
BioMed CentralBMC Bioinformatics

ss
Open AcceMethodology article
Using hexamers to predict cis-regulatory motifs in Drosophila
Bob Y Chan* and Dennis Kibler

Address: School of Information and Computer Science, University of California, Irvine, Irvine, California, USA

Email: Bob Y Chan* - bobc@ics.uci.edu; Dennis Kibler - kibler@ics.uci.edu

* Corresponding author    

Abstract
Background: Cis-regulatory modules (CRMs) are short stretches of DNA that help regulate gene
expression in higher eukaryotes. They have been found up to 1 megabase away from the genes they
regulate and can be located upstream, downstream, and even within their target genes. Due to the
difficulty of finding CRMs using biological and computational techniques, even well-studied
regulatory systems may contain CRMs that have not yet been discovered.

Results: We present a simple, efficient method (HexDiff) based only on hexamer frequencies of
known CRMs and non-CRM sequence to predict novel CRMs in regulatory systems. On a data set
of 16 gap and pair-rule genes containing 52 known CRMs, predictions made by HexDiff had a higher
correlation with the known CRMs than several existing CRM prediction algorithms: Ahab, Cluster
Buster, MSCAN, MCAST, and LWF. After combining the results of the different algorithms, 10
putative CRMs were identified and are strong candidates for future study. The hexamers used by
HexDiff to distinguish between CRMs and non-CRM sequence were also analyzed and were shown
to be enriched in regulatory elements.

Conclusion: HexDiff provides an efficient and effective means for finding new CRMs based on
known CRMs, rather than known binding sites.

Background
The development of eukaryotic organisms is tightly regu-
lated by a variety of mechanisms. The initial step of regu-
lation is carried out by transcription factors interacting
with cis-regulatory sequences, also known as transcription
factor binding sites (TFBS). In eukaryotes, multiple TFBS
are often clustered together into cis-regulatory modules
(CRMs). The TFBS can be thought of as inputs into an
information processing element, with the output being
the level of expression of the gene controlled by the CRM
[1].

One of the major challenges for understanding eukaryotic
gene regulation is finding CRMs. There are two main types

of CRMs – promoters and enhancers. Promoters are
located immediately upstream of a gene's transcriptional
start site and often contain a variety of sequence signals
such as the TATA box, CCAAT box, and different TFBS.
These characteristics have been used in approaches for
finding promoters [2]. In contrast, enhancers do not share
these signals and operate in a manner that is relatively
independent of orientation or distance from their target
gene [3]. In fact, one enhancer, Dct, has been found
almost a megabase away from Sox9, the gene it regulates
[4]. Because of the lack of common signals and because
the search for enhancers cannot be limited to the few hun-
dred base pairs upstream of the transcriptional start site,
finding enhancers is a more difficult problem.
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Methods for predicting CRMs can be classified by the type
of information they use to make the predictions – known
binding sites of regulatory proteins, homologous
sequences, or known CRMs. Binding sites for the first type
of method are generally modeled using position weight
matrices (PWMs) or consensus sequences. These models
are used to search for statistically significant clusters of
predicted TFBS. Examples of methods based on binding
sites of multiple transcription factor proteins include one
developed for human skeletal muscle [5], a logistic regres-
sion analysis model for liver-specific transcription factors
[6], CIS-ANALYST [7], MCAST [8], Ahab [9], Stubb [10],
Cluster Buster [11], MSCAN [12], and EMCMODULE
[13]. Methods based on binding sites of single transcrip-
tion factors have also been developed – SCORE [14], Fly
Enhancer [15], and a method of searching for homotypic
clusters [16].

Methods based on homologous sequences assume that
areas of the DNA involved in regulating gene transcription
are under selective pressure and are therefore more likely
to be conserved than non-functional DNA [17]. These
methods can be categorized by whether they search for
conserved DNA by aligning homologous regions from
multiple species [18-20], homologous regions from two
species [21-24], or homologous regions from related
genes in a single species (also referred to as co-regulated
genes) [25-27].

Methods based on locations of known CRMs have been
rarer. Methods of this type tend to look for statistical prop-
erties of DNA sequence that distinguish CRMs from non-
regulatory DNA. One group has developed a statistical test
called the "fluffy-tail test" that looks for differences in
nucleotide composition, particularly in lists of words of
various lengths [28]. From the related field of promoter
prediction comes PromFind, an algorithm for finding pro-
moters that uses hexamer frequencies of known promot-
ers to search for DNA with similar frequencies [29].
Because PromFind was developed for promoters, the
author could assume that every sequence being tested
contained one promoter, and that the strand containing
the promoter was known – assumptions that are not true
for enhancers. Another recent algorithm developed to pre-
dict CRMs is based on the exhaustive analysis of local
word frequencies (LWF) [30]. Unlike PromFind where the
algorithm is based solely on hexamer words, the LWF
algorithm considers the pattern of word frequencies in a
sliding window.

While the LWF algorithm was shown to perform well at
the task of predicting CRMs [30], it is difficult to put a bio-
logical meaning to the results since the algorithm depends
on word frequencies, not on the words themselves. In
contrast, the PromFind algorithm generates lists of hex-
amers that are important for distinguishing promoters
from non-promoter sequences. In the paper describing

Table 1: Key aspects of HexDiff and other algorithms. The table shows the knowledge used and the parameters required by the 
different algorithms.

Algorithm Knowledge Used Parameters

HexDiff CRM Locations Number of hexamers in Hd
Window size
Window score threshold

Ahab PWMs Window size
Free energy cutoff
Order of background model

Cluster Buster PWMs Motif score threshold
Gap parameter
Cluster score threshold
Residue abundance range

MSCAN PWMs Motif score threshold
Window size
Minimum hits
Maximum hits

MCAST PWMs Motif score threshold
Maximum allowed distance between adjacent 
hits
Pseudocount weight

LWF CRM Locations String length
Number of mismatches
Detection window size
Maximum number of channels
Channels equalized
Profile cutoff
Peak width cutoff
Smoothing window
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PromFind, the author analyzes the hexamers used by the
algorithm for their CpG dinucleotide content and their
similarity to various known promoter signals such as the
Sp1, TATA-box, and CCAAT-box motifs [29]. This type of
analysis cannot be performed on the local word frequency
distributions of the LWF algorithm, due to the way it was
designed.

We developed the HexDiff algorithm to solve the same
problem as the LWF algorithm – predicting the location of
CRMs – while being as biologically meaningful as the
PromFind algorithm. The performance of HexDiff was
compared to the LWF algorithm and several other CRM
prediction programs using a common data set. The hex-
amers used by HexDiff were then examined to see if
known TFBS were recovered.

Results
Data set
The early development of the Drosophila embryo is well-
studied, both biologically and computationally. Data sets
detailing the locations of known CRMs have been pub-
lished by several groups [7,9,30,31], but we chose the one
compiled by Schroeder et al. as it clearly defined the regu-
latory networks involved. In their analysis, Schroeder et al.
examined 29 genes with gap and pair-rule patterns. How-
ever, only 16 of those genes were associated with known
CRMs [31]. Therefore, we focused our study on those 16
genes, which contained a total of 52 CRMs. Sequences for
the genes were obtained from the 4.1 Release of the Dro-
sophila genome and included the 20 kb upstream as well
as downstream of each gene [see Additional file 1]. Since

the known CRMs were provided as FASTA-formatted DNA
sequences, their positions relative to the extracted
sequences were confirmed using BLAST [see Additional
file 2].

The HexDiff algorithm
The HexDiff algorithm is designed to discriminate
between CRMs and non-CRM sequence by using hexamer
frequencies. For evaluation, we use the leave-one-out
cross-validation (LOOCV) methodology. In this case, 15
of the 16 sequences in the data set are used as a training
set and the 16th sequence is used as the test set. The process
is repeated 16 times; leaving out one sequence each time.
During training, hexamers that appear more frequently in
CRMs are selected. In order to predict CRMs in the test set
sequence, a window is slid across the sequence and the set
of selected hexamers (Hd) is used to calculate a score that
is used to predict whether each position is either CRM or
non-CRM sequence.

Performance comparison
The HexDiff algorithm was compared to five other CRM
prediction algorithms: Ahab, Cluster Buster, MSCAN,
MCAST, and LWF (see Table 1). The results for Ahab were
obtained from the supplementary files of Schroeder et al.,
while Cluster Buster, MSCAN, MCAST, and LWF are all
available as downloadable software or public web servers.
An important criterion for the inclusion of an algorithm
was that it accepted user-defined sequences and PWMs as
input. Ahab, Cluster Buster, MSCAN, and MCAST are
algorithms based on binding sites of known transcription
factors and were given the same set of nine PWMs for the

Table 2: Correlation between predicted and known CRMs. The performance of six different algorithms on a common data set is 
compared in this table. For each sequence, the Matthews correlation coefficient is calculated by checking whether each position is a 
TP, TN, FP, or FN and using the equation listed in the Methods section. The sum of the correlation coefficients gives a cumulative 
score for each algorithm on this data set.

Gene CRMs HexDiff Ahab Cluster Buster MSCAN MCAST LWF

btd 1 0.70 0.57 0.19 0.01 0.07 0.10
ems 3 0.00 0.00 -0.03 0.12 -0.01 -0.01
eve 6 0.55 0.63 0.65 0.50 0.41 0.06
fkh 1 -0.03 -0.02 -0.02 -0.04 -0.02 -0.01
ftz 5 0.40 0.28 0.28 0.07 0.16 0.08
gt 1 0.27 0.42 0.33 0.35 0.15 0.03
h 5 0.71 0.63 0.53 0.30 0.37 0.08
hb 2 0.35 0.63 0.39 0.34 0.24 0.04
hkb 1 0.51 0.00 -0.02 -0.02 -0.08 0.09
kni 3 0.55 0.55 0.39 0.37 0.23 -0.05
kr 3 0.43 0.00 0.77 0.20 0.11 -0.03
oc 2 0.70 -0.02 0.00 0.11 0.02 0.07
prd 7 0.01 -0.07 0.16 0.07 -0.04 0.05
run 6 0.27 0.16 0.08 0.08 0.02 0.07
slp1 3 -0.07 0.15 -0.04 0.00 0.07 0.01
tll 3 0.35 0.56 0.58 0.19 0.12 -0.04
Total 52 5.71 4.48 4.24 2.64 1.81 0.52
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transcription factors as described in Schroeder et al.: the
maternal factors Bicoid (Bcd), Hunchback (Hb), Caudal
(Cad), the Torso-response element (TorRE), and Stat92E
(D-Stat), and the gap factors Kruppel (Kr), Knirps (Kni),
Giant (Gt), and Tailless (Tll). LWF was given the same
positive and negative training sets as HexDiff. The default
parameters were used for Cluster Buster, MSCAN, MCAST,
and LWF. The complete list of predictions can be found in
the Additional materials section [see Additional file 3].

As shown in Table 2, each algorithm was assigned a cumu-
lative score, calculated by summing the Matthews correla-
tion coefficients for each of the sequences in the data set.
The predictions made by HexDiff have the highest corre-
lation with the known CRMs (5.71), followed by Ahab
(4.48) and Cluster Buster (4.24). An interesting result is
that although four of the six algorithms used the same
PWMs, their performance varied widely – from 1.81 to
4.48.

While the Matthews correlation coefficient was the pri-
mary performance measure for the six algorithms, a closer
look at two other measures offers more information about
the characteristics of the individual algorithms. Table 3
shows sensitivities and positive predictive values (PPVs)
for each of the algorithms. A known CRM was considered
recovered if the overlap between it and a predicted CRM
exceeded 50 bp.

One caveat about the PPVs in Table 3 is that they are not
true PPVs, but estimates of the true PPVs. This is due to the
fact that the 16 sequences in the data set may contain
more CRMs than the 52 that have been characterized so
far, which would mean that some of the predicted CRMs
that are labeled as false positives could actually be true
positives.

Predicted CRMs
Of the 104 predictions made by HexDiff, 36 overlapped
known CRMs by at least 50 bp, leaving 68 potential
CRMs. Some of these may have been false positives, so to

narrow down the candidates, the 68 potential CRMs were
compared to predictions made by Ahab, Cluster Buster,
MSCAN, MCAST, and LWF. 37 of the 68 matched predic-
tions made by at least one other method, while 18
matched predictions made by at least two other methods,
10 matched predictions made by at least three other meth-
ods, and 6 matched predictions made by at least four
other methods.

While our analysis was focused on the gap and pair-rule
regulatory networks, it's possible that some of the pre-
dicted CRMs are actually known CRMs from other regula-
tory networks involved in the early development of
Drosophila. Therefore, the list of 18 predicted CRMs was
compared to a more comprehensive compilation of 124
CRMs [32]. 8 of the 18 predicted CRMs matched CRMs
from the compilation, leaving 10 that do not correspond
to any known CRMs. Given the specificities of the individ-
ual methods and the breadth of approaches, it seems very
likely that some of the 18 predictions listed in Table 4
constitute novel CRMs.

Meaning of differential hexamers
One advantage of the HexDiff algorithm is that the set of
hexamers (Hd) used to distinguish between CRMs and
non-CRM sequence can be analyzed for further insights
into the mechanisms of gene regulation. Since the Hd hex-
amers were selected based on their overrepresentation in
CRMs relative to non-CRM sequence, it would be reason-
able to expect that some of the hexamers would be similar
to gap and pair-rule regulatory sites. Therefore, the top 80
Hd hexamers and their reverse complements were com-
pared to the list of binding sites used to build the 9 PWMs
from Schroeder et al [see Additional file 4]. In the 16
rounds of cross-validation, an average of 59.6 hexamers
was found within the binding sites.

Simulations were carried out to estimate the likelihood of
this result. 100,000 random sets of 80 hexamers and their
reverse complements were compared to the binding sites.
The probability of 59 or more hexamers being found

Table 3: Sensitivities and positive predictive values (PPVs) of HexDiff and other algorithms. A known CRM was considered recovered 
if a predicted CRM overlapped it by at least 50 bp. The PPVs in this table are italicized because they are estimates of the true PPVs. 
Without complete knowledge of all CRMs that are present in the 16 sequences, it is possible that some of the predicted CRMs that are 
labeled as false positives are actually true positives.

Algorithm CRMs Recovered Num CRMs Sensitivity TP/(TP + FN) True Positives CRMs Predicted PPV TP/(TP + FP)

HexDiff 36 52 69.23% 35 104 33.65%
Ahab 23 52 44.23% 20 35 57.14%
Cluster Buster 31 52 59.62% 23 88 26.14%
MSCAN 34 52 65.38% 42 226 18.58%
MCAST 43 52 82.69% 53 499 10.62%
LWF 27 52 51.92% 48 433 11.09%
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within the binding sites was 0.019, indicating that the
hexamers selected by HexDiff were enriched in binding
sites of known regulatory proteins.

A similar study was performed using regulatory sites
obtained from TRANSFAC [33], but the results were not
statistically significant. TRANSFAC contains binding
regions obtained through a variety of biological methods.
For instance, R02491 contains the following binding
region obtained using DNase I footprinting:
GACTTTATTGCAGCATCTTGAACAATCGTCGCAGTTT-
GGTAACAC. On average, TRANSFAC binding sites are
much longer than the binding sites used by Schroeder et al
.and are therefore probably much less specific. While the
TRANSFAC binding sites do contain regulatory DNA, it
seems that the signal is washed out by extraneous
sequence.

Discussion
The HexDiff algorithm is designed to solve the difficult
task of distinguishing CRMs from non-CRM sequence. It
is first trained on sequences containing known CRMs by
selecting hexamers that discriminate between the two cat-
egories. These hexamers are then applied to novel
sequences to search for predicted CRMs. The requirements
of the training process mean that HexDiff works best in a
well-defined regulatory system where some CRMs are
already known.

Using a data set of 16 sequences containing 52 CRMs
obtained from Schroeder et al., we compared the HexDiff

algorithm to five other algorithms: Ahab, Cluster Buster,
MSCAN, MCAST, and LWF. Hexdiff's predictions corre-
lated best with biological knowledge, and its sensitivity
and specificity were comparable to the other algorithms.
This result was encouraging considering that HexDiff is a
type of machine learning algorithm, which tend to do bet-
ter in problems where the items being classified are sepa-
rated into two roughly equal groups. In this case, the
CRMs made up just 9.36% of the total data set, with non-
CRM sequence making up the other 90.64%. Even with a
data set where the negative data outweighed the positive
data by a factor of 9, HexDiff still performed well.

While the HexDiff algorithm has a fairly high specificity in
isolation, it would still be prudent to compare its results
to the predictions made by other algorithms, considering
the time and effort required to biologically confirm a
computational prediction. The 18 CRMs listed in Table 4
were predicted by at least three algorithms and did not
match any of the 52 CRMs provided by Schroeder et al. A
comparison with a more comprehensive list of 124 CRMs
revealed that 8 of the 18 predicted CRMs corresponded to
known CRMs from other regulatory networks involved in
the early development of Drosophila. The 10 remaining
predicted CRMs are strong candidates for future study.

A further attempt to understand the meaning of the Hd
hexamers was made by comparing them to the known
binding sites used to generate the 9 PWMs provided by
Schroeder et al. Simulations showed that the number of
Hd hexamers found within the binding sites was signifi-

Table 4: Potential novel CRMs predicted by HexDiff and other algorithms. All of the predicted CRMs listed in this table were predicted 
by HexDiff and at least two other algorithms. The column labeled "Gene" lists the gene involved in the early development of 
Drosophila that is closest to the predicted CRM. The columns labeled 1–5 are the different algorithms whose predictions matched the 
CRMs predicted by HexDiff: 1 – Ahab, 2 – Cluster Buster, 3 – MSCAN, 4 – MCAST, and 5 – LWF. The predicted CRMs were also 
compared to a compilation of 124 CRMs [32] – matching CRMs are listed in the last column.

Gene Arm Begin End Length 1 2 3 4 5 Matched

btd X 9534921 9535192 271 * *
eve 2R 5492385 5493575 1190 * * eve_late2_mel
fkh 3R 24421705 24422385 680 * *
ftz 3R 2683060 2683406 346 * *
gt X 2268347 2270179 1832 * * *
gt X 2290228 2290685 457 * * * * * gt_23-bcd_mel
hb 3R 4503375 4503962 587 * * *
hb 3R 4519805 4520172 367 * *
kni 3L 20628230 20628504 274 * * * * kni_+1_mel
prd 2L 12080435 12082316 1881 * * * prd_bcd_mel
prd 2L 12089627 12089847 220 * * prd_1_mel
run X 20488169 20488643 474 * * * *
run X 20524260 20524722 462 * * * *
slp1 2L 3811050 3812092 1042 * *
slp1 2L 3822581 3823049 468 * *
slp1 2L 3824891 3825039 148 * * * * * slp_A-bcd_mel
slp1 2L 3833433 3834671 1238 * * * * slp2_-3_mel
tll 3R 26680559 26683175 2616 * * * tll_bcd_mel
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cantly more than would be expected of a randomly
selected set of hexamers of the same size. While this result
is not unexpected, it is a confirmation that we retrieved
the binding sites of relevant regulatory proteins using only
the locations of known CRMs.

While recovering the known binding sites is important, it
is important to note that they accounted for less than half
of the hexamers in the Hd sets. When 80 hexamers were
selected for Hd, their reverse complements would increase
the total number of hexamers to 160, barring palin-
dromes. And yet, the average number of hexamers that
were found within the known binding sites was 59.6, leav-
ing another 100 hexamers whose identities are unknown.
This result suggests that there are novel sequence features
besides the known binding sites that are important for
distinguishing between CRMs and non-CRM sequence.

Conclusion
One of the major questions in studying eukaryotic gene
regulation is how regulatory proteins with relatively
degenerate binding sequences can precisely regulate many
genes. The discovery of cis-regulatory modules, short
stretches of DNA that contain multiple binding sites for
multiple proteins, has provided at least a partial explana-
tion for the regulatory specificity observed in eukaryotes,
and motivated a search for ways to predict CRMs compu-
tationally.

We have developed a simple and effective algorithm for
predicting CRMs. In our study of the gap and pair-rule
genes in Drosophila melanogaster, the results of the HexDiff
algorithm correlated best with biological knowledge, and
the sensitivity and specificity of the algorithm were com-
parable to other algorithms. Our predictions were com-
pared to those made by other methods and resulted in a
list of 10 putative CRMs with strong computational sup-
port. Analysis of the Hd hexamers revealed that not only
were we rediscovering the known binding sites, but also
discovering new signals that distinguished between CRMs
and non-CRM sequence.

Methods
Differential hexamer frequency algorithm
The HexDiff algorithm is based on the idea of distinguish-
ing between two types of DNA sequence: CRMs, and non-
CRM sequence. In order to accomplish this task, a model
is built using sequences where the CRMs are known – the
training set. The training set is split into positive and neg-
ative training sets by consolidating all of the known CRMs
into a positive training set, and the remainder of the train-
ing set into a negative training set. On average, the ~1 Mb
training set is split into a ~50 kb positive training set and
a ~950 kb negative training set. The frequency of each hex-
amer h on both strands is then calculated for the positive

fp(h) and negative fn(h) training sets and used to calculate
a ratio, R(h).

The next step is to select hexamers that discriminate
between CRMs and non-CRM sequence. The hexamers
with the highest values for R(h) are then placed into Hd.
As a result of this selection process, Hd contains hexamers
that are much more common in CRMs than in non-CRM
sequence.

Once the hexamers for Hd are chosen, the final step is to
use them to classify each position in an unknown
sequence as either CRM or non-CRM sequence. A window
is slid across the unknown sequence 1 bp at a time. At
each position i, a score Si is calculated for the window by
increasing the score by the product of R(hd) and the
number of times that hexamer appeared n(hd) for each
hexamer from Hd:

Any positions where the window scores exceed a thresh-
old score are labeled as potential CRMs. As the shortest
known CRM in the data set was 66 bp, we filtered out any
predicted CRMs shorter than 50 bp. The entire process
takes less than 10 seconds per gene on an Athlon 64
3200+.

Evaluation of predictions
Because there are only 16 sequences in the data set,
LOOCV was used to assess the performance of the HexDiff
algorithm. In LOOCV, the first of the 16 sequences was
withheld from the data set and used as the test set. The
HexDiff algorithm was trained on the 15 remaining
sequences and predictions were made on the test set
sequence. Those predictions were then compared to the
locations of the known CRMs in the test set sequence. The
same process was repeated with the second sequence, etc.,
until each of the 16 sequences had been used as a test set.

The accuracy of the predictions for each sequence was
measured using the Matthews correlation coefficient,
which has been used extensively to evaluate the perform-
ance of various prediction algorithms [34]. It combines
both sensitivity and specificity into one measure and
relies on four values that satisfy TP + TN + FP + FN = N
(length of the sequence): TP (the number of base pairs
where known CRMs overlap with predicted CRMs), TN

R h
f h

f h
p

n
( )

( )

( )
=

S n h R hi d d
h Hd d

=
∈
∑ [ ( ) ( )]
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(the number of base pairs that are not in known CRMs or
predicted CRMs), FP (the number of base pairs where pre-
dicted CRMs did not overlap known CRMs), and FN (the
number of base pairs where known CRMs did not overlap
predicted CRMs). The Matthews correlation coefficient is
calculated as follows:

The Matthews correlation coefficient ranges from -1 to +1,
like the better-known Pearson correlation coefficient. A
value of 0 signifies that the prediction is equivalent to a
completely random prediction, while +1 signifies a perfect
prediction.

Choosing parameters
The HexDiff algorithm was designed so that the number
of parameters needed to be set by the user was minimized.
This reduced the complexity of the model and helped to
avoid overfitting. Overfitting is a problem often faced by
machine learning algorithms, where a model that is too
complex will not only learn the signal in the training set
but will also fit the noise, reducing the algorithm's per-
formance on the test set [35]. The three parameters
HexDiff does require are: the number of hexamers in Hd,
the size of the window that is slid across the sequence of
interest, and the threshold score that determines whether
each position is predicted as a CRM or not.

These values were chosen during LOOCV using an empir-
ical method. During each round of cross-validation, the
16 sequences were split into a 15-sequence training set
and a single-sequence test set. The HexDiff algorithm was
trained on the training set and its performance evaluated
on the training set, using various combinations of the
three parameters. The combination that gave the best per-
formance on the training set was then used to predict
CRMs in the test set.

In general, we observed that the HexDiff algorithm was
relatively insensitive to the precise values for the parame-
ters. We ran the HexDiff algorithms with 6 values for the
number of hexamers (30, 40, 50, 60, 70, 80) and 11 val-
ues for the size of the sliding window (1000, 1100, 1200,
1300, 1400, 1500, 1600, 1700, 1800, 1900, 2000). For
each pair of parameters, the threshold score that gave the
best performance on the training set was selected. For
these 66 analyses, the average cumulative Matthews corre-
lation coefficient for the test set sequences was 5.37 with
a standard deviation of 0.51. The average number of mod-
ules recovered was 33.8 with a standard deviation of 3.29.

Choices in algorithm design
Two important choices were made during the design of
the HexDiff algorithm: the model used to represent the
training sets, and the type of negative training set used. In
order to choose the correct model, a balance had to be
struck between the expressivity of the model and the
amount of training data. Since the amount of positive
training data was fixed at 52 known CRMs, we tried pen-
tamers, hexamers, and heptamers with 0, 1, or 2 mis-
matches (data not shown). Shorter n-mers would have
resulted in a model that was insufficiently expressive to
capture the difference between CRMs and non-CRM
sequences, while longer n-mers would have resulted in a
model whose parameters would have had high variance.
Allowing mismatches would have consolidated n-mers
into groups and therefore would have had the effect of
simplifying the model. In the end, hexamers with no mis-
matches turned out to have the best performance.

For the LWF algorithm, Nazina and Papatsenko tried three
different negative training sets drawn from the Drosophila
genome: random samples from the whole genome, ran-
dom samples of coding sequence, and random samples of
non-coding sequence. They found that samples from the
whole genome and samples from non-coding sequence
resulted in better agreement between CRM predictions
from the LWF algorithm and the biologically determined
locations. Since we were predicting CRMs in a well-
defined set of 16 genes, we used a local negative training
set – the portions of the 16 genes that were not labeled as
known CRMs. We found this approach to give higher
accuracy than the negative training sets used by Nazina
and Papatsenko (data not shown).

Availability and requirements
Project name: HexDiffProject home page: http://
www.ics.uci.edu/~bobc/hexdiff.html

Operating system: Platform independent

Programming language: Perl

Other requirements: Perl 5.6 or higher

License: GNU GPL

Any restrictions to use by non-academics: licence needed
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