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Solution of Solution of FickFick’’ss 22ndnd Law in 1Law in 1--DD
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Solution of Solution of FickFick’’ss 22ndnd Law in 1Law in 1--DD
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If this reaction proceeds for any time t from an 
initial concentration (S0)o, the total probability 
(pkt) that a single molecule in the S0 state 
undergoes a transition is given by the fraction of
(S0)o that undergoes any transition during time t:
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The general rate equation depends only on time 
and (S0):
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and hence can be integrated directly to obtain pkt :
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and the solution is:
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From this, the lifetime of S0 is exponentially 
distributed.  The mean value is given by τ:
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From:
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And finally:

What is the range of possible What is the range of possible ppktkt values?values?

What influences numerical accuracy?What influences numerical accuracy?

How do you use random numbers to test for transitions?How do you use random numbers to test for transitions?
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If this reaction proceeds for some time t from initial 
concentrations (A)o, (R)o, and (AR)o, the mass action 
probability (pt) that a single R molecule becomes bound
is given by the fraction of (R)o that becomes bound, i.e.,

or given
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The general rate equation for production of the n
bound states is:
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but this cannot be integrated directly to obtain (AR)t because 
(A), (R), and (AR) are functions of space as well as time.  In 
this reaction, the quantity (DA + DR), i.e., the sum of the 
diffusion coefficients for A and R, is implicitly included in the 
values of k+, together with the sizes and shapes of the 
molecules, and the activation energy for each binding reaction. 
If at least one of the diffusion coefficients is large but the k+
values are small (e.g., because the activation energy is large),
then the rate of reaction is not “diffusion-limited”, i.e., the 
solution is always “well-mixed” because the rate of binding is 
slow compared to the rate of diffusion.
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Under such conditions, appreciable spatial concentration gradients 
do not form as binding proceeds, so the partial differentials can be 
replaced with ordinary differentials:
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Since these concentration terms are independent of space, by 
definition they are equally valid for the bulk solution and at the local 
level in the vicinity of single molecules.  This equation can be 
integrated to determine (AR)t:
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After integration, final analytic expressions for pt are:
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Reality check:

From these equations, the probability (pt) that a 
single R molecule becomes bound during an 
arbitrarily long interval of time (t) depends on all the 
k+ values, (A)o, and (R)o; pt = 0 for t = 0, and for t = 
∞, pt = 1 if (A)o ≥ (R)o, or pt = (A)o/(R)o if (A)o < (R)o.
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If the interval of time is very short, so that t = ∆t and
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Thus, for a short interval of time ∆t:

where (A)o is both the instantaneous local concentration of ligand
molecules in the immediate vicinity of a single R molecule, and the 
average bulk solution ligand concentration.
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What is the range of possible pb values?

What is the impact on numerical accuracy?

What general statements can we make about numerical 
accuracy for finite difference simulations, finite 

element simulations, and Monte Carlo simulations?


