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Introduction
• Aortic valve: most commonly replaced valve ~63% 

of 95,000 in the U.S.
• Current procedure problematic in pediatric patients

– Cryopreserved cadaver allograft 
– Ross procedure: pulmonary autograft and cadaver allograft

• Tissue engineering (TE) offers valve availability, 
appropriate size, growth potential, and immuno-
compatibility.



Background – Heart Anatomy

• “Lub-dub” caused by valves closing
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Cardiac Cycle 1

• Isovolumetric contraction: all valves closed
• Against-curvature planar tension on aortic valve



Cardiac Cycle 2

• Ejection/systemic systole: aortic valve open
• Flexure and shear on aortic valve



Cardiac Cycle 3

• Isovolumetric relaxation: all valves closed
• Flexure on aortic valve



Cardiac Cycle 4

• Ventricular filling/systemic diastole: aortic closed
• With-curvature planar tension on aortic valve



Valve Replacement

• Calcification, stenosis, 
infection, flexural fatigue 
(3x109 times/lifetime)



Background – σ-ε relationship

• Tissue: non-linear elastic regime, biaxial 
tension, rarely reach fracture point
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Goals and Objectives

• Define endpoint criteria for TE aortic valve
• Develop constitutive model to adequately 

characterize TE aortic valve and supporting 
scaffold for clinical evaluation

• Biomechanical testing: flexural, biaxial tension
• Structural analysis: small angle light scattering 

(SALS) laser



Method

• Explant 10x10mm square specimen from 
native porcine or TE valve leaflet

• CCD cameras and cyanoacrylate marker 
record deformations (i.e. change in curvature, 
strain) during biomechanical testing



Method (cont’d)
• Flexural testing yield Eeff (effective stiffness) 

for wide range of stress
Bernouli-Euler Equation: 

• Biaxial testing yield stress-strain relationships 
at high-speed physiological strain rates

• SALS light scattering analysis reveals
– Preferred connective tissue fiber direction
– Fiber distribution
– Orientation index (OI), more aligned to handle 

increase in tension

κΔ= IEM eff



Flexural Response 
• Similar response 

between
– native leaflet and 

smooth muscle seeded 
on polyglycolic
acid/poly L-lactic acid 
scaffold

– thapsigargin inhibited 
native leaflet and 
unseeded scaffold

• Lack of cellular activity results in loss in collagen 
• Flexed or mechanical stimulated TE leaflet exhibited 

higher stiffness indicating increased cellular activity



Biaxial Response

• Native: gradual radial response confirms fewer 
aligned collagen fiber (all stretch and remain coapted
during tension)

• Decelled porcine and electrospun polyurethane urea 
TE scaffold exhibit similar stress-strain relationship



SALS Analysis

• SALS analysis confirm fiber alignment and straining 
occur during initial tension

• May help guide scaffold fabrication, not necessary to 
replicate



Conclusion

• Biomechanics comparison of native and TE 
leaflet performance show promising similarity

• Need to integrate flexural layer-specific data 
with biaxial coupling response

• SALS evaluates the structural architecture 
needed to emulate native performance

• Constitutive model needed to relate structure 
to function 



Future Directive

• Data at cellular level may reveal more about its 
structure-function relationship

• Cell remodeling, mechanical fatigue, 
biodegradation must be examined in-vivo

• Ross procedure: pulmonary valve adapt to a 
higher mechanical demand.  Is the reverse 
valid?



References
Technical content
• Merryman et al.  Defining biomechanical endpoints for 

tissue engineered heart valve leaflets from native 
leaflet properties.  Progress in Pediatrics Cardiology 
2006.  21: 153-160 

• Engineering.com. Stress strain relationship.  2000-
2006.  Accessed 05.29.2006. 
http://www.engineering.com/content/ContentDisplay?c
ontentId=41005028



References (cont’d)
Photos
• http://webcenter.health.webmd.netscape.com/NR/rdonlyres/448

D9A61-0A27-403A-941E-A4C13D856D84.jpeg
• http://images.webmd.com/images/hw/media67/medical/hw/nr55

1516.jpg
• http://heartlab.robarts.ca/dissect/aortic_valve.jpg
• http://images.webmd.com/images/hw/media67/medical/hw/nr55

1535.jpg
• http://images.encarta.msn.com/xrefmedia/sharemed/targets/imag

es/pho/t012/T012497A.jpg
• http://www.cvgs.k12.va.us/Nuclear/Stress-Strain%20Curve.JPG

Animations
• http://medlib.med.utah.edu/kw/pharm/hyper_heart1.html
• http://www.childrenshospitalla.org/mpeg/aortic.valve.avi



¿QUESTIONS? 

zheng4@gmail.com
chz14@pitt.edu


