M-Coffee: combining multiple sequence alignment methods with T-Coffee

Iain M. Wallace, Orla O'Sullivan, Desmond G. Higgins and Cedric Notredame

Presented by: Jenny Shen Mentor: Dr. Hugh Nicholas

Objective

- Using today's sequences to reconstruct the appearance of ancestral sequences – our best guess
- Analogy: In the absence of fossils, using only present day data to construct the appearance of dinosaurs

Background

Multiple sequence alignments

- Predict phylogeny
- Determine structure and function
- Detect homologues
- Alignment methods
 - Biologically and computationally complex
 - Many programs available
 - Scientist's dilemma: select best method or combination of methods to produce the most biologically correct alignment

Multiple Sequence Alignments

MSA Algorithms

Balibase*

	*	320	*	340	*	360	*
PLG	TTMTRNE:	LYLLLSFVED:	KGIHLISDE	IYSGTAFSSP-	SF	ISVMEVLKDR	NCDENSEV <mark>W</mark> QR
PTG	LLPERPL:	LQAIADRCKS	LNINLILDE	AFIDFIPHET-		GFIPALKD <mark>N</mark>	<mark>P</mark> H
PCG	SNFSRKH	VEDIVRLAEE	LRLPLFSDE	IYAGMVFKGKD		PNATFTSVAD	FETTVP
PTG	KVWTCDE:	LEIMADLCER	HGVRVISDE	IHMDMVWGEQ-		PHIPWSNVAR	GD
		LKRIRKICDR	ومتلبسية بالمترسية ومراجعية والمتراجع			-LFACEH <mark>AEI</mark>	APD
				AQTGVGRTGT-			трр
				VMTGFRIAYG-			трр
	-			VQTGGGSTGK-			DDPAD
				IYEHLLYEGE-		HFSPGRV	APEH
				AYIEFCPQAS-		LAGWLAE	¥РН
				AYYEFHGESY-		NDETKK	
				ARIFNASIASG			
	~	~		ARFCENAYFIK.			
PTG	TDPTPEQ	WKQIASVMKR	RFLFPFFDS	AYQGFASGNLE	KD	AWAIRYFVSE	GFB
G		6	De				

ClustalW

	*	280		*	300	*	320
PLG-TTI	MTRNEL	YLLLSFV	EDKGI	HLISDE	IYSGTAFSSP	SFISVMEVLKD	RNCDENSEV <mark>WQR</mark>
PTG-LLI	PERPLL	QAIADRC	KSLNI	NLILDE	AFIDFIPHET	GFIPA	LKD <mark>NPH</mark>
PCG-SNI	FSRKHV	EDIVRLA	EELRL	PLFSDE	IYAGMVFKGK	DPNATFTSVAD	FETTVP
PTG-KV	WTCDEL:	EIMADLC	ERHGV	RVISDE	IHMDMVWGEQ	P <mark>H</mark> IPW:	SNVARGD
AGGMRM	THPEWL	KRIRKIC	DREGI	LLIADE	IATGFGRTGK	L F	ACEHA
SGGIIE	L PDGYM	AALKRKC	EARGM	LLILDE	AQTGVGRTGT	MF	ACQRD
NSGFIV	PDAGFL	EGLREIT	LEHDA	LLVFDE	VMTGFRIAYG	G	VQEKF
EGGDNH	ASDDFF	RKLRDIS	RKHGC	AFLVDE	VQTGGGSTGK	FWAH	<mark>EH</mark> WGL
PTG-AV	PREVL	EALARLA	VEHDF	YLVSDE	IYEHLLYEGE	HFSPG	RVA <mark>PEH</mark>
PTG-QL:	INPQDE	RTLLELT	RGK <mark>-</mark> A	IVVADE	AYIEFCPQAS-	LAGW	LAE <mark>YPH</mark>
PTG-HVI	FEREEI	ERILKTG	<mark>A</mark>	FVALDE	AYYEFHGES-	YVDF	LKR <mark>YEN</mark>
RSGGRV	PLENI	KEICTIA	KEHGI	NVHIDG	ARIFNASIAS	GVPV	KEYAG
SAGGQP	SMSNL	KEVYEIA	KÖHCI	FVVMDS	ARFCENAYFI	KARDP-KYKNA	LIKEAILDWAKA
PTC-TDI	PTPEQW	KQIASVM	KRRFL	FFFFDS	AYQGFASGNL	EKDAWAIRYFV:	SB <mark>GFE</mark>
G		6		De			

T-Coffee

300	*	320	÷	340	÷	360
PL <mark></mark> GTTMTRNEL	YLLLSFVE	DKGIHLISD	DIYSGTAR	SSPSFISVME	VLKDRNCD	-ENSEVWQR
PT <mark></mark> GLLPERPLL	QAIADRCH	SLNINLILD	DAFIDFIF	HETGF	IPALKD	NPHIW
PC <mark></mark> GSNFSRKHV						
PT <mark></mark> GKVWTCDEL						
GAGGMRMYHPEWL			_			
SSGGIIELPDGYM						
GNSGFIVPDAGFL						
SEGGDNHASDDFF						
PT <mark></mark> GAVYPKEVL						
PT <mark></mark> GQLINPQDF						
PT <mark></mark> GHVFEREEI						
RS-GGRVVPLENI						
SAGGQPVSMSNL						
PT <mark></mark> GTDPTPEQW	KQIASVME	RRFLFPFFD	SAYQGFAS	GN	TEKDAMAI	RYFVSEGFE
	6	D	e			

ProbCons

	380	*	400	*	420	*	440	*	46
PL	G-TIMTRNELY	LLLSFVEDK	GIHLISDE <mark>IY</mark> S	GTAFSSP		SFIS-VME	VLKDRNCDE	NSEV <mark>M</mark>	QR
PT	G-LLPERPLLQ;	AIADRCKSLN	NINLILDE <mark>AFI</mark>	DFIPHET		GFIP-AL-	KD <mark>N</mark>		PH
₽C	G-SNFSRKHVEI	DIVRLAEELP	RLPLFSDE <mark>IYA</mark>	GMVFKGK		DPNATETS	VAD		FE
	G-KAMICDETE:					<mark>PH</mark> IP-WSN	VAR		GD
	GMRMYHPEWLKI					LFACEH <mark>AE</mark>	I		
	GIIELPDGYMA					MFACQR <mark>DG</mark>			'
	GFIVPDAGFLE(GGVQERFG			'
	GDNHASDDFFRI					FWAHEHWG	-		DD
		_		HLLYEGE		HESP-GR-			EH
				EFCPQA					PH
				EHGE					EN.
				IFNAS					
				CENAYFIKARDI					
PT	G-TDPTPEQWR	LASVMER		GFASGN			LEK	DAWAIRYE	VSEGFE
	G	6	De						

MEME-determined motifs are highlighted in each alignment

6/29/2006

Progressive Alignment

- Simultaneous alignment of all sequences is impractical
- Pairwise progressive method
 - Progressively aligns the most similar sequences and successively adds on more
 - Attempts to obtain the best score at every step in the alignment
 - However, optimization is only a local max
 - May not achieve the best overall alignment
 - Propagation of error

Progressive Alignment

The tree indicates the order in which the sequences are aligned
The world "CAT" is misaligned

Consistency

Attempt to avoid error by including "look ahead" information in scores

- Considers alignments between all sequence pairs, whether or not they have already been aligned, in each step of progressive alignment
- Correct alignments are more likely to be consistent

T-Coffee methodology

- Consistency-based method
- Pool together ClustalW (global) and Lalign (local) primary libraries
 - Combine information on global and local alignments
 - Generate primary library of alignment information
- Compute MSA from primary library of pairwise alignment information

M-Coffee methodology

- T-Coffee extended to 15 widely used alternative MSA programs from 8 different laboratories
- MSA libraries computed for the same sequences from a variety of algorithms:
 - ClustalW, T-Coffee, ProbCons, PCMA, Muscle, Dialign2, Dialign-T, MAFFT, FFT-NS1, FFT-NS2, FFT-NSI, F-INSI, G-INSI, POA-local, POA-global
- Results of this study compared to reference alignments of benchmark datasets – BaliBase, Prefab, HOMSTRAD

Method Tree

- Visual display of level of similarity between the various methods
- Entire HOMSTRAD dataset aligned with each method
- Distances calculated based on similarity of resulting alignments

Preliminary Data

Calculate
performance of
each individual
method in
comparison to
HOMSTRAD

 Percent of pairwise alignments that are correct

Alignment method	Default %CS
CLUSTALW v1.83*	61.15
DIALIGN	55.71
DIALIGN-T*	57.92
FFTNS1	58.27
FFTNS2	60.47
FFTNSI	63.07
FINSI*	64.22
GINSI	63.43
Muscle v3.52	64.49
Muscle v6.0*	66.04
PCMA*	63.73
POA-global*	51.90
POA-local	49.28
ProbCons v1.09*	66.41
T-Coffee v2.03*	65.37
%CS for M-Coffee15	
%CS for M-Coffee8	

Combining MSA Methods

Method Weighing

- Methods developed by the same laboratory tend to be highly correlated because of arbitrary code settings
- Four different schemes used to generate weights for each of the alignment methods
 - Variance/Covariance, Altschul Carrillo Lipman, Thompson Higgins Gibson, and Accuracy
- Results:
 - Weighing failed to significantly outperform un-weighed combination of all methods
 - One method per developer for most accurate results eight methods selected, called M-Coffee8

M-Coffee8

Outperforms any of the constituent methods

6/29/2006

Addition in order of increasing performance

M-Coffee8

Table 3. Individual dataset analysis

	M-Coffee8 better	M-Coffee8 worse	P(Wilcoxon Signed)	Best single method
Homstrad	139	65	0.000	ProbCons
Prefab <10%	49	37	0.16	PCMA
Prefab 10 to <20%	326	226	0.000	Finsi
Prefab 20 to <30%	278	132	0.000	Finsi
Prefab 30 to <40%	64	35	0.003	ProbCons
Prefab 40 to <100%	62	25	0.002	Finsi
Prefab total	779	455	0.000	/
BaliBase Set: 11	19	5	0.002	ProbCons
BaliBase Set: 12	26	7	0.008	ProbCons
BaliBase Set: 20	16	14	0.967	Finsi
BaliBase Set: 30	16	5	0.013	PCMA
BaliBase Set: 40	24	10	0.333	Finsi
BaliBase Set: 50	12	4	0.078	PCMA
BaliBase Set: S11	12	15	0.793	Muscle 6
BaliBase Set: S12	13	11	0.437	ProbCons
BaliBase Set: S2	21	13	0.397	Muscle 6
BaliBase Set: S3	19	6	0.024	ProbCons
BaliBase Set: S5	8	5	0.623	Muscle 6
BaliBase total	186	95	0.002	/
Total	1104	615		/
Total versus ProbCons	1249	615		ProBcons

Conclusions

M-Coffee alignments

- On average 1-3% more accurate than that obtained from best individual method
- Nearly twice as likely to deliver best MSA
- ProbCons usually the best individual method
- Caveat: Because generating MSAs libraries is very time-consuming, the gain is not always worth the time invested; may be better off using Probcons

References

- Lassmann, T., and Sonnhammer, E.L.L. (2005) Automatic assessment of alignment quality. *Nucleic Acids Research* 33: 7120-7128.
- Notredame, C., Higgins, D.G., and Heringa, J. (2000) T-Coffee: A novel method for multiple sequence alignments." *J. Mol. Bio.* 302: 205-217.
- Wallace, I.M., O'Sullivan, O., Higgins, D.G., and Notredame, C. (2006) M-Coffee: combining multiple sequence alignment methods with T-Coffee. *Nucleic Acids Research* 34: 1692-1699.

Questions?

"Mr. Osborne, may I be excused? My brain is full."