinite lattice"

Lattice Model

HP-lattice Model

- Hydrophobic effect assumed to be driving force in protein folding
- Amino acid monomers are modeled as being either hydrophobic (H) or polar (P)
 - Three possible interaction energies: E_{HH} , E_{HP} , and E_{PP}
- Energy function:

$$H = \sum_{i < j} E_{p_i p_j} \delta(r_i - r_j)$$

 δ(r_i-r_j)=1 if monomers r_i and r_j are adjacent non-bonded nearest neighbors and 0 otherwise

Simulated Annealing

Based on idea of cooling molten material to form a perfect crystal Performed from effectively high temperature and cooled to frozen state Utilizes Metropolis Monte Carlo to minimize energy function Moves accepted if: 1) ∆E < 0 2) Random[0,1] \leq Exp[- Δ E/T]

Methodology

 Artificial peptide sequences:
 SeqA used for simulation of alpha helices (-Ala-Leu-Ser-Ser-Ala-Ala-Ser-)_n (-H – H – P – P – H – H – P-)_n 20 Monomer Seq-A analyzed

 SeqB used for simulation of beta sheets (-Val-Ser-)_n (-- H --- P --)_n
 10 Monomer Seq-B analyzed

Methodology

5

6.9

- Self-avoiding random walk to generate peptide chain of length n
- Simulated annealing: 10,000 Metropolis iterations per temperature

Temperature Schedule T_{step} T_{start} l _{stop} 100 50 -5 1 25 2 49 -1 3 24.5 10 -0.5 9.75 7 -0.25 4

0.05

-0.05

Methodology

Metropolis reconfiguration based on Verdier-Stockmayer algorithm

End rotation, Kink jump, and crankshaft

HP Interaction energies:

- E_{HH} = -3 (most favorable)
- E_{HP} = -1.2
- E_{PP} = 0

Analysis

<E>_T and <E²>_T calculated at each temperature
 Heat capacity calculated:

$$\left| C(T) \propto \frac{\left\langle E^2 \right\rangle_T - \left\langle E \right\rangle_T^2}{T^2} \right|$$

Melting transition temperature observed
 Low energy conformation obtained

Results: 20 Monomer Seq-A (H-H-P-P-H-H-P-H-H-P-H-H-P-H-H-P-P-H-H)

Results: 20 monomer Seq-A

 Graph of C(T) vs.
 T shows phase transition
 T_c ≈ 1.4

Results:10 Monomer Seq-B (H-P-H-P-H-P-H-P)

Results: 10 Monomer Seq-B

Conclusions

- Melting transitions were observed on plots of heat capacity vs. T
- Low energy conformations obtained
- Seq-A
 - observed to form possible 2D alpha helix conformation
 - Hydrophobic monomers arranged inwards
- Seq-B
 - Observed to form possible 2D beta-sheet

Future Work

- Increased Metropolis run-time (increased iterations)
- Comparison of low energy configurations for small sequences (<14 monomers) with lowest energy structure(s) from deterministic algorithm
- Implementation of 3-dimensional lattice model
- Comparison of 3-D folding structure with known native state structures
- Implementation of more effective reconfiguration moves

References

- [1] Metropolis, N.; Rosenbluth, A. W.; Rosenbluth, M. N.; Teller, A. H.; Teller, E. Journal of Chemical Physics (1953). 21: 1087-1092
- [2] Kirkpatrick, S; Gelatt, C. D.; Vecchi, M. P. Science (1983), Volume 220: 671-679.
- [3] Levinthal, C. University of Illinois Press (1968).
- [4] Leach, A. Molecular Modeling: Principles and Applications, 2nd Edition. Prentice Hall (2001): 423-431.
- [5] Dil, K. Biochemistry (1985), 24: 1501-1509.
- [6] Klimov, D. K.; Thirumalai, D. Physical Review Letters (1996), Volume 76: 4070-4073.
- [7] Bahar, I.; Atilgan, A. R.; Jernigan, R. L.; Erman, Burak. Proteins: Structure, Function, and Genetics (1997), 29: 172-185.
 [8] Rathore, Nitin; de Pablo, Juan. *Journal of Chemical Physics* (2002), Volume 116: 7225-7230.

Shout-Outs

- Kenneth Jordan, PhD (Mentor)
- Alpay Temiz
- Rajan Munshi, PhD
- Judy Wieber, PhD
- Jason Boles
- BBSI Participants and Staff
 NIH-NSF