Optimization by Simulated Annealing

S. Kirkpatrick, C. D. Gelatt Jr., M. P. Vecchi Science, Volume 220 (1983), Number 4598: 671-679

Presented by Ryan Cheng Reviewed by Amanda McCoy

Combinatorial Optimization

- Central to science, engineering, CS
- Optimizing objective (cost) functions of complicated systems
- Determination of global extremum of objective functions
- Deterministic methods unrealistic as number of parameters becomes very large
 - Traveling Salesman Problem
 - Computer Design

Introduction to the Traveling Salesman Problem

- Problem 1: Minimize cost function (E) of a salesman traveling between N number of cities and back
 - Cost to travel between cities proportional to distance between cities

Simplest form :

$$E = L \equiv \sum_{i=1}^{N} \sqrt{(x_i - x_{i+1})^2 + (y_i - y_{i+1})^2}$$

Intro. Traveling Salesman Problem

- Number of possible path configurations = N!
- Exact solutions to minimization of E computationally determined for magnitudes of N<~10² (as of 1983)
- Non-deterministic polynomial time complete (NP-C) problem
 - Computing effort for exact soln. increases exponentially with N
- Heuristic methods for near-optimal solutions
 - "Divide and Conquer" and "Iterative Improvements"
 →Monte Carlo (MC) & Simulated Annealing (SA)

Metropolis Monte Carlo Algorithm

- 1) Start with known configuration, objective function (ie, energy), some Temperature value
- 2) Random change configuration (ie, add small random displacement)
- 3) Calculate new energy value (E_2)
- 4) Compare to energy at previous position (E_1) :
 - If $E_2 < E_1$, keep new position
 - If $E_2 > E_1$, keep new position if the Boltzmann factor for transition is greater or equal to a random number between 0 and 1

R and (0, 1) $\leq \exp[-(E_2 - E_1)/kT]$

5) Repeat steps (2) - 4 K number of times

Simulated Annealing (SA)

- Concept of SA from annealing process
 - Slowly cooling melt to form perfect crystals
- SA provides a temperature schedule for the Metropolis method
 - Start at effectively high temperature and gradually decrease the temperature by increments until T slightly above 0 (<1)
 - At every temperature, Metropolis algorithm is run (nested-loop)

Benefits

- Ability to escape local minima at non-zero temperatures
- "Divide and Conquer" -> Gross features of final state appear at high temp. while fine details appear at low temp.

SA Application: The Traveling Salesman

- Kirkpatrick et al solved problem where N=400
 - Re-arrangement involved random selection of string of cities and reversal of order (Lin-Kernighan method)
 - Side of square boundary has length of N^{1/2}
 - Cities grouped into nine clusters
 - Solved problem in "Manhattan" metric space so thus,

$$E = L \equiv \sum_{i=1}^{N} (|x_i - x_{i+1}| + |y_i - y_{i+1}|)$$

Solved problem several times and averaged optimal step lengths (α)

SA Results: Traveling Salesman

- a) Results at T = 1.2 (α = 2.0567)
- b) Results at T = 0.8 (α = 1.515)

SA Results: Traveling Salesman continued...

- c) Results at T = 1.2 (α = 2.0567)
- d) Results at T = 0.8 (α = 1.515)

Physical Design of Computers

- Optimization problems in Comp. design
 - Partitioning circuits into groups to fit on chip
 - Placement of circuits on chip
 - Wiring of circuits on chip
- Goal to optimize performance of system without compromising any design stage

Physical Design of Computers continued...

• Partitioning

• Number of circuits in each partition must fit into package

- Number of signals crossing boundaries minimized
- Placement
 - Minimize length of connections (reduce signal propagation time)
 - Minimize congestion (overcrowding)
- Wiring
 - Minimize wire lengths used
 - Minimize source of noise

SA: Placement Problem

- **Problem**: Placement of 98 chips on IBM 3081 processor with 100 sites (10 x 10 grid)
- Re-arrangement moves involve switch between two chips or switch between chip and vacancy
- Histograms used to keep track of congestion and wire length by scoring boundary crossing on grid
 - Minimum one wire per boundary crossed
 - Sum of horizontal bins gives lower bound of horizontal length
 - Sum of vertical bins gives lower bound of vertical length
 - Construction of objective function

SA: Placement Problem continued...

- Chips are numbered from 1 to 99 (without chip 20)
- Dark squares represent adder chips
- Squares with ruled lines represent chips that supply data to adder chips
- Lightly dotted squares represent chips that perform logical arithmetic (and, or, etc.)
- Open squares represent general-purpose register chips

SA: Placement Problem continued...

SA Results: Placement Problem

558	5	75		53	52	19			22	2
	7.8	2.3	64	95	41		14	41	**	3
944		7.0	16	91	3	31	9	2.3	56	14
1193	2.5	33	15	83	王 四			76	1 7	Martin
1378	48	57	6.8	84	7.9	88	13	76	50	3
	6	3.9	9.0	27	94	11	53	29	2.7	瀫
1375	6.2	23	5.5	63	1.0	6.7	7.2	***		6
1170	7	20	7.5	3 D	2.9	59	85	47	49	Γ
238	3	24	6.2	86	51	18	3.2	**	1	ſ
435	3.2	59	93	ZH.	12	28	9.9 	9.2	71	4

SA Results: Placement Problem continued...

	3.9	93	40	9.2	3.5	***	72	53	≤ 2	:8.
568	9.3	95	55	84	52	2.5	52	85	22	82
760	86	97	6.9	71	96	64	75	6.2	6-1-	53
809	90	53	\$7	83	77	26	94.	73	47	51
700	70			122	5 A	~~~				
718		89	27	67	78	21	23	:5	10	11
717	29	41	15	16	1	9] 20000		0.3	5.3	4
785	51	50	1,7	3.0	49		***	***	114	
695	2.8	18	79	5	1 3	36	2.4	***	靉	
499	9	39	6 D	19		***	14	昏憧	38	
477	3	6	3	7	57	56	70	59	68	45

SA Results: Placement Problem continued...

T=O	- 1		o ::				is int		1912	
405	71	άŞ	93	94	87	101.01	2 S.	9 2 :		
19.5	83	84	97	85	27	7.5	7.2	81	3.1	2.2
563	_			1.11	-12-536			a terite a terite		
559	95	99	93	. 7 . 6	38	52	6.1	3 Z	12	23
	5	15	9 D	38	78	A B	8.2	14	13	2
560										
591	16	25	7 S	5.5	69	10	<u>13</u>	21	11	1
	7.9	89	27	67	53	54	が構成	***	22	4
595							-1003	(391L)	8888	50110
562	3	19	18	2.9	49	57	59		888	24
	6	39	8.0	6.0	51		西西	48		
558			<u> </u>			3833	89886			0000
395	7	9	50	70	41	1999		47	(単本)	3.6
	3.0	28		4 D	91	3.6		88	36	3.3
đ	_	73 4	7I 50	69 63	_	80 6;	25 63			34

SA Results: Placement Problem continued...

- Observed decrease in congestion as T was decreased in SA
- Observed decrease in wire length as T was decreased in SA (minimization of wire length)

Conclusion

- Simulated annealing with Metropolis algorithm is effective heuristic technique
- Require known initial configuration, objective function, random number generator, and temperature schedule (annealing)
- Success with finding near-optimal solutions for NP-C problems (Traveling salesman)
- Success with optimizing computer design

References

- Kirkpatrick, S; Gelatt, C. D., Vecchi, M. P. *Optimization by Simulated Annealing.* Science. 220 (1983): 671-679.
- Press, W. H., Teukolsky, S. A., Vetterling, W. T., Flannery, B. P. Numerical Recipes in C: The Art of Scientific Computing, 2nd Edition. <u>http://library.lanl.gov/numerical/bookcpdf.html</u>
- Leach, A. R. Molecular Modeling: Principles and Applications, 6th Edition. Prentice Hall (2001): 414-418.