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Weighted-Ensemble Brownian Dynamics Simulations for Protein
Association Reactions
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ABSTRACT A new method, weighted-ensemble Brownian dynamics, is proposed for the simulation of protein-association
reactions and other events whose frequencies of outcomes are constricted by free energy barriers. The method features a
weighted ensemble of trajectories in configuration space with energy levels dictating the proper correspondence between
"particles" and probability. Instead of waiting a very long time for an unlikely event to occur, the probability packets are split,
and small packets of probability are allowed to diffuse almost immediately into regions of configuration space that are less
likely to be sampled. The method has been applied to the Northrup and Erickson (1992) model of docking-type diffusion-
limited reactions and yields reaction rate constants in agreement with those obtained by direct Brownian simulation, but at
a fraction of the CPU time (10-4 to 10-3, depending on the model). Because the method is essentially a variant of standard
Brownian dynamics algorithms, it is anticipated that weighted-ensemble Brownian dynamics, in conjunction with biophysical
force models, can be applied to a large class of association reactions of interest to the biophysics community.

INTRODUCTION

Many biochemical reactions are characterized by events that
occur infrequently on the characteristic time scale of the
physical system. Among the most important are enzyme-
substrate reactions and protein-protein association reac-
tions. For a reaction event to occur, the two molecules must
not only be near each other, but must also be properly
oriented with respect to one another. Many of these reac-
tions are diffusion-limited; once the molecules are properly
juxtaposed, the reaction takes place very rapidly (Creighton,
1984; Northrup, 1994). Because the rate-limiting portion of
the overall reaction consists of the diffusive motion of the
two molecules, it is common practice to model each mole-
cule as a rigid body and the solvent as a viscous Newtonian
liquid with a dielectric constant (McCammon and Harvey,
1987; Luty et al., 1993b; Madura et al., 1994; Antosiewicz
et al., 1995; Northrup et al., 1993, 1994; Kozack et al.,
1995). Brownian dynamics simulations (Ermak and Mc-
Cammon, 1978) can be performed on these systems without
the detailed description of the atoms of the solutes or
solvents. In the early 1980s an important method for ex-
tracting rate constants from such Brownian dynamics sim-
ulations was developed by Northrup et al. (1984). This
method, along with other variations (Luty et al., 1992,
1993a), has been used to obtain estimates of the second-
order rate constant for enzyme reactions. Still, these meth-
ods are limited by the infrequency of the reaction events;
large numbers of trajectories must be generated in order to
obtain enough reaction events. The recent paper by Kozack
et al. (1995) represents the state-of-the-art in this regard,

especially with respect to the utilization of high perfor-
mance parallel supercomputers. In this paper, we develop a
new simulation method, the weighted-ensemble (WE)
method, which eliminates the problem of infrequency of
events. The WE method, in conjunction with Brownian
dynamics (i.e., WEB dynamics), is applied to a very simple
energy barrier model and to a simple protein-protein asso-
ciation model (Northrup and Erickson, 1992), and is com-
pared to other simulation methods.
The organization of this paper is as follows. The second

section (Materials and Methods) on the difficulties associ-
ated with stochastic simulations of infrequent events pro-
vides various approaches to address these difficulties. The
new method is described in the last subsection. In the next
section (Results), two examples are considered to validate
the new method: a simple one-dimensional (1-D) energy
surface with a barrier, and the Northrup-Erickson (1992)
model for protein association reactions. A quantitative es-
timate of the speedup (factor of 1600) exhibited by the new
algorithm is provided. The paper concludes with a specula-
tion on future directions for research, including the simula-
tion of models that possess many more degrees of freedom
(Dwyer and Bloomfield, 1993), with the help of scalable
algorithms on parallel computers (efficient utilization of
memory via advanced parallel programming models). An
Appendix provides additional details for those wishing to
apply or extend our method, as well as information on
retrieval of auxiliary files (visualization with MPEG) by ftp
over the Internet.
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MATERIALS AND METHODS

Theory
For the most general formulation of the problem, we consider diffusion in
a d-dimensional configuration space with an arbitrary potential and (pos-
sibly varying) diffusion matrix. Suppose there is a d - 1 dimensional
surface, or reactant surface, in this space upon which a particle, or member
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of an ensemble, is created and placed according to some probability
distribution. The particle begins its journey and is destroyed upon reaching
a second d - 1-dimensional surface, or product surface (Fig. 1). This raises
the question: What is the mean lifetime or mean passage time of the
particle? Of course, one way to answer this question is to use Brownian
dynamics to simulate many trajectories all the way from the first to the
second surface and to compute the average time required.

Alternatively, one may consider the following scenario. A given distri-
bution throughout the space of many particles is present at the start. The
particles all begin their journeys at the same time, and each time a particle
reaches the product surface it is immediately reintroduced on the reactant
surface according to the probability distribution mentioned in the previous
paragraph. The question here is: What will be the flux of particles once
steady state is reached? This question might be answered by maintaining
many particles in the system at once, all in different stages of their journey,
and counting the number that end their journey in a given time interval
(Farkas, 1927). It has been shown that these two questions are mathemat-
ically equivalent; the answer to the first question is merely the inverse of
the answer to the second question (Hanggi et al., 1990).

The main difficulty in answering the question by using simulations is
that most interesting systems have free energy barriers, which divide the
configuration space into reactant and product regions, between the two
surfaces. The particles spend most of their time wandering around in the
reactant region and only very rarely surmount the barrier. Thus, computing
the mean time by simulating an entire particle lifetime can consume vast
amounts of computer time. We refer to this method as the mean passage
time (MPT) method (Northrup and McCammon, 1980). Attempting to
answer the question using the second method, called the flux overpopula-
tion method (Farkas, 1927), has its drawbacks as well; particles will arrive
at the product surface too infrequently to obtain a meaningful number for
the particle flux. However, this scheme can be modified to obtain mean-
ingful results; this is the essence of the WE method.

There are two ways to imagine a large collection of particles in a
configuration space. The first way is to see them as actual copies of the
physical system in the real world; the second is to regard the collection of
particles as an estimate of the probability distribution of states taken by one
system. In other words, each particle represents a packet of probability
(Gardiner, 1985). If all particles are considered to carry the same proba-
bility, then these two viewpoints are equivalent from a computational
perspective; the only difference is one of philosophy. However, if each
particle is allowed to carry a different probability, then adopting the second
viewpoint allows additional flexibility.

For example, the probability distribution at the top of a barrier would be
poorly sampled by an ensemble of particles with equal weights, because

very few, if any, particles would be near the barrier top. On the other hand,
if the particles are endowed with variable statistical weights, then many
particles can be present at the barrier top, allowing it to be adequately
sampled, but each particle will have a very small weight. If the second
surface is at the barrier top, then the use of the flux overpopulation method
with this weighted ensemble can yield a measurable flux, no matter how
small it is.

Our next provision is to allow particles to be split, destroyed, and
combined with one another. The remaining task is to devise a scheme to get
those small particles to the barrier top without breaking any rules of
probability theory.

The first step is to identify a reaction coordinate that describes the
progress from the reactant surface to the product surface. Next, the con-
figuration space is divided into several slabs, or bins, along the reaction
coordinate, such that any point within a given slab has a reaction coordinate
value within a given range associated with that slab (Fig. 2). If a value for
the reaction coordinate is defined for all points in the configuration space,
then the bins cover the entire space. Finally, the particles are distributed.
There are several possible ways to do this; perhaps the easiest way is to
give them all the same weight initially and place them according to the
Boltzmann distribution by using the rejection method (Press et al., 1988).
In other words, trial positions are generated uniformly in configuration
space at random and accepted with probability exp(-V(x)/kT), where V is
the potential energy. The sum of the particle weights must add up to unity
so that the collection of particles represents a probability distribution.

After the ensemble is set up, the simulation proceeds. The particles are
stepped forward one time step according to the Brownian dynamics algo-
rithm (Ermak and McCammon, 1978):

1 aV a
Xn+1X= n-kTD *x At+ JX D* AW+-X* DAt

(1)
The vector x is the position in configuration space, and a/ax is a vector of
derivatives with respect to the different coordinates. The matrix D is the
general diffusion matrix, which can depend on x, and the potential of mean
force is V. The time step is At, and AW is a vector of independent random
Gaussian numbers with a mean of 4 and a variance of At.

During the time step, particles might move from one bin to another, and
some might be absorbed at the product surface and re-emitted at the
reactant surface. At the end of the time step, some bins have undergone a
net gain of particles, whereas others have undergone a net loss, so we
adjust the particle numbers in order to get back approximately the same

Product Surface

FIGURE 1 2-D configuration space. The dashed contour lines represent
the potential energy; the system must diffuse through a narrow passage.

FIGURE 2 Reaction coordinate (dotted line) and bins for the WEB
dynamics method. System copies are represented as dark circles, with
statistical weight represented by size.
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number of particles, n, in each bin. By doing this, we ensure that the barrier
regions are sufficiently sampled and that we get measurable numbers for
the probability flux. At the same time, it is desirable for the weights of
particles that share a bin to have approximately the same value; this helps
to reduce noise in the measured flux.

For each bin i, the total probability Pi is computed. The "ideal" particle
weight is P/ln. Each particle with weight greater than 2Pmln is split into m
particles, each with weight equal to 1/m of the parent particle. The number
m is chosen so that the individual child particles have weight between P/ln
and 2Piln. The child particles keep the same position as the parent,
although they will go their separate ways in subsequent time steps. Prob-
ability is conserved and no new errors are introduced.

The next step in bin i is to combine some of the particles with small
weights. To combine a given group of particles, the weights are added up,
and the total weight is given to the resulting conglomerate particle. The
conglomerate particle is then given the position of one of the original
particles; the probability of a position being chosen is proportional to the
statistical weight of the original particle at that position. For example, if
two particles, particle a with weight 0.01 and particle b with weight 0.02,
are combined, the resulting particle has a weight of 0.03. The probabilities
of the particle being given the position of a or of b are 1/3 and 2/3,
respectively. No statistical bias is introduced by combining particles in this
manner; this is demonstrated in Appendix A.

The particles in bin i are sorted in order of statistical weight. Starting
with the smallest particle, the particles are added in order of ascending
weight to a conglomerate particle whose position is yet to be determined.
As we move up the list, the particles are added until either 1) the next
particle has a weight greater than one half the ideal weight; or 2) the
combined weight is greater than the ideal weight. If the first event occurs,
the current particle is still added to the conglomerate particle unless the
combined weight would be > 1.5 times the ideal weight; in that case, it is
not included. After one of these termination events, the conglomerate
particle is assigned a position. If the termination event is of the second
kind, that is, the individual particles are still small, then the combination
procedure is started again with the current particle. These combinations can
be repeated until the individual particles become too large. The overall
procedure for each bin accomplishes two goals: to keep the number of
particles in each bin near a desired value n, and to keep the weights of the
particles in a given bin roughly the same.

After the particle readjustments, the next time step is taken and the
process is repeated. Because we can control the distribution of particles
along the reaction coordinate, even at the barrier top, we can always
measure some movement of probability over the barrier, even if the value
is very small. An individual large particle in a well is still very unlikely to
make it to the top, but a small portion of its probability is still being
transported over the top. In other words, instead of waiting an extremely
long time for one particle to make it over the top, we hardly wait at all and
observe an extremely small fraction of a particle making the passage. If a
large particle ventures into a less-probable bin, it is usually chopped up into
smaller particles. Likewise, a small particle that falls down into a well is
consumed by larger particles. Furthermore, if the distribution of particles
should start out with equal weights and none in the upper bins, the situation
is quickly adjusted. Throughout the simulation, the weight per unit time of
particles that leave and are reintroduced is recorded; this is an estimate of
the probability flux. Eventually, a steady state condition is reached in
which the flux fluctuates around a fixed value; the inverse of this value is
the MPT.

Treatment of varying time steps

During a Brownian dynamics simulation, it is often desirable to vary the
size of the time step. Using large time steps where possible saves computer
time. However, in regions where the generalized force aVh3x is varying
strongly with position or where the product surface is near, small time steps
are required. An important example is seen in simulations of enzyme-
substrate systems, in which smaller time steps are used when the two
molecules are closer together (Luty et al., 1993b; Madura et al., 1994;

Antosiewicz et al., 1995; Northrup et al., 1993, 1994; Kozack et al., 1995).
At first glance, this appears to present difficulties in carrying out a
weighted-ensemble simulation, because the particles must be stepped for-
ward in time together, and the overall time step size would need to be the
smallest one in the system. Of course, the forces on the particles that are
able to take larger steps could be updated less frequently, which would save

computer time. Unfortunately, another difficulty presents itself. The re-

gions very near the product end of the reaction coordinate are generally the
ones requiring small time steps; whereas most of the remaining length of
the reaction coordinate is populated by particles not requiring small steps.
The time required to reach steady state scales as the square of the system's
length scale, so it is these latter particles that determine the time required
to reach steady state. If they could take their natural large steps, steady-
state would be rapidly achieved. However, if they can only step along in
time with the small time step particles, steady state will be achieved very
slowly with respect to the time spent by the computer.

Fortunately, it is possible to step each particle forward by its own
allowed time step size during each step of the simulation. The correct
steady-state flux is achieved, steady-state is reached much more quickly,
and all that is required is an easy renormalization of the particle weights at
each time step. The justification for this is given in Appendix B.

Setting up the bins

Before a WEB dynamics simulation can be performed, it is necessary to
choose the number of bins, where they are to be placed along the reaction
coordinate, the average total number of particles and how they should be
distributed among the bins, and how long the simulation should run. The
main goal is to minimize the amount of computer time spent for a desired
degree of precision in the final result. Implementation details such as the
initial distribution of bins, dynamic adjustment of bins, and number of
particles, are described in Appendix C for the benefit of readers interested
in using WEB dynamics. The adaptive procedures described therein (anal-
ogous to adaptive mesh refinement in computational fluid dynamics) have
a substantial impact on computational performance.

Measurement of algorithm efficiency
For most systems of interest, it is reasonable to assume that the bulk of the
computer time would be spent stepping the particles forward in time; force
evaluations, in particular, would dominate this step for realistic systems.
Therefore, we quantify the computer time in terms of particle steps. For
example, if we were to double the average number of particles but halve the
simulation time, the number of particle steps taken would remain almost
the same.
We also make the assumption that the square of the width of the 95%

confidence interval on the quantity of interest, A, whether it is a mean time
or a rate constant, is inversely proportional to the total number of particle
steps taken, Ns (Press et al., 1988).

A (2)

The constant of proportionality, -q, depends on the number and placement
of both bins and particles; it is the measure of algorithm efficiency that is
used. The quantity q-i can be considered to be the total number of force
evaluations or time steps that is required to obtain an order-of-magnitude
estimate for A.

Statistical analysis

The most straightforward way to measure the flux is to pick a time interval
that includes several time steps, measure the amount of probability that
makes it across the reactant surface in that interval, and divide by the time
interval to obtain an estimate of the flux during that time. If this is done
repeatedly during the simulation, a record of the measured flux is accu-
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mulated that can be analyzed to obtain a confidence interval of the true
steady-state flux. This is a challenge because the noise in the measured flux
is very non-Gaussian and is strongly correlated among successive mea-
surements. Fortunately, it can be accomplished by using the bootstrap
Monte Carlo method for data analysis (Press et al., 1988). Because we
know nothing about the error structure of the flux measurements, the only
estimate we have available of the distribution of measured fluxes is the set
of flux measurements itself. If we have N measurements, we can generate
a large number of artificial data sets (each also with N measurements) by
drawing N data points at random with replacement from the original data
set. We then compute the average flux in each data set, sort the values, and
obtain confidence intervals for the actual flux. The assumption required to
make this method valid is that the measurements extend over a time period
that is several times greater than the largest time difference for which a
significant autocorrelation exists.

Time required to reach steady state

For complex systems, it is difficult to obtain an a priori estimate of Tr, the
time required to reach steady state. Instead, we compute the autocorrelation
function of the flux output and assume that T; is equal to the largest time
difference for which a significant autocorrelation exists. This assumption is
based on Onsager's regression hypothesis, which states that the relaxation
of artificially imposed disturbances from steady state (such the particle
distribution at the beginning of a WEB simulation) follow the same laws as

spontaneous fluctuations from steady state (Chandler, 1987). The sample
autocorrelations for a series of N flux values are given by

IN ( J)(Ji-k J)
N i=k+1I

Ok- (3)
NN-k N (J J)2

=1

1N
=N2Ji (4)

i=l

To find out whether a measured Pk is statistically significant, we adopt the
null hypothesis that there are no autocorrelations whatsoever and generate
1000 artificial data sets using the Monte Carlo bootstrap method as above.
We then apply Eq. 4 with k = 1 to these data sets and sort the resulting
values of Pi by ascending order. If p, from the real data set is greater than
the average of the 975th and 976th values from the artificial data sets or

less than the average of the 25th and 26th values, then it is considered
significant, because the chance of obtaining such a value purely by chance
from an uncorrelated signal is less than 5%. If Pi is found to be significant,
then the same test is made for P2 and so on, until the autocorrelations are

no longer significant. The time difference represented by the value of k for
the last significant p, is our estimate of Tr. Thus, to eliminate effects from
the start-up, the first k values of the flux are eliminated from the compu-

tation of the median and confidence intervals mentioned above.

region, on the other hand, would be complex enough that a simulation
method, such as WEB dynamics, would be required.

If it were possible to carry out simultaneously a numerical solution in
the first region with a simulation in the second, considerable savings in
computer time would result versus a simulation in the entire configuration
space. First of all, stepping a continuum-based numerical scheme forward
in time would take much less computer time than maintaining many more
copies of the system. Also, a large length scale could pose serious limita-
tions because of the scaling of the relaxation time with the length scale.
However, a continuum numerical solution could be utilized in such a
manner that this problem would be mitigated. Finally, not as much memory
would be required if fewer system copies could be used. An example of
coupling WEB dynamics with a very simple continuum solution is given in
the protein-protein association model discussed below.

Application to bimolecular systems

Formulating the general problem in terms of a probability distribution
function is appropriate for studying systems composed of one molecule.
However, for studying reactions involving more than one molecule, this is
not appropriate; the problem must be formulated in terms of molecular
distribution functions (McQuarrie, 1976). We consider in this paper a
diffusion-limited, irreversible bimolecular reaction

A+B -> C (5)
We assume that both A and B are very dilute, such that individual mole-
cules of the same type do not compete for molecules of the other type. We
further assume that both types are uniformly distributed throughout space,
and that the distribution of molecular orientations and internal coordinates
are independent of the position in space. Following the notation of Lee and
Karplus (1986), we consider NA molecules of A and NB molecules of B.
The positions of an A molecule and a B molecule in space are rA and rB,
respectively; the rotational coordinates are QA and Q1B and any relevant
intramolecular coordinates are qA and qB. We define PAi(Bj)(rA, "A' qA,
tIrB, QB, qB) to be the conditional probability density of the ith molecule
of A having the coordinates rA, QA, and qA at time t, given that the jth
molecule of B has coordinates rB, QB, and qB at that same time. We also
define a conditional concentration of A:

NA

OA(Bj) E PAi(Bj) (6)

Because of the uniformity assumption, we can make the following identi-
fication:

4DA(Bj)(rA. nA. qIA, tIrB-, QB, qB)
= (A(B)(5TB(rA rB), B ° QA qA, qB, t) (7)

where gB denotes the transformation achieved by rotating the vector using
rotation QB and o denotes the result of two successive rotations; 41A(B) is
a more general conditional concentration. Finally, the A-B particle distri-
bution function (PDF) is defined as

Interface with continuum description
In many cases, it might be possible to divide the configuration space into
two regions. In the first region, it would be possible to represent the
probability distribution in a region of the configuration space as a contin-
uum rather than by discrete particles; instead of a simulation, an analytical
or numerical (i.e., finite difference, finite element, etc.) solution to the
governing Fokker-Planck diffusion equation would be used (Cartling,
1989). This could come about because the spatial dependence of the
potential energy and diffusion matrix might be very simple in that region
(Smoluchowski, 1917), or because the probability distribution function
itself might have a simple structure, such as separability, allowing many

coordinates to be lumped together (Grabert et al., 1980). The second

PAB(r, Q, qA, qB) [A] (8)

where [A] is the bulk concentration of A; r and fQ are the relative position
and orientation of an A molecule with respect to a B molecule. The PDF
obeys the same diffusion equation as does the probability density of
particles in the configuration space representing one A molecule and one B
molecule. A product surface can still be defined as before, representing the
relative placement of the molecules and the arrangements of the internal
coordinates required for reaction. However, pAB does not integrate to unity,
and no reactant surface can be defined; rather, the fact that pAB -> 1 as Irl
- is used as a boundary condition. WEB dynamics can be applied with
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no changes in the general method; the particles are now considered to be
packets of concentration rather than probability. The second-order rate
constant can be obtained by measuring the flux across the product surface
(Eq. 42). As described in the example below, the simulation region is the
region of configuration space in which the molecules are close, while the
continuum region is the region in which the molecules are widely sepa-
rated.

Energy barrier

The first system to which the WEB dynamics method is applied is a l-D
system with a force and diffusivity that are constant over the simulation
domain. The system starts at z = 0 and ends its journey when it reaches z
= 1; it is not allowed to go past z = 0 in the negative direction. The units
are chosen so that the diffusivity and kT are equal to 1. The force, F, is
equal to -15.76 and pushes the system toward z = 0. The value -15.76
is chosen to make a connection with the model of protein-protein associ-
ation described below. The quantity of interest is the mean time, Tmp, for
the system to move from 0 to 1, and the efficiency of WEB dynamics for
computing this quantity is compared to that of the MPT method.

Before the WEB dynamics simulations, bins were generated by starting
100 particles at z = 0 and following the procedure described in Appendix
C. The time step size At used in this stage and in the subsequent simula-
tions was chosen to be 0.0001 time units for z < 0.9 and 0.00001 time units
for z > 0.9 (Perhaps a larger time step could have been used, but it would
not have changed the comparison between the two methods.) The bin
generation algorithm resulted in 122 bins; repeated application of this
procedure using different sequences of random numbers produced similar
bin numbers. Simulations were run with 2,4,8,16, and 32 particles per bin.
In addition, simulations were run for smaller numbers of bins (61, 30, 15,
and 7), each with 2 particles per bin; the larger bins were generated from
the 122-bin configuration by removing alternate bin partitions. Each sim-
ulation was given a "budget" of 160,000,000 particle moves. During each
simulation, the flux was accumulated and printed every 0.1 time units.
Significant autocorrelations were found for time differences of less than 0.3
time units, so the first three flux measurements were discarded. From the
remaining flux data, 1000 artificial data sets and their average fluxes were

generated using the bootstrap method and were sorted into ascending
numerical order. The median was computed as the average of the 500th and
501th flux values; the lower confidence interval bound was computed as
the average of the 25th and 26th values, and the upper confidence interval
bound was computed as the average of the 975th and 976th values.

Protein-protein association model
The protein-protein association model is the simple spherical model pre-
viously studied by Northrup and Erickson (1992). Both protein molecules
are represented by hard spheres with a radius of 18A. For a protein-protein
complex to be formed, the two spheres must not only be adjacent to each
other, but must be mutually oriented properly along all three axes. To
emulate the orientation requirements, each sphere has a set of four contact

points mounted in a 17 X 17A square arrangement tangent to the surface
(Fig. 3). Each point on one molecule has a partner on the other molecule,
and a reaction occurs when three of the four points are simultaneously
within 2 A of their partner. Northrup and Erickson also add a "docking
potential" to take into account intermolecular forces, which serve to ac-
celerate the reaction, but we omit it to demonstrate WEB dynamics'
usefulness for studying very infrequent events. The molecules diffuse in
water at 250C and cannot interpenetrate, but no other forces are included.

The connection with the 1-D example is established using probability
arguments. Northrup and Erickson have computed the probability of the
two adjacent molecules being in a reactive configuration, given random
orientations; the probability is 2 x 10-7, which corresponds to an entropy
decrease of -kT ln(2 x 10-7) = 15.42kT. We also compute the entropy
change associated with bringing the molecules together to a center-to-
center separation of 38A from a separation of 45A, which is the termination

FIGURE 3 Spherical protein model, front and side views. Sites are
represented by black dots.

radius of a hypothetical simulation described below under protein-protein
association model. This adds another entropy decrease of kT ln(45/38)2 =
0.34kT. (This entropy decrease differs from the result because of Finkel-
stein and Janin (1989), because the molecules are approaching from a fixed
distance in the simulation described below.) Together they add up to the
free-energy increase of 15.76kT studied in the 1-D example.

Short-cut simulation method

In the original study, the association kinetics were studied using the
Northrup-Allison-McCammon (NAM) (Northrup et al., 1984) method in
conjunction with Brownian dynamics. In the NAM method, the two mol-
ecules are started with random orientations at a center-to-center distance b.
Then, they are stepped forward in time using Brownian dynamics until they
either react or move a larger distance q apart. Many such trajectories are
generated, and the second-order rate constant is derived from the proba-
bility 83 of reaction versus attaining the larger separation. For this case, with
no forces, the rate constant is given by

k= 8irbg .. (9)

1- (1- )blq (10)

where 2)t = 1.36 x 10-6 cm2 sS-1 is the translational diffusivity of an
individual sphere. Ordinarily, the starting distance b must be large enough
that the forces between the molecules are centrosymmetric; in this case,
however, b only needs to be large enough to avoid the reaction condition.
The termination distance q must be large enough so that the steady-state
PDF at that distance is independent of orientation. The quantity 3,. is the
probability that the reaction would never occur if the trajectory were not
terminated at separation q; the expression for f3,. from Eq. 10 is a way of
correcting (8 to remove the effect of the termination radius. For this
particular case, many trajectories must be run to obtain narrow confidence
intervals on the rate constant, because so few of them result in reaction.
Thus, Northrup and Erickson were able to report only one significant figure
for this rate constant due to computer time limitations. Because we want a
more precise and independent verification of the WEB dynamics, we have
also modeled this system using a method similar to the NAM method.
However, we take advantage of the absence of forces and the isotropy of
the spheres, and use a shortcut method to generate trajectories.

To carry out the shortcut NAM simulation, we imagine the origin of the
coordinate system to be located at the center of one of the molecules. The
coordinate axes are given a fixed orientation in space, though, so that the
center molecule can rotate around the origin. Thus, from the simulation's
point of view, the other molecule appears to move with a diffusion
coefficient of 226t,while the center of the stationary molecule appears to be
fixed.

For most configurations, it is possible to combine the effect of many
Brownian dynamics steps into one large step by using the procedure of
Zheng and Chiew (ZC) (1988). A sphere is constructed, which is centered
on the mobile molecule; we call it an R sphere. A point on the surface is
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selected at random, and the center of the mobile molecule is moved to that
point. The only physical limitation on the radius R of the R sphere is that
no part of the stationary molecule may lie within it; other limitations are
imposed by the algorithm described below. Physically, this step represents
the escape of the mobile molecule from the R sphere. Because there are no
forces and the molecules are isotropic, this is a legitimate method for
generating trajectories, and it is much less time-consuming than generating
detailed Brownian trajectories.

During the shortcut NAM algorithm, it is necessary to keep track of the
physical time spent during ZC moves. During each move, the algorithm
computes the physical time tR required to move from the center to the
surface of the sphere. If we define a dimensionless time T= 2tR26yR2, then
the probability distribution of T is given by (Zheng & Chiew, 1988)

P(T) = 2 (-1) n-In22 exp(-n2#) (1T)
n=1

The quantity T is drawn from this distribution, which is computed and
stored beforehand, and then tR is computed.

Unlike the problem considered by Zheng and Chiew, the molecules also
rotate while the mobile molecule is translating, so their changes in orien-
tations during their "flying leaps" must be computed as well. It is not
always necessary to compute the orientation changes after each ZC move;
the orientations can be updated less frequently, as described below. For
each ZC move between successive orientation updates, the escape times tR
are computed and summed to get the total time tu between updates. When
the update is needed, the angles of the rotations undergone by the mole-
cules are drawn from a pre-computed distribution according to tu. Any
rotation can be defined in terms of an axis and angle of rotation. For this
problem, it is most convenient to work in terms of the quantity a =

sin(0/2), where 4 is the angle of rotation about the given axis (Saletan and
Cromer, 1971). (This is equivalent to using Cayley-Klein parameters
(Goldstein, 1980) to represent the rotation). Because of the isotropy of the
molecules and lack of torques, all rotation axes are equally likely, so only
a needs to be determined. It is drawn from a distribution P(aIlt), which is
computed beforehand by running an auxilliary simulation (see Appendix
D). This distribution is peaked at a = 0 for small values of tu and spreads
out for larger values. The axis of rotation is then selected at random, and
the molecule is rotated. This step is carried out separately for the mobile
molecule and the stationary molecule.

When the molecules are close to reacting, however, it is no longer
possible to use the ZC algorithm; the molecules must be moved using
Brownian dynamics. The mobile particle is translated according to the
formula

j= X4uItAW, (12)

where xi is the change in position along the i-axis (i
particles are rotated according to the formula

x, y, z). Both

A(Pi = V>/r W i (13)

where Ao4 is a small rotation about the i-axis (i = x, y, z) and glr= 3.16
X 107 sec- is the rotational diffusivity. The small rotations are
accumulated using rotation matrices (Nambi et al., 1991). The time step
size is varied according to how close the molecules are to reacting. The
maximum time step size is 2.38 ps (this is equal to 0.0001 x (18A)2I@,)
and the minimum time step size is 0.0238 ps. In a configuration, there
are four distances between the paired sites; we define (j to be the
ith-smallest such distance. A trial size for the time step, in units of
picoseconds, is computed as

At (ps) = 0.0136(C1(A) - 2.0)2 (14)

unless C, is less than 2 A, in which case At is given its minimum value. If
this time step size goes over the maximum value or under the minimum
value, then it is given the maximum or minimum value, respectively. The
reaction criterion, of course, is that 6 be less than 2 A.

The radius b is chosen to have the smallest possible value, 38A, and the
outer radius q is given the value 360A. The trajectory of the mobile
molecule is started at a random spot on the b surface centered at the
stationary molecule, and both molecules are given random orientations at
the outset. This random orientation is computed first by randomly choosing
an axis of rotation, all axes being equally likely. Next, the rotation angle 4
is chosen from the probability distribution

1
-I- cosGk)) (15)

with 4 ranging from -T to iT, using the rejection method (Press et al.,
1988). This is the proper procedure for generating an equilibrium distri-
bution of orientations in the absence of forces (Hamermesh, 1989). We also
define two other radii near the b-radius: b, which is slightly larger than b,
and b2, which is slightly larger than b,. For this example we use b=
38.72A and b2 = 39.44A.

For the shortcut NAM method, we consider three different simulation
regimes. When the center of the mobile molecule lies outside the b2
surface, the ZC algorithm is used. The R sphere is constructed to be tangent
to the b surface but not containing the stationary molecule. This move is
repeated until the mobile molecule either lands inside the b, surface or
outside the q surface. If the mobile molecule lands outside the q surface,
then the trajectory is terminated with a probability 1- br, where r is the
distance between the molecule centers. This is the probability that the
mobile particle will never return to the b surface (Northrup et al., 1984).
Otherwise, it is restarted on the b surface, again with random orientations
for both molecules (Fig. 4). This restarting of the trajectory is very similar
in spirit to the method of Luty et al. (1992). Because the mobile molecule
does not go inside the b-surface at this stage, no reactions can occur.

If the mobile molecule lands inside the b, surface, then the rotations are
updated and ;3 is computed. If _3 is less than a threshold value t (see
Appendix D), then the ZC moves are continued, except that the R sphere
is chosen to be tangent either to the sphere of excluded volume (radius of
36A) or to the b2 sphere, whichever one is closer. If the mobile molecule
lands outside the b, radius, then the system is again in the first simulation
regime and the ZC moves are performed according to the previous para-
graph. Allowing the molecules to collide creates problems with the ZC
method because the steps become smaller and smaller as they approach. To
overcome this, when the molecules are very close, the R sphere is chosen
to be tangent to the b2 surface, and the center of the mobile molecule is
placed at random on the resulting approximate hemispherical surface,
computing the escape time as usual. This helps to "kick" the molecules
away from each other so that they do not become "stuck." As with the first
regime, we assume that no reaction can take place while the system is in
this second regime. Because C3 is so large, the chance of a reaction
occurring before the mobile molecule moves beyond the bt surface is very
small.

If the mobile molecule lands inside the b, surface as before, but the
value of C3 is now less than the threshold value Ct then the molecules are
moved using Brownian dynamics. The reaction criterion is tested at each
step. This is continued until either a reaction occurs or the mobile molecule
escapes beyond the b, surface.

The probability of reaction versus escape is computed for many trajec-
tories. For this variation on the NAM method, the probability is f3,. in Eq.
9. From Eq. 9 the second-order rate constant k is computed, and the width
of the 95% confidence interval is computed using the properties of the
binomial distribution from

Ak = 327i2tb Nt
where N, is the number of trajectories generated.

(16)

Weighted-ensemble method

To carry out the WEB dynamics simulation on the protein-protein associ-
ation model, it is necessary to define two regions of configuration space: an
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FIGURE 4 ZC procedure. Center of one molecule
is started on b surface; dotted circles represent spheres
from which molecule escapes, and arrows show over-
all trajectory to termination.

inner region in which simulations are performed, and an outer region in
which a continuum solution is carried out. The inner region is defined by
configurations in which the centers of the squares of sites on both mole-
cules, or site centers, are separated by a distance of <9A. The outer region
is the rest of the configuration space. In addition, a subregion of the inner
region, the interface region, defined by configurations with the site centers
separated by a distance between 8.1 and 9A, is included for matching the
simulation and the continuum solution. The same rule (see Eq. 14) is used
for choosing the size of the time step, and the molecules are moved
according to the same Brownian dynamics algorithm. The continuum
solution adopted here is very simple; we assume that the steady-state PDF
in the interface and outer regions is identical to the equilibrium PDF in the
absence of reaction. This is a good approximation, because the equilibrium
PDF is barely perturbed by the very infrequent reaction events.

Before setting up bins and performing the simulation, it is necessary to
determine the equilibrium population X of the inner region, defined by

= j PAB(r, Q)dr dQ (17)
Jv

where the integration extends over the inner region. We call this
quantity a "population," for want of a better word, because it is not
really a probability or indicative of the physical concentration in the test
tube. If the two molecules could interpenetrate, the population would be
numerically equal to the volume of a 9A-radius sphere, which describes
the allowable distances between the site centers. However, the mole-
cules cannot interpenetrate, so the actual accessible volume of config-
uration space and the population are much smaller. The fraction of
accessible volume is computed by generating many random configura-
tions with the site centers <9A apart and counting those in which the
molecules do not collide. The configurations are generated by placing
the site center of one molecule at the origin, placing the site center of
the other molecule randomly inside a 9A sphere centered at the origin,
and giving random orientations about the site centers to both molecules.
A collision is determined by the center-to-center distance; a distance
<36A constitutes a collision. The population is then computed as the
product of the sphere volume and the fraction of noncolliding config-
urations. The equilibrium population of the interface region is deter-
mined by counting the acceptable configurations that land in the inter-

face region. We generated 100,000 configurations; the fraction of
acceptable configurations was 0.1002, and the fraction of configura-
tions that were both acceptable and within the interface region was
0.0339.

To generate the bins, the systems are started on the very edge of the
inner region. The site center of one molecule is placed exactly 9A from
the site center of the other molecule; both molecules are given random
orientations; and the acceptable configurations, with no collisions, are
kept. The reaction coordinate used throughout the WEB dynamics
procedure is ; = C3 as defined above. The bin-building procedure (see
Appendix C) was performed with 100 system copies; the resulting
number of bins was 44.

Because the continuum solution is so simple, the procedure for match-
ing the simulation and continuum regions is straightforward. At the end of
each time step during the simulation, the systems that are in the interface
region are deleted. Then, the same number of systems, plus one, are created
in the interface region and distributed at random, by generating configu-
rations and keeping the acceptable ones as described above. If there are no
systems in the interface region at the end of the time step, then one system
is generated. The value of the equilibrium population of the interface
region is evenly divided among the weights of the new systems. We need
to pay attention to the interface region only; the outer region is ignored in
the simulation, and any move taking the system into the outer region is
rejected. Assuming a constant value for the continuum solution greatly
reduces the time required to reach steady-state as well as reducing the
required number of system copies.

The WEB dynamics simulation was performed with 2, 4, 8, 16, and 32
systems per bin, for an average of 88, 176, 352, 704, and 1408 system
copies, respectively. The systems were evenly distributed with equal
weights inside the inner region, and their weights added up to the equilib-
rium population of the inner region. The simulation for the first two cases
was run for a total of 1,000,000 time steps/system, or 2,380 ns based on the
largest time step possible. The simulation for the next two cases was run for
half that time, or 500,000 time steps/system, and the last case was run for
250,000 time steps/system. For all simulations, the flux was accumulated
and output every 1000 time steps. The bootstrap Monte Carlo method was
used to analyze the flux data; we used the same procedure as was used for
the I-D model. For all cases, the autocorrelation was significant only to k
= 2, (corresponding to T; = 4.76/ps), so the first two flux values were
excluded from the analysis.
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RESULTS

Energy barrier

The computed MPTs and their 95% confidence intervals
for the 1-D case are shown in Fig. 5. It can be seen that
the confidence intervals become more narrow as the
number of system copies increases. The analytical solu-
tion is shown as a straight line for comparison. The mean

times from the WEB dynamics method tend to be a bit
higher than the analytical solution, probably because of
the finite size of the time step near the barrier top (Lamm
and Schulten, 1982).

For this simple system, it is possible to calculate an

analytical solution not only for T, but also for the efficiency
of the MPT method. Thus, it is not necessary to actually run

a MPT simulation for the purposes of this study. To obtain
the solution for T(0), we note that the function T(z), which
is the mean time to go from z to 1, is the solution of the
differential equation and boundary conditions (Gardiner,
1985)

the solution of the equation and boundary conditions
(Gardiner, 1985)

a2T2 aT2
AZ2 + F = -2T(z)

az

T2(1) = 0

(23)

(24)

aT2
, (0) = 0 (25)

For large negative F, solving this gives approximately

T2(0) = (26)
2e-2F
Fq

The variance about the mean is given by

VT = VT2r ( (0) = Tmp (27)
If the MPT method is carried out and a large number, Nt, of
trajectories are generated from beginning to end, then the
width of the 95% confidence interval is

d2T dT
dZ+F -Z=-1 (18)
dz2+ dz

T(1) = 0 (19)

dT

d(°)= 0 (20)

The solution to Eq. 20 is

e-F 1 e-FZ Z
T(Z) = F2 + F -F2 -F (21)

For such a large negative value of F, this gives approxi-
mately

e-F
Tmp-T(O)= F2 =28, 100 (22)

To evaluate the efficiency, it is necessary to compute the
second moment, T2(z), of passage times from z to 1. It is

4VT
/AT-= (28)

If the average time step size is At, then the total number of
time steps is NTmP/At; using Eq. 2 gives an efficiency of

At
1= 16Tmp (29)

It can be seen that if larger time steps can be taken, greater
efficiency results. For this problem, assuming that almost all
of the time steps taken have the larger value of 0.0001 time
units, the efficiency of the MPT method would be 2.22 X
10-10.
The efficiencies of the WEB dynamics method using the

different numbers of system copies are shown in Fig. 6, and
the efficiency of the MPT method is shown at the spot on
the far left where the number of system copies would be 1.
The efficiency increases with the number of systems, but
levels off and actually starts to decrease at larger numbers.
The efficiency of the WEB dynamics method for large
numbers is about 14,000 times greater than that of the MPT
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FIGURE 5 MPT computed by WEB dynamics using different numbers
of systems; same number of time steps are taken for each data point. Dotted
line is analytical solution.
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FIGURE 6 Efficiency of WEB dynamics for different numbers of sys-
tems (1-D system). Leftmost data point is efficiency of MPT approach.
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method. In other words, to obtain comparable results, it
would be necessary to use 14,000 times more computer time
with the MPT method than would be required for WEB
dynamics. The leveling-off effect is not well understood,
but probably arises from the trade-off between the reduction
in noise and the greater time required to move more system
copies.

Protein-protein association model

The shortcut NAM method was run with 10,000,000 trajec-
tories, of which 353 led to reaction. This gave a reaction rate
of 2.72 X 105 ± 0.29 X105 M-1 s- l. The results from the
WEB dynamics simulations are given in Fig. 7. The results
from the WEB dynamics are consistent with the result from
the shortcut NAM method given the uncertainties involved,
although the medians of the WEB results tend to be some-
what lower. This could be due to the approximations in the
shortcut NAM method. All of our results are over a factor of
2 greater than the results reported by Northrup and Erickson
(1992). Because they report only one significant figure and
do not report the size of the time step used, it is difficult to
compare our results with theirs. The reaction rate obtained
for any of these methods is quite sensitive to the size of the
time step; if a time step is too large, then reactive regions of
the configuration space can be skipped inadvertently, result-
ing in a lower measured rate. We used the same time step
sizes for both methods to ensure consistency. We should
point out that the purpose of the Northrup-Erickson study
was to obtain order-of-magnitude estimates for protein as-
sociation reactions, not to obtain accurate rate constants for
this particular model.
We do not compute the efficiency of the short-cut NAM

method, because it is not general enough to be useful for
real problems. It is possible to compute the efficiency if the
simulation is run instead as an ordinary NAM method, with
all Brownian dynamics steps taken. However, in the short-
cut method, we used a much larger termination radius than
a user of the ordinary NAM method would have used. For
the shortcut method, a large termination radius is used
because it barely increases the computer time required for
the simulation but results in higher reaction probabilities.

3

o 2.5

2

w 1.5
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c 1

X 0.5

1 10 100
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1000

For the ordinary NAM method, such a large radius would
increase the simulation time enormously and result in a very
small efficiency. Now, in the WEB dynamics runs, we
assume that the reactant PDF is not disturbed by the reaction
once the site centers are 9k apart; this corresponds approx-
imately to the condition that the molecule centers be 45A
apart. Therefore, we compare the efficiency of the WEB
with the efficiency that the NAM method would have if the
termination radius q were set at 45A instead of 360A.
We first find the value of ,B in Eq. 10 that would result.

Since b and q are given and f,3c, has been computed already,
Eq. 10 can be solved for 3, resulting in a value of 3.49 X
10-6. The next step is to find the average time of a trajec-
tory. Because a reaction event is so unlikely, this is essen-
tially an MPT problem in spherical coordinates, with a
starting position of b, an absorbing boundary at q, and an
impermeable boundary at a = 36A, the radius of excluded
volume. The mean time for escape, Tmp T(b) is computed
by solving the equation (Agmon, 1984)

-2]= 2 (30)

T(q) = 0 (31)

dT
-(a) = 0dr (32)

This gives

Tmp = T(b) = 12 1[q2 - b2] + g-' a3-- ]

= 1.21 ns (33)

Because it is ,B that is directly computed by the ordinary
NAM method, the confidence interval width is computed by

Ak =
327itb
1-bqbl (34)

Furthermore, we assume that almost all of the time steps
taken are with the maximum size 2.38 ps described above.
The mean escape time is used to compute the number of
time steps, and the expressions from Eqs. 9, 10, and 34 are
plugged into Eq. 2 to give the following expression for the
efficiency:

I,= (4 iP/N)2(NtTmp)] 1

10000

FIGURE 7 Rate-constants (M-1 s-1) from WEB dynamics simulation
on protein-protein association model. Results from the shortcut NAM
method are shown at the far left, corresponding to one system.

- ltmp =6.69X 10-10

(35)

The efficiencies of the WEB dynamics method and the
hypothetical NAM method are shown in Fig. 8. For this
particular problem, the best case of the WEB dynamics
method is -1600 times more efficient than the NAM
method.
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FIGURE 8 Efficiencies of the WEB dynamics method and the NAM
method. The efficiency of the NAM method is shown at the far left,
corresponding to one system.

DISCUSSION

The WE method, used in conjunction with Brownian dy-
namics, is an efficient simulation method for computing rate
constants of infrequent events. It has been applied to a

simple 1-D model of an energy barrier and was found to be
14,000 times more efficient than the MPT method. It has
also been applied successfully to a simple model of protein-
protein association and was found to be 1600 times more

efficient than the NAM method. Indeed, it appears that the
efficiency plateau (Fig. 8) for the bimolecular model has not
been reached. Also, very high efficiencies relative to the
NAM method are obtained even for more modest numbers
of system copies.

These two problems have free-energy barriers of approx-

imately the same height. The barrier of the 1-D problem is
an energy barrier, whereas the barrier of the protein-protein
association model is an entropy barrier in several dimen-
sions. However, the efficiencies are of the same order of
magnitude, so it does not appear that the increase in dimen-
sionality by the bimolecular problem over the 1-D problem
seriously hinders the efficiency of the WEB dynamics
method.
Of course, the large increase in efficiency for this model

is due to the very small chance of a reactive encounter; for
reactions that proceed at a faster rate (e.g., if we had
included the docking potential of Northrup and Erickson),
the difference in efficiency probably would not be as great.
On the other hand, the utility of WEB dynamics would be
even greater for reactions with repulsive energy barriers.

Future work will include a more sophisticated numerical
treatment of the continuum region, which will allow the
simulation region to be made even smaller and will result in
higher efficiencies. We will be able to explore the role of
hydrodynamic interactions, especially in the cleft regions as

suggested by Brune and Kim (1994), despite the cost in-
curred by solving boundary integral equations (Kim and
Karrila, 1991) at each Brownian time step. The general
nature of the WE method will also allow for the efficient
linkage of Brownian dynamics simulations of intermolecu-
lar encounters with more detailed molecular dynamics sim-
ulations required for the reaction event itself (Luty et al.,
1993a).

We plan to disseminate the WEB dynamics method via
the Internet, by installing an example WEB dynamics (C)
program on our ftpserver ftp.engr.wisc.edu (in the directory
pub/stkim/microhydro/WEBD) as soon as a "user's guide"
is completed. A computer-aided visualization of the WEB
dynamics method has already been installed on the same

ftpserver, as described in Appendix E.
Computer memory is the limiting resource in the WEB

dynamics algorithm, especially when we go to problems
with many degrees of freedom, e.g., multiple reacting spe-

cies and more elaborate models of proteins that possess
internal degrees of freedom. In the current computational
landscape, parallel computers offer one pathway to large
amounts of memory (on the order of gigabytes on current
machines and terabytes on machines of the next generation),
albeit distributed over many processing nodes. This raises
an intriguing avenue for future work. WEB dynamics map

naturally onto the "message passing" programming model
for parallel computing. We first assign bins to different
processors (typically, we will have more bins than proces-

sors, so each processor will handle multiple bins). We then
perform Brownian dynamics simulations within each pro-

cessor; particles crossing boundaries between bins residing
on different processors activate interprocessor messages.
The challenge is to apply WEB dynamics to a large simu-
lation arising from realistic protein models. In the computer
architecture community, there is great interest in designing
cache-coherent, shared-memory computers in which the
physical memory is actually distributed over many proces-

sors, e.g., (Hill et al., 1993, Lenoski et al., 1992). Shared-
memory programming models offer a more supportive en-

vironment for parallel algorithm development. We believe
that the WEB dynamics algorithm provides an ideal test for
such advanced programming models, and we plan to vali-
date this hypothesis by comparing message passing and
shared memory versions of the algorithm, along the lines of
Traenkle et al., (1995).

APPENDIX A

Removal of particles

Suppose we have a collection of N particles at positions xi and weights pi
where i = 1 to N. If we consider t = 0 to be the present, then this sums up

our present knowledge of the system; namely, that the probability of it
actually being at xl is pi, the probability of it being at x2 is P2, and so on.

The actual state of the system, unknown to us, is denoted by i*.
Next, we suppose that there exists an agent who knows what i* is and

to whom we can direct questions. We decide to ask the following question
about states 1 and 2: Which of these two states can we definitely eliminate
from consideration? If i* = 2, then the agent must answer 1, and if i* =
1, then the answer must be 2. If neither state is the actual state of the
system, then the agent is free to give either answer. We assume, in this
case, that the agent tells us to eliminate state 1 with probability P2/(P1 + P2)
or to eliminate state 2 with probability P,l(P, + P2). So, from the agent's
viewpoint there are four cases: 1) state 1 is eliminated because the system
actually resides in state 2; this occurs with probability P2; 2) state 2 is
eliminated because the system actually resides in state 1; this occurs with
probability p1; 3) the system resides in neither state 1 or 2, and state 1 is
chosen to be eliminated; this occurs with probability (I - PI - P2)P2/(PI

.1 .
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+ P2); 4) same as in 3), but state 2 is chosen to be eliminated; this occurs
with probability (1 -P -P2)PA/PI + P2). It can be seen that the overall
probability of state 1 being eliminated is equal to P2/PI + P2), and the
probability of 2 being eliminated is Pl/(Pi + P2)-
We now define several probabilities:

* p(i* = i)-a priori probability that the system actually resides in state
i; equal to pi

* p(tj)-a priori probability that system j will be eliminated
* p(i* = ilt j)-probability that the system actually resides in state i,

given that system j is the one eliminated
* p(tjli* = i)-probability that state j will be eliminated, given that the

system actually resides in state i. We already know that p(t li* = 1)
0, p(tlIi* = 2) = 1, and p(llIi* = k) = P2/PI + P2), where k > 2.

Finally, suppose that we have made our inquiry and the agent tells us to
eliminate state 1. Now that we have additional information, we must
reassign weights to the states, or particles, because our knowledge of the
probabilities has changed. This updating of the information is done by
means of Bayes' theorem:

p(i* = ilti) =p(tli* = i)p(i* = i)Ip(tl) (36)

Plugging in the probabilities on the right-hand side, we see that

p(i* = 1tl) =0 (37)

p(i* = 21t1) = p, + P2 (38)

p(i*=k1t1)=Pk (k>2) (39)
This is exactly analogous to the procedure above; we decide to eliminate
particle 1 and transfer its weight to particle 2, while keeping the weights of
the other particles unchanged. (If the agent had told us to eliminate state 2,
we could have performed the same analysis, with a symmetrical result.) If
we so desire, we can now ask the same question about states 2 and 3; it can
be seen that an inquiry about 1 and 2 followed by an inquiry about the
survivor (1 or 2) and 3 is equivalent to one inquiry about 1, 2, and 3
together. By inductive reasoning, we can see that any number of particles
can be combined in this fashion without violating any rules of probability.
So, when we eliminate particles, we do not destroy any information.
Instead, we force the algorithm to make a more firm commitment about the
actual state of the system.

solving the equation, subject to two boundary conditions and the normal-
ization condition: that P = 0 on the product surface, that J(x) = kS(x)n on
the reactant surface, and that f P(x)dx = 1. On both surfaces, the unit
surface normals are denoted by n.

Now, suppose we have a collection of particles, each of which moves
according to its own time step. Let Atmax be the largest allowed time step
in the ensemble, and let a(x)Atmax be the time step size as a function of
position. The scale factor a is between 0 and 1. The particles are stepped
forward in time according to the formula

1 3V aAt + AWmax
n+ Xn kT ax max X

+ DaAtmax (43)ax

where AWmax is evaluated using the maximum time step. The steady-state
diffusion equation for the resulting probability distribution (x, t) is

aP a ^

at ax (44)

J=TDJaP+[a D aP+- *'[DaP^]J kT dax] JX ax
(45)

where the third and fourth terms in Eq. 45 are divergences of tensors. The
same boundary conditions apply for J, but we have not yet specified a
normalization condition. The next question to be answered is that of the
relation of P to P in Eq. 41. Intuitively, we would expect particles to "pile
up" in regions where the time step is smaller. Therefore, we guess that

P = Pla (46)

Plugging this into Eq. 45 and comparing it to Eq. 41 shows that j = J, and
Eq. 45, along with both boundary conditions, is satisfied. Furthermore, the
value of k is the same for both cases, so the measured reactive flux should
be correct. The normalization condition is slightly different:

IaPdx= 1

APPENDIX B

Use of variable time steps

To justify using different time steps for different systems, we note that the
distribution P(x, t) of a collection of particles that move according to Eq.
1, all using the same At, is given by (Gardiner, 1985)

aP a
a.

At Ax
(40)

iav api
JkT ax ax (41)

The vector J is the flux of probability. Let us also denote by S(x) the
probability distribution, defined on the reactant surface, of the placement of
newly generated particles. The reaction rate constant is given formally by

k = IJss ndS (42)
JSP

This is a surface integral over the product surface. The steady-state flux,
J.s, is obtained formally by setting the time derivative in Eq. 41 to 0 and

(47)

At each step of such a simulation, the particle weights should be rescaled
by the same factor to maintain this normalization condition. All subsequent
WEB dynamics simulations follow this procedure of moving each particle
according to its own time step.

APPENDIX C

Bin placement

Perhaps the most crucial implementation decision is the total number of
system copies to be used. Using more system copies should increase the
degree of sampling and reduce noise in the flux, but would take more
time. In addition, for systems with many degrees of freedom, memory
limitations would be an issue. The next decision is that of bin place-
ment. The bins should be small enough so that they effectively bridge
regions of differing probability densities; where the density is decreas-
ing most rapidly, we would expect to construct the most bins. These two
decisions are coupled by the desired number of systems per bin. If there
are fewer systems per bin, this allows more bins and hence better
bridging of different regions, but then the weights of the particles might
fluctuate more. This dilemma is resolved by an adaptive bin scheme
described below. The final decision is the length of the overall simu-
lation, which depends on the desired precision, and the desired start-up
time to ensure attainment of steady state.
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We have settled upon the following procedure for bin placement. The
first bin is constructed at the reactant end of the reaction coordinate, with
one boundary at the reactant surface. A large number, N, of equally
weighted systems (perhaps the number to be used in the WEB dynamics
simulation itself) are placed on the boundary. They are all stepped forward
in time by one time step, and sorted in order of reaction coordinate value.
Then, we compute the value of the reaction coordinate, which evenly
divides the set of systems, 0.5 * (;N/2 + CNt2+1) where Ci is the reaction
coordinate of the ith systems; this becomes the upper boundary of the first
bin and the lower boundary of the second bin. (We use "upper" and
"lower" to mean toward and away from the free energy barrier, respec-
tively.) The N/2 systems that are still below the new boundary are deleted,
and the other N12 particles are each split into two particles, getting back N
systems. This set of steps is repeated, with the new dividing value becom-
ing the upper boundary of the second bin, and so on (Fig. 9).

Eventually the collection of systems approaches the product surface,
and the procedure is terminated when more than half of the systems cross
the product surface during a time step. The product surface becomes the
upper boundary of the final bin. While the systems are climbing a steep
slope of a barrier, they can slide back downhill and the dividing value can
be actually lower than the previously computed boundary. During the
procedure, this is temporarily ignored, because the systems go uphill in the
long run. After the bin boundaries are constructed, however, the boundary
values are sorted by value to avoid "inside-out" bins. This results in a
denser collection of bins where the systems struggle uphill. The overall
procedure spaces the bins in such a way that a system has, very roughly, a
50% chance of moving uphill to the next bin during a time step. This
ensures a steady flow of probability up to the product surface. We note that
bins cluster where the probability decrease along the reaction coordinate is
the greatest. Given the time step size, the number of bins created is a fixed
number; but if fewer bins are desired, then bins can be merged by
eliminating their common boundaries.
We have adopted the idea of allowing as many bins as possible, with a

small number of particles in each bin. However, where this results in the
probability being too "clumpy," the bins are temporarily merged to smooth
out the particle weights. For many systems of interest, it can be expected
that the steady-state probability profile, in real life, is monotonically
decreasing as one approaches the produce surface. This does not hold at
each time step in the WEB dynamics simulation; indeed, several bins might
be empty at any one time. These empty bins, or bins that contain much less
probability than they would on average, should be merged with other,

a)

FIGURE 9 Steps in building a bin: a) systems start out
on reactant surface; b) systems are stepped forward; c)
systems are partitioned: surviving systems are duplicated;
d) procedure is repeated.

occupied bins during that particular time step. Before the particles are
rearranged, we start at the top bin (nearest the product surface) and call this
the center bin of the first merged bin. Then, the probability in the next-
highest bin is computed; if its contained probability is greater than that in
the top bin, then this bin becomes the center of the next merged bin; the top
bin forms a bin by itself. Otherwise, if the next-highest bin has a smaller
probability, due to a fluctuation, then we keep going to lower bins until we
reach one containing a greater probability than the top one; this one
becomes the center bin of the second merged bin. The bins lying in
between that were passed over due to their small populations are then
evenly divided between the first and second merged bins; in the case of an
odd number of bins, the extra one goes to the lower merged bin. This
process is repeated, starting at the center of the second merged bin; the
center of the third merged bin is the first bin to contain a greater probability
than the center of the second merged bin. If it should happen that the bin
probabilities are monotonically decreasing uphill at a particular time step,
then each bin is the center of a merged bin comprised only of its center bin.
The ideal number of systems contained by a merged bin is simply the sum
of the ideal system numbers of its component bins. The merged bins are
then treated like normal bins in carrying out the system rearrangements
described above. This procedure has the advantage in smoothing out
fluctuations in probability, while allowing probability to flow uphill easily
in sections where monotonicity is temporarily achieved (Fig. 10).

APPENDIX D

Auxilliary simulations for shortcut NAM method

Creating rotation distribution

The auxillary simulation was run by starting 10,000 spheres in the same
orientation and rotating them simultaneously according to the Brownian
dynamics algorithm in Eq. 13, using the maximum time step of 2.38 ps
described above. At various times the values of a were computed for each
sphere and sorted in ascending order. The lower bound of a was taken to
be 0, and the upper bound was taken to be the 99,900th value (the top 1%
of the values are treated as outliers). This interval was divided into 100
evenly spaced subintervals, and the values of a were distributed into these
intervals to build up a binned representation of the probability distribution
at that particular value of tu. This distribution of a was generated and stored

0 * b)

-i

c)
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FIGURE 10 Merged bins are indicated by brackets at bottom, center bins
are indicated by arrows.

at each time step for the first 11 time steps. After that, the next sampling
time was 0. 1tu time units into the future, where tu is the time of the present
sample. This caused the sampling times to be more widely spaced as time
increases, which was appropriate, because the rms value of a approxi-
mately follows an exponential decay to its final value (Huber, 1995). The
process was continued until the time reached 47.6 ns, after which it was
assumed that the rotations were completely randomized. The number of
samples obtained was 98. These 98 times, each with 100 values of prob-
ability for the intervals, make up the distribution P(a tout) used in the
shortcut simulation.

Computing threshold value for reaction coordinate

When taking large steps with the ZC algorithm, it is important that the
simulation not "parachute" directly into a reactive region of configuration
space. If the product surface were directly accessible to the ZC moves, then
many reaction events would be missed because the ZC move does not take
into account the local exploration necessary to actually find the product
surface. This is not a problem when the molecules are separated by a
distance greater than b, because the ZC moves land the molecules too far
away for reaction. Once the molecules are closer than b, and collisions are
allowed, the possibility for missing reaction events exists. However, when
;3 is large enough, the possibility of a reaction occurring before again
achieving a separation greater than b, is very small. As long as ;3 is large
enough, it is safe to take ZC steps.

An auxilliary Brownian dynamics simulation was run to find t. The
molecules were initially touching and in perfect alignment, so that all C,
were equal to 0. They were then stepped forward in time, using the usual
time step rule, until a separation of b2 was achieved. The value of p3 was
recorded. This was done 1000 times, after which the resulting values of C3
were sorted into ascending order. The 990th value of 3 was chosen to be
t. Thus, only about 1% of the reactions that occur are caused by systems
starting with both ;3> Ct and separation < b,, and failing to pass beyond
a separation of b, before reacting.

APPENDIX E

Visualization of WEB dynamics

The "big picture" for the WEB dynamics methodology described in this
paper can perhaps be seen most readily with computer-aided visualization
of the stochastic processes. To this end, six video sequences were com-
pressed in the MPEG format and placed on the Internet (ftpserver ftp.en-
gr.wisc.edu, directory pub/stkim/microhydro/mpeg). The files, named
clipl.mpg through clip6.mpg, illustrate the main points behind WEB
dynamics. These files may be viewed on most PCs or workstations with the
aid of an mpeg-player program. These are readily available as public
domain utilities on the Internet.
A short description of the sequences are as follows.

clipl.mpg A point in configuration space, with a 2-D energy surface.
Narrowing of the valley walls near the saddle point
represents an entropic barrier. Visualization of the stochastic
process. Very low probability of crossing the energy barrier,
therefore, many trajectories must be run to obtain accurate
statistics to estimate the reaction rate constant.

clip2.mpg The embarassingly parallel algorithm: parallel computing
helps, but not a whole lot. With N processors, we can
follow many systems. Note: the trajectories (as
represented by the particles) do not interact with each
other. We see a few at the higher energy levels, but still,
very few crossings. None during this window of
observation. The problem gets worse as the barrier height
increases.

clip3.mpg The WE method. The subspace orthogonal to the reaction
pathway is subdivided into slabs (bins). After a finite
number of steps, the particles in each bin are subdivided
or merged. This renormalization leads to an equal number
of particles in each bin; but now, particles carry different
weights of probability. The visualization shows this with a
red (high) to white (low) color scheme on a logarithmic
scale spanning 6 decades. Good statistics on crossing of
the energy barrier, but note that each white particle now
represents a very minute quantity of probability.

clip4.mpg Stochastic simulation over the entire configuration space
is inefficient. Where available, use a numerical method of
solution on the associated Fokker-Planck equation for the
probability density. The weighted ensemble Brownian
dynamics simulation can be merged with the FPE
solution, as shown in this sequence. Particles "emerge"
from under the "blanket" with the latter representing the
probability density function.

clip5.mpg Simulation proceeding as seen from real space. The
Northrup-Erickson (1992) model. Patches (little spheres)
must align for reaction to occur. No reactions during
window of observation.

clip6.mpg The same, but with WE method and merge with
numerical solution of FPE. One reactant reduced in size
for visualization purposes. Length of tail indicates
misalignment and required axis of rotation to induce
alignment. Color scheme represents probability scale as
before. Yellow (yolk-like) explosions represent reactions.
Many reactions observed, but must scale by lower
weights.
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