“ Folding/unfolding dynamics

Passage OVEr ONEe or more energy barriers B. Ozkan, K.A. Dill & I. Bahar, Protein Sci.
" N _ 11, 1958-1970, 2002
Transitions between infinitely many conformations

“ Fluctuations near the folded state

Local conformational changes
Fluctuations near a global minimum




A. Comparison of static structures available in the PDB for the same
protein in different form has been widely used as an indirect method
of inferring dynamics.

Bahar et al. J. Mol. Biol. 285, 1023, 1999.

B. NMR structures provide information on
fluctuation dynamics




Several modes of motions In native state

Fab arm waving

{““j Fab elbow i, QT
bend rotation

v RN
< o

Fc wagging

Figure 4 Flexibility of the IgG molecule.
Reproduced with permission from Immunology Today, February 199522,




Wikoff, Hendrix and coworkers
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Progresses in molecular approaches:
Coarse-grained approaches for large complexes/assemblies

L7/L12
stalk

Example: EN models for modeling
ribosomal machinery (Frank et al,
2003; )




Macromolecular Conformations

Schematic representation of a chain of n backbone units. . . . : :
Bonds are labeled from 2 to n. and structural units from Schematic representation of a portion of the main chain of a

1 to n. The location of the ith unit with respect to the macromolecule. li is the bond vector extending from unit i-

laboratory-fixed frame OXYZ is indicated by the position 1 to i, as shown. (; denotes the torsional angle about
vector Ri.

bond i.




How/why does a molecule move?

Among the 3N-6 internal degrees of
freedom, (I.e. changes
In dihedral angles) are the softest, and

mainly responsible for the functional
motions




Two types of bond rotational motions

Fluctuations around Isomeric states
Jumps between Isomeric states




Definition of dihedral angles

Spatial representation of the torsional mobility around the bond i+1.
The torsional angle ¢i+1 of bond i+1 determines the position of the
atom Ci+2 relative to Ci-1. C'i+2 and C"i+2 represent the positions of

atom i+2, when @i+1 assumes the respective values 180° and 0°.
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Rotational energy as a function of dihedral angle for a threefold
symmetric torsional potential (dashed curve) and a three-state
potential with a preference for the trans isomer (j = 180°) over the
gauche isomers (60° and 300°) (solid curve), and the cis (0°) state
being most unfavorable.




Rotational Isomeric States (Flory — Nobel 1974)

¢. Calculation of generalized coordinates from known position vectors.

In structural analyses, it is often necessary to transform known Cartesian
coordinates {x2, X3, ¥3, ...., Xn, ¥n, Zn} into generalized coordinates {12, 13, ...,
1n,02.,03, ...0 n-1¢3, ®4, ..., on-1} or vice versa. To this aim, it is convenient to
define the bond vectors I, pointing from atom i-1 to atom i. The following

equations are conveniently used for transforming the Cartesian into the generalized
coordinates

L=l -1y

Ok = Ok(rg.p. Ik - F+1) = cos-! [

lk'lk+l]
i el

_ N A : 1
Pr= Ok (P, Py, Ty, ) = sign[cos™ (-n® Iey)] cos™ (-my; @ ny)

where ny is the unit normal vector, perpendicular to the plane spanned by I, and
I, found from

n =[x b)) /| e x L] (4)

The symbols x and e refer to vector and scalar products, respectively, and sign|x
represents the sign (+ or -) of x. The normal vectors are found according to the
right-hand rule, i.c. n, points along the thumb direction when curling the fingers
from Iy to I .

trans > 0° ; cis > 180° ; gauche ¢ = <4 120° (Flory convention)
trans —>180° ; cis - 0° ; gauche ¢ = 60 and 300° (Bio-convention)




Bond-based coordinate systems

Transformation matrix between frames i+1 and i

cosoOi SinGi

SinBi cosoi -C0s0i cosi

Sin6i singi -cos0i singi

Virtual bond representation of protein backbone
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Figure 3. Schematic representation of @ chain segment of jour bonds. Afomic 1_“.\ .---------7"'“’(:1 e,
N r P r P 7 &l r . r L1 ,
serial indices ave indicated in parentheses. The ith bond connects atoms i-1 and | 243 et ""-..,.
: i
//C :

along the maim chain, and its forsion angle (s denofed as gy Uy is the

*e,
v,
|
e,
-’

/

supplemental bond angle defined by bonds i and i+1. The Xy and Yi+ ] axes of I'll
the bond-based coordinate svstem Xi+] ¥i+] Zi+1 appended to the boad i+1 are
shown. Yy g Hes in the plane defined by bonds { and i+1, and makes an acule

Flory, PJ. Statistical Mechanics of Chain Molecules, 1969, Wiley-Interscience — Appendix B




Ramachandran plots

All residues Glycine

The presence of chiral Ca atoms in Ala (and in all other amino acids) is responsible for
the asymmetric distribution of dihedral angles in part (a), and the presence of Cp
excludes the portions that are accessible in Gly.




Dihedral angle distributions of database structures

Dots represent the observed (¢, v) pairs in 310 protein structures in the
Brookhaven Protein Databank (adapted from (Thornton, 1992))




Homework 1: Passage between Cartesian
coordinates and generalized coordinates

Take a PDB file. Read the position vectors (X-, Y- and Z-coordinates
— Cartesion coordinates) of the first five alpha-carbons

Evaluate the corresponding generalized coordinates, I.e. the bond
lengths |, (I=2-5), bond angles 6; (iI=2-4), and dihedral angles ¢, and
0, Using the Flory convention for defining these variables.

Using the PDB position vectors for alpha-carbons 1, 2 and 3,
generate the alpha carbons 4 and 5, using the above generalized
coordinates and bond-based transformation matrices. Verify that
the original coordinates are reproduced.




Side chains enjoy additional degrees of freedom




Amino acid side chains — Chi angles
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Secondary Structures: Helices and Sheets are Common Motifs

3.6
residues

Meohol dehydrogenase
12 3 4 5 6 7 8 9 1011
-8-0-G-F-O-L-E-®-8-C

Helical wheel diagram




B-sheets: regular structures stabilized by long-range interactions
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Topology diagrams for strand connections in B-sheets

Schematic view of a B-barrel fold formed by the combination of
two Greek key motifs, shown in red and green, and the
topology diagram of the Greek key motifs forming the fold
(adapted from Branden and Tooze, 1999)

Only those topologies where sequentially adjacent B-strands are antiparallel to each other are displayed. (A) 12 different
ways to form a four-stranded p—sheet from two B-hairpins (red and green), if the consecutive strands 2 and 3 are
assumed to be antiparallel. Not all topologies are equally probable. (j) and (I) are the most common topologies, also
known as Greek key motifs; (a) is also relatively frequent; whereas (b), (c), (e), (f), (h), (i) and (k) have not been
observed in known structures (Branden and Tooze, 1999).




Contact Maps Describe Protein Topologies
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Harmonic Oscillator Model

Rapid movements of atoms about a valence
bond

Oscillations in bond angles
Fluctuations around a rotational iIsomeric state

Domain motions — fluctuations between open
and closed forms of enzymes




Harmonic Oscillator Model

k X A linear motion: Force scales

linearly with displacement

The corresponding equation of motion is of the form

md?x/dt> + kx= 0

The solution is the sinusoidal function x = X;Sin(wt+¢)

where  is the frequency equal to (k/m)¥2, xyand ¢ are
the original position and phase.




Energy of a harmonic oscillator

Kinetic energy: E, = %2 mv?

where V = dx/dt = d [x,sin(wt + ¢)]/dt = X, cos(wt +d)
“E, = Y2 mX?0? cos?(ot+d) = Y2 mo?(X>-X2)

(because X = X, Sin(wt + ¢) or X2 = x2 [1- co?(ot+d)] 2 X2 cos?(wt+¢) = X2-X?)

Potential energy: E, = ¥ kx?

Total energy: E. + E .= 72 kx?




Rouse chain model for

Connectivity matrix




Homework 2: Potential energy for a system of
harmonic osclillators

(@) Using the components AXi, AYi and AZi of ARi, show that Eq 1 (Rouse
potential) can be decomposed into three contributions, corresponding to
the fluctuations along x-, y- and z-directions:

Vit = Vy + V|, +V,

tot
where

Vy = (v/2) [ (AX = AX )2 + (AXy - AXG)? +

and similar expressions hold for Vy and Vz.

(b) Show that eq 2 can alternatively be written as

V =y AXT T AX ©

where AXT = [AX; AX, AX,.....AXy], and AX is the corresponding column vector.
Hint: start from eq 3, obtain eq 2.




[11. Understanding the physics

Harmonic oscillators = Gaussian distribution of fluctuations

Consider a network formed of beads/nodes (residues or groups
of residues) and springs (native contacts)

Residues/nodes undergo Gaussian fluctuations about their
mean positions — similar to the model of
polymer gels (Flory)

W(AR)) = exp{ -3 (4R))*/2 <(4R;)*>}




Proteins can be modeled as an ensemble of harmonic oscillators




Molecular Movements

Physical properties of gases — a short review (Benedek & Villars, Chapter 2)

PV = NKT

ldeal gas law: PV,, = RT PV = nRT

where V,, is the molar velume, T is the absolute temperature, R is the gas
constant (1.987 x 10-° kcal/mol or 8.314 J/K), k is the Boltzmann constant, N

IS the number of molecules, n is the number of moles = N/Nj, N, Is the
Avogadro’s number.

Mean kinetic energy of a of mass m and its mean-square

velocity:
<5 mv?>= (3/2) KT > <v?>= (3kT/m)

Ve = <V?=>72 = (3kT/m)*

'm




Root-mean-square velocities

Vrm

s = <Vv2>7 = (3kT/m)~*

Molecule

M (@/mpol)

Vims (M/S)

H;

2

1880

O,

32

474

Brownian motion
(Brown, 1827)

Macromolecules

104 - 10°

2.6 - 26

Viruses

(e.g. tobacco
mosaic Vvirus)

108 - 1010

(5 x 107 g/mol)

0.026 — 0.26

(35 cm/s)

These numbers provide estimates on the time/length scales of fluctuations or Brownian motions




Equipartition law

An energy of 12 KT associated with each degree of freedom

For a diatomic molecule, there are three translational (absolute), two rotational
degrees of freedom, and the mean translational energies are

< Yo mv? >= < Y2 mv,? >= < Y5 mv,? >= 5 kT

And the mean rotational energy is kT. For non interacting single atom molecules

(ideal gases), there are only translational degrees of freedom such that the
total internal energy is

U = (3/2)kT and specific heat is C, = oU/oT = (3/2) k




Random Walk

Probability of R steps to the right and L

PN(R’ |_) — (1/2N) N! / RI LI steps to the left in a random walk of N steps

2 P (m) = (172N N! /([(N + m)72]! [(N — m)/2])

Probability of ending up at m steps away
from the origin, at the end of N steps

http://mathworld.wolfram.com/BinomialDistribution.html
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Gaussian form of Bernoulli distribution

P (M) = (1/2%) NI / {[(N + m)/2]! [(N — m)/2]'}

As m increases, the above distribution may be approximated by a continuous function

Py(m) = (2/7N)”> exp {-m%/2N}  Gaussian approximation

Length of
Each step

eDisplacement (by random walk) along x-direction > W(x) =~ exp {-x?/2NI?} where m=x/I
Fluctuations near an equilibrium position = W(r) = exp {-3(Ar)?/2<(ar)?>,}
Maxwell-Boltzmann distribution of velocities = P(v,) = (m/2nkt)* exp (-Yamv,2/kT}
Time-dependent diffusion of a particle > P(x,t) = V[4nDt] exp(-x2/4Dt}




» Displacement (by random walk) along x-direction = W(x) = exp {-x2/2NI?} where m=x/I
* Fluctuations near an equilibrium position > W(r) = exp {-3(Ar)?/2<(Ar)?>>,}

» Maxwell-Boltzmann distribution of velocities > P(v,) = (m/2znkt)”> exp (-Yamv,2/kT}

« Time-dependent diffusion of a particle = P(x,t) = V[4nDt] exp(-x2/4Dt}




