## Using hexamers to predict cisregulatory motifs in Drosophila

01

1 1

#### Authors: Bob Y. Chan and Dennis Kibler

Presenter: Ji Lee

## **Cis-Regulatory Modules**

CRMs are clusters of TFBS
Two Types
Promoters
Proximal promoters
TATA box, CAAT box, TSS, DPE
Enhancers

Can be far away from regulated gene



# Predicting CRMs

- Classified by information used
- Searching by signal
  - Example: Identification of clustered motifs
  - Phylogenetic footprinting
    - Conservation of regulatory regions between species
- Searching by content (ab initio)
  - Differentiating between CRM and non-CRM sequences based on sequence characteristics

### Searching By Signals: Cluster Buster

- Example of a "Search by signal" method
- Tries to identify motif-dense regions
- Log-likelihood scores
- Optimize clusters

| ſ | С     | luster: 216 | 02 to 22627 | / Sc | ore: 25 |       |          |            |
|---|-------|-------------|-------------|------|---------|-------|----------|------------|
|   |       |             | L.          |      |         |       |          | +          |
|   | Score |             |             |      |         |       |          | -          |
|   |       |             |             |      |         |       |          |            |
|   | Ν     | lotif       | Positio     | n    | Strand  | Score | Seq      | uence      |
|   | E     | RE          | 21687 to 21 | 700  | -       | 12.7  | agatcago | ctgacc     |
|   | V     | \$LYF1_01   | 21736 to 21 | 744  | -       | 8.55  | tttgggag | 9          |
|   | V     | \$PITX2_Q2  | 21748 to 21 | 758  | -       | 10.4  | tgtaatco | cag        |
|   | V     | \$E12_Q6    | 21770 to 21 | 780  | -       | 7.49  | gecaggtg | cag        |
|   | ٧     | SGNCF_01    | 21839 to 21 | 856  | +       | 8.72  | atggagtt | caattteece |
| I | V     | \$E12_Q6    | 21946 to 21 | 956  | -       | 7.91  | aacaggtg | gtc        |
|   | V     | \$E12_Q6    | 22018 to 22 | 2028 | -       | 8.38  | ggcagatg | gca        |
|   | V     | \$PITX2_Q2  | 22399 to 22 | 409  | -       | 10.5  | tgtaatco | cag        |
|   | V     | \$LYF1_01   | 22534 to 22 | 2542 |         |       | tttaggag |            |
|   | V     | \$PITX2_Q2  | 22546 to 22 | 2556 |         |       | tgtaatco |            |

## Motif Recognition Using Phylogenetic Footprinting

#### ClustalW

- Problematic when looking for shorter sequences
- Dialign
  - Improvement over ClustalW...
  - ...But still problematic
- MEME
  - Motif discovery program
- FootPrinter



# Searching by Content Algorithms

- Fluffy-tail test
  - Statistical analysis of nucleotide in lists of variant length words
- LWF Local Word Frequency
  - Analyzes word frequencies within a sliding window (local)
  - Disadvantage: Depends on word frequencies not on the words

#### PromFind

- Tries to find similar hexamer frequencies of known promoters in target sequences
- Restrictive in nature- one promoter per input sequence but not so for enhancers

## Comparison of Algorithms

Table 1: Key aspects of HexDiff and other algorithms. The table shows the knowledge used and the parameters required by the different algorithms.

| Algorithm      | Knowledge Used | Parameters                                                                                         |  |  |  |
|----------------|----------------|----------------------------------------------------------------------------------------------------|--|--|--|
| HexDiff        | CRM Locations  | Number of hexamers in H <sub>d</sub><br>Window size<br>Window score threshold                      |  |  |  |
| Ahab           | PWMs           | Window size<br>Free energy cutoff                                                                  |  |  |  |
| Cluster Buster | PWMs           | Order of background model<br>Motif score threshold<br>Gap parameter<br>Cluster score threshold     |  |  |  |
| MSCAN          | PWMs           | Residue abundance range<br>Motif score threshold<br>Window size                                    |  |  |  |
| MCAST          | PWMs           | Minimum hits<br>Maximum hits<br>Motif score threshold<br>Maximum allowed distance between adjacent |  |  |  |
| LWF            | CRM Locations  | hits<br>Pseudocount weight<br>String length                                                        |  |  |  |
|                |                | Number of mismatches<br>Detection window size<br>Maximum number of channels<br>Channels equalized  |  |  |  |
|                |                | Profile cutoff<br>Peak width cutoff<br>Smoothing window                                            |  |  |  |

# HexDiff Summary

- CRM sequences vs. non-CRM sequences
- Model
  - 1. Training set built with sequences containing known CRMs
  - 2. Calculate word frequencies for all 4<sup>6</sup> hexamers
  - 3. Calculate an enrichment score for each hexamer
  - 4. Extract set H<sub>d</sub> of highly represented hexamers
  - 5. Calculate a window score for each position / in a target sequence
  - 6. Filter window scores against a chosen threshold score
  - 7. Filter out "impossibly short" CRM predictions

# Training HexDiff: Building

- Use sequences with known CRMs
   Split sequences into two subsets
   Positive training set
   Aggregate of all known CRMs extracted from sequences
  - Negative training set

Positive

Everything not in the positive set

CRM CRM

Negative

# Training HexDiff: Processing

 Calculate frequency of all possible hexamers (4<sup>6</sup> total) on both strands

Calculate enrichment score *R* for each hexamer

$$R(h) = \frac{f_p(h)}{f_n(h)}$$

Select only the hexamers with the highest enrichment scores for set H<sub>d</sub>

Assumption:

# Training HexDiff: Processing



# HexDiff At Work

- Sliding window of size w starting at a base i
- Count all occurrences of each  $h_d$  in  $H_d$ for the current window,  $n(h_d)$
- Multiply  $n(h_d)$  by  $R(h_d)$
- Sum all component scores to find the score S<sub>i</sub> for the current window
- Repeat for all *i*, advancing 1 base at a time

## HexDiff At Work



# Evaluation: LOOCV

- Leave-One-Out Cross-Validation
   Input set of 16 CRM-characterized sequences
  - 16 runs of algorithm, 1 per input sequence
  - "Test" sequence systematically changed each iteration
  - Rest of set becomes the basis for the training set

Choosing the Design and Parameters Designed to minimize the number of mandatory user-inputted parameters Breeds conceptual simplicity Avoids overfitting Test run uses LOOCV-optimized parameters • Size of  $H_d$ Size of sliding window Threshold score N-mer size and mismatches



## Evaluation: Algorithm Comparison

|         |       |        |        |       | Sensitivity | Specificity | PPV    |
|---------|-------|--------|--------|-------|-------------|-------------|--------|
|         | TP    | FP     | TN     | FN    | -           |             |        |
| HexDiff | 22548 | 40007  | 602501 | 35751 | 38.68%      | 93.77%      | 36.05% |
| Ahab    | 12862 | 10488  | 632020 | 45437 | 22.06%      | 98.37%      | 55.08% |
| Cluster |       |        |        |       |             |             |        |
| Buster  | 19883 | 33339  | 609169 | 38416 | 34.11%      | 94.81%      | 37.36% |
| MSCAN   | 15771 | 58679  | 583829 | 42528 | 27.05%      | 90.87%      | 21.18% |
| MCAST   | 28009 | 194633 | 447875 | 30290 | 48.04%      | 69.71%      | 12.58% |
| LWF     | 7436  | 61165  | 581343 | 50863 | 12.75%      | 90.48%      | 10.84% |

### Evaluation: Algorithm Performances on Test Set

 Test run on a 16 sequence set containing 52 characterized CRMs
 Cumulative scores are the sum of all CCs

| Gene  | CRMs | HexDiff | Ahab  | Cluster Buster | MSCAN | MCAST | LWF   |
|-------|------|---------|-------|----------------|-------|-------|-------|
|       |      |         |       |                |       |       |       |
| btd   | I    | 0.70    | 0.57  | 0.19           | 0.01  | 0.07  | 0.10  |
| ems   | 3    | 0.00    | 0.00  | -0.03          | 0.12  | -0.01 | -0.01 |
| eve   | 6    | 0.55    | 0.63  | 0.65           | 0.50  | 0.41  | 0.06  |
| fkh   | I    | -0.03   | -0.02 | -0.02          | -0.04 | -0.02 | -0.01 |
| ftz   | 5    | 0.40    | 0.28  | 0.28           | 0.07  | 0.16  | 0.08  |
| gt    | I    | 0.27    | 0.42  | 0.33           | 0.35  | 0.15  | 0.03  |
| ĥ     | 5    | 0.71    | 0.63  | 0.53           | 0.30  | 0.37  | 0.08  |
| hb    | 2    | 0.35    | 0.63  | 0.39           | 0.34  | 0.24  | 0.04  |
| hkb   | I    | 0.51    | 0.00  | -0.02          | -0.02 | -0.08 | 0.09  |
| kni   | 3    | 0.55    | 0.55  | 0.39           | 0.37  | 0.23  | -0.05 |
| kr    | 3    | 0.43    | 0.00  | 0.77           | 0.20  | 0.11  | -0.03 |
| oc    | 2    | 0.70    | -0.02 | 0.00           | 0.11  | 0.02  | 0.07  |
| prd   | 7    | 0.01    | -0.07 | 0.16           | 0.07  | -0.04 | 0.05  |
| run   | 6    | 0.27    | 0.16  | 0.08           | 0.08  | 0.02  | 0.07  |
| slp1  | 3    | -0.07   | 0.15  | -0.04          | 0.00  | 0.07  | 0.01  |
| tll   | 3    | 0.35    | 0.56  | 0.58           | 0.19  | 0.12  | -0.04 |
| Total | 52   | 5.71    | 4.48  | 4.24           | 2.64  | 1.81  | 0.52  |
|       |      |         |       |                |       |       |       |

## **Evaluation: Novel CRMs**

### 1 – Ahab, 2 – ClusterBuster, 3 – MSCAN, 4 – MCAST, 5 – LWF

| Gene     | Arm | Begin    | End      | Length | Ι | 2 | 3 | 4 | 5 | Matched       |
|----------|-----|----------|----------|--------|---|---|---|---|---|---------------|
| btd      | х   | 9534921  | 9535192  | 271    |   |   |   | * | * |               |
| eve      | 2R  | 5492385  | 5493575  | 1190   |   |   |   | * | * | eve_late2_mel |
| fkh      | 3R  | 24421705 | 24422385 | 680    |   |   |   | * | * |               |
| ftz      | 3R  | 2683060  | 2683406  | 346    |   |   | * | * |   |               |
| gt       | Х   | 2268347  | 2270179  | 1832   |   | * | * | * |   |               |
| gt       | Х   | 2290228  | 2290685  | 457    | * | * | * | * | * | gt_23-bcd_mel |
| ĥb       | 3R  | 4503375  | 4503962  | 587    |   |   | * | * | * | -             |
| hb       | 3R  | 4519805  | 4520172  | 367    |   |   | * | * |   |               |
| kni      | 3L  | 20628230 | 20628504 | 274    | * | * | * | * |   | kni_+l_mel    |
| prd      | 2L  | 2080435  | 2082316  | 1881   | * |   |   | * | * | prd_bcd_mel   |
| ,<br>prd | 2L  | 12089627 | 12089847 | 220    |   |   |   | * | * | prd_l_mel     |
| run      | Х   | 20488169 | 20488643 | 474    | * | * | * | * |   |               |
| run      | Х   | 20524260 | 20524722 | 462    |   | * | * | * | * |               |
| slpl     | 2L  | 3811050  | 3812092  | 1042   |   |   |   | * | * |               |
| slpl     | 2L  | 3822581  | 3823049  | 468    |   |   |   | * | * |               |
| slpl     | 2L  | 3824891  | 3825039  | 148    | * | * | * | * | * | slp_A-bcd_mel |
| sipi     | 2L  | 3833433  | 3834671  | 1238   |   | * | * | * | * | slp23_mel     |
| tlİ      | 3R  | 26680559 | 26683175 | 2616   |   | * |   | * | * | tl_bcd_mel    |

# Conclusion

 HexDiff utilizes local word frequencies in a biological context to predict CRMs
 Implementation of the method is in its infancy

More testing can only be catalyzed when implementation is more robust

May spawn variations of the method

Many ways currently used to predict CRMs, but in the end there is a long way to go.

## References

- Arnone, M. I. & Davidson, E. H. The hardwiring of development: organization and function of genomic regulatory systems. *Development* **124**, 1851-1864 (1997).
- Baldi, P., Brunak, S., Chauvin, Y., Andersen, C. A. F. & Nielsen, H. Assessing the accuracy of prediction algorithms for classification: an overview. *Bioinformatics* 16, 412-424 (2000).
- Blanchette, M. & Tompa, M. Discovery of Regulatory Elements by a Computational Method for Phylogenetic Footprinting. *Genome Res.* **12**, 739-748 (2002).
- Frith, M. C., Li, M. C. & Weng, Z. Cluster-Buster: finding dense clusters of motifs in DNA sequences. *Nucl. Acids Res.* 31, 3666-3668 (2003).
- Nazina, A. & Papatsenko, D. Statistical extraction of Drosophila cis-regulatory modules using exhaustive assessment of local word frequency. *BMC Bioinformatics* 4, 65 (2003).