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Abstract: The energy function of a protein consists of a tremendous number of minima. Locating the global energy
minimum (GEM) structure, which corresponds approximately to the native structure, is a severe problem in global
optimization. Recently we have proposed a conformational search technique based on the Monte Carlo minimization
(MCM) method of Li and Scheraga, where trial dihedral angles are not selected at random within the range
[—180°,180°] (as with MCM) but with biased probabilities depending on the increased structure-energy correlations as
the GEM is approached during the search. This method, called the Monte Carlo minimization with an adaptive bias
(MCMAB), was applied initially to the pentapeptide Leu-enkephalin. Here we study its properties further by applying
it to the larger peptide with bulky side chains, deltorphin (H-Tyr-D-Met-Phe-His-Leu-Met-Asp-NH,). We find that on
average the number of energy minimizations required by MCMAB to locate the GEM for the first time is smaller by
a factor of approximately three than the number required by MCM—in accord with results obtained for Leu-enkephalin.
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Introduction

Global optimization of multivariable functions is an unsolved
problem in applied mathematics, which appears in a large number
of every-day problems such as air traffic organization, weather
prediction, economic cost/benefit analysis, graph theory, and so
forth. Global optimization is especially severe in protein folding,
where the potential energy as a function of the 3D structure of the
protein chain is highly rugged, and locating the global energy
minimum (GEM) among the tremendous number of local minima
resembles a search for a needle in a haystack. Ignoring entropic
effects, the GEM structure can be considered as the most stable
and is therefore identified with the native structure of the protein.'
Global optimization is also required for predicting the stability of
partial structures of a protein, such as loops in homology model-
ing, or the binding of small ligands to a receptor, where such
studies are of practical importance in rational drug design. There-
fore, a great deal of effort has been made in computational struc-
tural biology to develop efficient methods for global optimization
(also called methods for conformational search), which has led to
cross fertilization of ideas and exchange of techniques with the
wider field of optimization theory in applied mathematics.?~®

On the molecular side, a branch of iterative conformational
search methods (most of them stochastic) that is based on energy
minimization has been developed in the organic chemistry com-
munity,”~"* and for proteins, mainly by Scheraga’s group.
common feature of many of these methods is that a significant
conformational change of the current structure is carried out at
each step followed by energy minimization, which allows efficient
crossings of energy barriers; the trial structure thus generated is
then accepted or rejected by a certain selection criterion. The
philosophy behind this approach is that a significant change of low
energy structures (followed by minimization) leads on average to
a decrease in their energy; however, the change should not be
random over the entire conformational space, which is populated
predominately by high-energy structures. Thus, a relatively short
pathway towards the GEM is defined. The methods of this cate-
gory differ by their conformational change procedures and selec-
tion criteria, and in general they have been found to be more
efficient than simulated annealing,?*® the conventional Metrop-
olis Monte Carlo (MC) method,? and molecular dynamics,?*-!
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where the last two methods cross energy barriers very inefficiently
at 300 K.

In the past, we studied two of these methods, the Monte Carlo
multiple minimum (MCMM) of Still’s group using the “usage
directed” selection criterion'' and the Monte Carlo minimization
(MCM) of Li and Scheraga.'> While the performance of these
methods, as applied to the pentapeptide Leu-enkephalin, was
found to be comparable,** application of MCM is more straight-
forward, which has made it a popular technique; therefore, we
have implemented MCM within the framework of our conforma-
tional search procedure for cyclic molecules and protein loops, the
local torsional deformation method.***?

With MCM, at each step a conformational change of the current
structure i (with minimized energy E,) is typically carried out by
selecting at random a small number of dihedral angles, defining
their new values ar random within the range [—180°,180°], and
minimizing the energy; the obtained trial structure j (with mini-
mized energy E)) is accepted with a Metropolis transition proba-
bility p;;:

py = min{l, exp[—(E; — E))/ksT]} M

and the process is repeated many times. It should be pointed out
that unlike a usual MC procedure where E; is not minimized,
MCM is based on minimized energies, and therefore the generated
structures are not distributed according to the Boltzmann proba-
bility density, and 7' (which multiplies the Boltzmann constant k)
is not a thermodynamic temperature but a parameter that can affect
the efficiency significantly. Therefore, various temperature sched-
ules were tested,*® including a simulated annealing MCM proce-
dure,® but the gain in efficiency (as compared to an optimal
constant 7) has been moderate at best. With a more substantial
approach for improving MCM developed by Totrov and Aba-
gyan,*® the random selection of dihedral angle values has been
replaced by a biased selection based on the distribution of these
angles in known protein structures, which has led to a significant
increase in efficiency for a-helical peptides. Scheraga’s group, on
the other hand, has pursued a pure theoretical approach, seeking to
gain efficiency not by relying on experimental data, but by orga-
nizing the structures in groups and selecting trial dihedral angles
with some bias based on their distribution in low energy structures.
Thus, with the conformational space annealing (CSA) method of
Lee et al.,'"” where the MCM procedure is replaced by a genetic
algorithm and build-up procedures, the average number of energy
minimizations required to reach the global minimum of Met-
enkephalin has been decreased by a factor of two as compared to
MCM (using the ECEPP/3 potential*’—°). The efficiency of a
recently developed MCM-based procedure by Pillardy et al.,' the
conformational family Monte Carlo (CFMC), is claimed to be
comparable to that of CSA. The improved performance of these
methods seems to stem mainly from the application of sophisti-
cated structural clustering procedures.

In a recent article, here called article we have developed an
MCM-based method that relies on the increasing structure/energy
correlation as the GEM is approached. Thus, a biased (rather than
random) selection of dihedral angle values within the range
[—180°,180°] is imposed, which is adapted to the structural and
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energetic changes occurring continuously during the search (and
with minimal structural organization); this method is called MCM
with an adaptive bias (MCMAB). We have demonstrated that for
models of Leu-enkephalin (H-Tyr-Gly-Gly-Phe-Leu-OH) de-
scribed by the ECEPP/2 force field, the number of energy mini-
mizations required by MCMAB to locate the GEM for the first
time is on average ~2.7 smaller than that required by MCM.*°

In this article we investigate the performance of MCMAB
further as applied to a larger molecule, the linear heptapeptide
deltorphin (also known as dermenkephalin), H-Tyr-D-Met-Phe-
His-Leu-Met-Asp-NH,), which unlike Leu-enkephalin consists of
bulky side-chains. An interesting question is to examine the be-
havior of the parameters of MCMAB as the peptide size is in-
creased. Deltorphin is a natural peptide, which is found in frog
skin, and has high potency and receptor selectivity for & opioid
receptors. To understand the structure-activity relationships, NMR
studies of the solution structures of deltorphin in DMSO and
cryoprotective solvents were carried out*' and computational work
was performed based on these experiments.*>~**

Molecular Model and Methods

Model

Deltorphin is modeled by the potential energy function ECEPP/2,
which assumes rigid geometry (i.e., constant bond lengths and
angles) and is based on Lennard-Jones, electrostatic, torsional, and
hydrogen-bond potentials.>’° In addition to the rigid geometry,
the peptide bond angles w are kept fixed at 180°, and therefore a
conformation is defined by a relatively small number, K = 36 of
dihedral angles, the 14 backbone ¢ and ¢ and the 22 side-chain
dihedral angles, y (a significantly larger number of variables, the
3N Cartesian coordinates of the N atoms, would be required for a
force field with flexible geometry); therefore, using ECEPP facil-
itates the optimization of the various parameters of MCMAB. We
adopt the standard dielectric constant € = 2 of ECEPP, and use the
software package FANTOM,***> where this force field is imple-
mented. Because ECEPP does not consider solvent effects, we do
not attempt to compare our results to the experimental NMR data
and only study the efficiencies of MCM and MCMAB.

Biased Probabilities for Single Dihedral Angles

The MCMAB procedure applied to deltorphin contains elements
that have not been used for Leu-enkephalin; therefore, we describe
here the entire procedure in detail, first as applied to single dihedral
angles and later to pairs of ¢-¢ and y,— X, angles. For single
dihedral angles the process consists of four stages, the first n < n,
MC steps, ny = n = n,, n, < n = ny, and n > ny, where n, =
4000, n, = 6500, and n; = 7000. During the first two stages the
usual MCM procedure is performed as described in ref. 46 (see
also next section); in particular, the dihedral angle values are
determined at random within the range [—180°,180°], and 7 = 400
K [eq. (1)] is kept constant throughout the entire search. However,
in the second stage (n, = n = n,) the program starts building the
biased probabilities (over the range [—180°,180°]), which are used
in stages three and four. Thus, after n, steps the typical energy of
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the current conformation has been reduced significantly as com-
pared to that of the starting structure (n = 1), meaning that the
energy-structure correlations are strong enough to be taken into
account. Therefore, subsequent accepted structures [by the MC
criterion, eq. (1)] that differ significantly from each other are
retained, where two structures are considered different if at least
one dihedral angle differs by 30° or more.

For the retained structures, the dihedral angle range
[—180°,180°] is divided into m,, = 3 segments, [—120°,0°],
[0°,120°], and the third segment that consists of the two ranges
[—180°,—120°] and [120°,180°]; these three segments denoted by
m (m = 1,m,,) are centered at the three occurring rotamers,
gauche—, gauche+, and trans, respectively. This division leads to
a relatively smooth distribution, which is essential for the success
of MCMAB (see below). In article I we have found that the more
“rugged” distributions obtained for m,,, > 3 do not improve the
efficiency over that of MCM. We denote the retained structures by
the index 7; thus, the contribution of the #" retained structure (with
energy E,), to the selection probability of segment m (m = 1,m,,)
of dihedral angle k (k = 1,36) is proportional to the corresponding
Boltzmann factor, exp[—E/k;T*], where T* is a temperature pa-
rameter that should be distinguished from 7 appears in the Me-
tropolis criterion [eq. (1)]. The unnormalized selection probability,
8wy after the ™ structure has been added to the group

gin(k) = gfni(xl) + exp(—E/kpT*) (2)
and the normalized probability is

gt

(k)

P! ©n = S " (3)
) ’rly;:lg:n(k)

The different structures are collected and the P, values are
updated during the MCMAB search (i.e., for n > n,). Egs. (2) and
(3) are used for defining single angle probabilities as well as
probabilities for the pairs, ¢-i and x, — x, , where the correspond-
ing optimal values of T* are different; therefore, for these cases 7* is
replaced by T7, T%,,. and T%,,,, respectively, where T = 850 K.
Because the MCM search is biased towards the low energy
region some angle values appear with higher probability than
others. Thus, it turns out that for each k, P}, ,, is typically large
(=0.9) for a specific segment m, hence it is significantly smaller
for the other two segments; this would lead to a very inefficient
MCMAB process, where some regions in the conformational space
become almost excluded, meaning that the bias should be much
milder. Therefore, from the third stage on (n, < n), if P}, is
smaller than p,, it is increased [becoming p;,,] such that p;, .,

~ plow

Pty = (&uy T d)/( E S T d) 4)

m

where

d= |:plow E gfn(k) - g;1(k):|/[1 _plow] (5)

m

and the other two probabilities p,,,,, are changed according to eq.
(4), where d = 0 in the numerator; if two segments have low
probability, their probabilities are increased to the value p,,,. We
have found that p,,,, = 0.28 is an optimal value, meaning that the
deviation from the random value, 1/m,,, = 1/3 is not large. The
energy of the structures added to the group decreases in the course
of the search, and therefore, on average, those added last have the
strongest effect on the probabilities. However, the effect of the
higher energy structures is not negligible because the optimal
value, T% = 850 K is relatively high.

Notice that for n = n, the usual MCM is applied, while p;,,,
is used only in the fourth stage, that is, for MC steps n > ny; thus,
if angle k is chosen to be changed, a segment m(k) (m = 1,m,.,) is
selected according to the probabilities py,,, (rather than at ran-
dom, i.e., with probability 1/m,,, = 1/3) and the value of the angle
within the range of the selected m is determined at random. We
have found that the efficiency of the process increases by “bridg-
ing” these two regions by an intermediate region, n, < n = nj,
where slightly biased probabilities, denoted p% ., are used. p’i/,
are calculated from the unnormalized probabilities f), ,:

S = (Ui + Crplyp) (6)

p*in(k) = fm(k)/z ﬂl(k) @)

where C, = 0.0025/n, is a small constant. Thus, the bias in p%/
is always small, increasing slightly as 7 increases. It should be
emphasized again that to enable the search process finding short
pathways to the GEM it is necessary to allow the molecule to visit
large portions of conformational space and therefore application of
a relatively small bias is crucial for the success of MCMAB.

Biased Probabilities for Pairs of Dihedral Angles

As shown later, for MCMAB applied to deltorphin to be successful
one should take into account also the correlations between pairs of
dihedral angles, such as the backbone ¢-is or the side-chain angles
X1~ Xo- To implement probabilities for pairs of angles, the regions
of the backbone ¢-is and side-chain y,— x, were divided into the
my,, = 4 equal quadrants ([Ap] = [—180°,0°], [AY] =
[—180°,0°]), ([A¢] = [—180°,0°], [Ays] = [0°,180°]), and so forth.
The probabilities (preferences) of these regions were obtained by
egs. (2) and (3) using the same procedure and database of confor-
mations collected for the single angle probabilities. The optimal
temperatures found, T:;w = T;Ixz = 700 K [eq. (2)] are lower than
850 K optimized for the single probabilities, meaning that the
effect of the lowest energy structures is more pronounced in this
case. Correspondingly, we have found that effective ¢-iy and
X1~ X» probabilities should consist of lower energy structures than
those required for the single angle probabilities. Thus, for ¢-i and
X1~ Xa» 1, Was increased from 4000 to 5000, while n, = 6500 and
ny = 7000 are unchanged; eqs. (4) and (5) are used with p,, 0.2
(as compared to a random selection of 1/m,,, = V4 = 0.25).

For n > n, the program can select to change a pair of ¢-is, a
pair of y,—x,, or a single angle; we have found the optimal
probabilities, py,, = 0.25, p, . = 0.1, hence p; = 0.65 for these

b1
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cases, respectively. Thus, if, for example, a random number is
smaller than 0.25, a ¢-i pair is chosen at random out of the seven
available pairs and a quadrant (denoted m) is than selected ac-
cording to the p,, [eq. (4)] or p¥ ., [eq. (7)1, m = 1,4. Finally,
new ¢ and ¢ values are determined randomly within the chosen
range m,, the structure is changed accordingly, its energy is min-
imized and compared to that of the previous structure; the mini-
mized structure is accepted or rejected according to the MC
criterion [eq. (1)].

Harmonic Free Energy

The relative stability of different energy minimized structures is
determined correctly by the free energy rather than the energy.
Therefore, we have also obtained the harmonic free energy FI™
around selected minimized structures i from the harmonic entropy,
s

k
§1* = = In[Det(Hessian)] + $*(7) ®

where Det stands for determinant and Hessian is the matrix of
second derivatives of the energy with respect to the dihedral angles
calculated at their minimized values.*” S"(7) is an additive term
that only depends on 7 and the units of the angles used; to calculate
the difference AS,; between two harmonic potential wells i and j of
the same molecule at a given temperature, S"*"(T) cancels out and
can be ignored. The free energy is

Fi = E, — TS ©)

Results and Discussion

The lowest minimized energy obtained in many MCM and MC-
MAB runs is —44.105 kcal/mol, which is considered to be the
GEM (also denoted GEM1). Our criterion for efficiency is defined
as the number of energy minimizations required to reach the GEM
for the first time: the smaller this number is, the better the effi-
ciency. Thus, the optimal values of n,, n,, n5,7* [eq. (2)], Piow [€9-
(5)], and so forth, have been determined according to this criterion
by performing many MCMAB runs with different values of these
parameters.

To compare the efficiencies of MCMAB and MCM, we carried
out 12 runs with both methods at 7= 400 K [eq. (1)] starting from
the same randomly generated conformations. The details of the
MCM procedure used are as described in ref. 46. Thus, the number
of dihedral angles / to be changed at each MC step is

[ = min{K, int[1. — In(r + 0.00001)]} (10)

where K = 36 is the number of dihedral angles, r is the random
number distributed uniformly within [0,1], and int(a) is the integer
value closest to a from below. The particular / dihedral angles are
determined at random where the side-chain angles with symmetry,
such as y, of Phe, x5 and x, of Leu, and so forth, are chosen with
a probability of 0.06, and the other angles with a probability of

Table 1. Number of Energy Minimizations Required for Locating the
Global Energy Minimum for the First Time."

MCMAB with single angle,

¢, and x;—x» MCMAB with single angle
MCM Probabilities probabilities only
2754 2754 2754
15933 8971 7284
23485 20092 37063
96925 6534 6657
1387 1387 1387
45146 18295 200000
140331 24174 11844
29901 23113 93477
6433 6433 6433
108507 58000 192254
45607 7909 16553
87266 20465 15897
50306 16510 49300

“The bold-faced numbers in the bottom row are the average values.

0.94. Then, each selected angle is changed randomly within the
range *+180° and the energy of the resulting structure is mini-
mized; the minimized trial structure is accepted or rejected accord-
ing to the MC criterion [eq. (1)]. For MCMAB two series of runs
were performed, one based on single angle probabilities only, and
the other on single angle probabilities and ¢-{ and x, —x, prob-
abilities.

Efficiency of MCM and MCMAB to Locate the Gem

Table 1 demonstrates the efficiency of MCM and MCMAB for
finding the GEM. Each of the 12 rows presents the number of
energy minimizations required to reach the GEM structure of
—44.1 kcal/mol for the first time, where all the results that appear
in the same row are based on runs started from the same randomly
selected “seed” structure. For each column, the average of these
numbers appears in the bottom line. The results in the second
column were obtained by MCMAB based on single angle as well
as ¢- and y, — x, probabilities; they are better than or equal to the
MCM results (first column) where the corresponding averages are
16,510 and 50,306 minimizations, respectively; that is, MCMAB
is more efficient than MCM by a factor of 3.1. The results in the
third column, on the other hand, were obtained with an MCMAB
procedure that consists of single angle probabilities only. While
eight of these MCMAB results are better (smaller) than the cor-
responding MCM values, the averages, 49,300 (MCMAB) and
50,306 (MCM) are comparable. However, neglecting the results of
a single run where the GEM could not be located by MCMAB
after 200,000 MC steps (minimizations) does not change the MCM
average but leads to a decrease of the MCMAB average by a factor
of ~1.4 to 35,600.

These results demonstrate that for a molecule that is not short
enough, the single angle probabilities do not provide the search
process with a strong guidance towards the GEM, while adding the
¢-¢ and x,—x, correlations constitutes a more effective bias. It
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GEM 2

GEM 1

Figure 1. The two lowest energy minimized structures, GEM1 and GEM2, of deltorphin.

should be pointed out that for the pentapeptide Leu-enkephalin
modeled by ECEPP/2 with constant @ = 180°, single angle prob-
abilities were found to be effective, where on average the GEM
was located 2.5 times faster by MCMAB than by MCM (see article
I). However, when the number of backbone degrees of freedom
was increased by allowing the peptide bond w to vary, the MC-
MAB procedure based on single angle probabilities has led to the
smaller factor ~1.5. Again, adding the effect of the ¢-i probabil-
ities has increased the latter factor to ~2.8. The importance of
applying such correlations for conformational search has been
recognized by others (e.g., ref. 48).

Coverage of the Low Energy Region

A peptide is not expected to reside in the GEM structure but
typically will exhibit intermediate flexibility, where several low
energy potential wells are populated in thermodynamic equilib-
rium. Therefore, it is of interest not only to locate the GEM but
also other low energy minima.”'!-!%14-33.35.49:30.51 e have de-
veloped a methodology for treating intermediate flexibility based
on an extensive conformational search that generates a large group
of low energy minimized structures, from which a smaller set of
structures that are significantly different are sorted.>*->'? These
structures become “seeds” for MC simulations that span their
vicinities. The free energies, hence the relative populations of
these samples, are calculated by the local states method>*>> and
the contributions of these samples to the physical quantities of
interest are weighted by the populations and compared with the
experiment.

In this context it should be pointed out that while the GEM
(also denoted GEM1) is —44.105 kcal/mol, the second lowest
minimum of —43.95 kcal/mol, denoted GEM2, is only AE = 0.15
kcal/mol higher than GEM1 and the corresponding harmonic free
energies at 300 K, —3.842 and —3.663 kcal/mol [see egs. (8) and
(9)] also differ only slightly by AF™ = 0.18 kcal/mol. While the
stability of these structures is comparable they are significantly
different, as can be judged from their ribbon graphs illustrated in
Figure 1, their relatively large root mean square deviation (RMSD)
of 5.18 A, and the existence of significantly different backbone
¢-1s pairs for Tyr', Phe®, and Asp’ as presented in Table 2. In fact,
the GEMI structure creates a type II' turn around Met” and Phe,?

Table 2. Dihedral Angles (in Degrees) of the Two Lowest Energy
Structures, GEM1 and GEM2.

GEMI1 GEM2
(—44.11 kcal/mol) (—43.95 kcal/mol)

Sequence [ 1 [ 1

Tyr —174 138 —169 —36
Met 62 —122 87 —104
Phe —61 —33 —150 —169
His —67 =35 —66 -29
Leu —69 —41 —64 —40
Met —63 =37 =74 —41
Asp =72 -39 —162 95
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Table 3. Number of Low Energy Conformations in Energy Bins of 0.5 kcal/mol above GEM of —44.1 kcal/

mol as Generated by MCM and MCMAB.

Bin (kcal/mol) Energy (kcal/mol) MCM (2°) MCMAB (2°) MCM (65°) MCMAB (65°)
0.0-0.5 —44.1to —43.6 16 14 12 11
0.5-1.0 —43.6to —43.1 92 60 88 58
1.0-1.5 —43.1to —42.6 281 214 254 205
1.5-2.0 —42.6 to —42.1 616 413 570 392
2.0-2.5 —42.1to —41.6 1469 950 1333 876
2.5-3.0 —41.6to —41.1 2491 1649 2300 1510
3.0-3.5 —41.1 to —40.6 3554 2354 3304 2205
3.5-4.0 —40.6 to —40.1 4240 2783 3988 2604
4.0-4.5 —40.1 to —39.6 4375 3044 4153 2851
4.5-5.0 —39.6to —39.1 4224 2903 4077 2742
5.0-5.5 —39.1to —38.6 3831 2588 3684 2465
5.5-6.0 —38.6to —38.1 3478 2257 3355 2168

where residues 47 are helical. Thus, the low energy region of this
molecule consists of at least two “funnels”, meaning that it is more
complex than the low energy region of Leu-enkephalin with con-
stant w, where the two lowest energy structures differ only by
side-chain dihedrals.

In view of the above discussion, we have also investigated the
conformational coverage of the low energy region obtained by
MCM and MCMAB. Thus, we computed the number of different
energy minimized structures within a certain energy range above
the GEM, where two structures are considered different according
to two criteria, if at least one dihedral angle differs by 2° or by 65°.
The 2° (or 1°) criterion has been used by others;>* the 65° criterion
enables one to identify minima representing nonlocal (i.e., rela-
tively large) potential wells, as those related to side-chain rotamers
and defined over a 120°-range. Such significantly different energy
minimized structures are used as seeds for MC simulations within
the framework of a methodology for treating intermediate flexi-
bility discussed above.**317>3

For each method the data are based on three runs of 10° MC
steps (minimizations), where only the structures accepted by the
MC procedure [eq. (1)] were analyzed. It should be pointed out
that in a similar analysis carried out recently for deltorphin,”® the
side-chain symmetry was not taken into account and a large
number of structures were found even in the lowest energy bin. In
the present analysis, however, the symmetry of the side-chains is
considered. For example, structures of the benzene ring of Phe
defined by x, and y, +180° are counted only once; therefore, the
number of structures here is significantly smaller.

Table 3 presents the number of different structures found in
energy bins of 0.5 kcal/mol above the GEM of —44.1 kcal/mol.
The table reveals that for the first (lowest energy) bin MCM is only
slightly more efficient than MCMAB, where the number of struc-
tures found is 16 versus 14 for the 2° criterion, and 12 versus 11
for the 65° criterion, respectively. For the other bins, significantly
more minima are found with MCM than with MCMAB, which
might seem surprising in view of the much better efficiency of
MCMAB in locating the GEM. However, the fact that the bias
introduced by MCMAB shortens the pathways towards the GEM

also means that smaller parts of the low energy regions of confor-
mational space are visited by MCMAB than by MCM, leading to
the results of Table 3. This picture is in accord with the relatively
low acceptance rate obtained in the MC process [eq. (1)] with
MCMAB, 0.096 as compared to 0.18 obtained with MCM, mean-
ing that the number of MCM structures analyzed, ~54,000, is two
times larger than the number of structures used in the analysis of
the MCMAB runs. We have carried out a similar analysis for
MCM and MCMAB runs each of 2 X 10° minimizations where
any structure generated (i.e., accepted or rejected) was considered
(data not shown). MCM still was found to generate more structures
than MCMAB, but the difference between the corresponding num-
bers decreased, as compared to those presented in Table 3, espe-
cially for the higher energy bins.

It is of interest to compare the optimal parameters obtained for
MCMAB as applied to the ECEPP-modeled peptides studied thus
far, Leu-enkephalin with constant and variable w (article I) and
deltorphin with constant w. Clearly, the parameters n, are expected
to increase with increasing the molecular size and the number of
degrees of freedom. Indeed, we have obtained n, = 50, 500, and
4000 and n, (or ny for deltorphin) equals 800, 1800, and 7000, for
Leu-enkephalin with constant w, variable w, and deltorphin with
constant w, respectively. However, these data still do not allow
extrapolation to larger peptides. Other parameters are within a
close range to each other as can be seen from Table 4. Thus, 7% for
the single angle probabilities [eq. (2)] is 750, 850, and 850 K for
Leu-enkephalin with constant w, variable w, and deltorphin with
constant , respectively. T; = 650 K for Leu-enkephalin with

variable w and T;w = T:(]Xz =, 700 K for deltorphin. The optimized
probability, p,,, for selecting a ¢-is pair to be changed in an MC
step (in the last stage) is the same, 0.25, for Leu-enkephalin with
variable w and deltorphin; also, p,.,, is equal to 0.25 for both
models of Leu-enkephalin and is 0.28 for deltorphin. These results
provide an initial picture of the sensitivity of the MCMAB param-
eters, suggesting that their values for larger peptides might be close
to the above values, thus facilitating the final parameters’ optimi-
zation.
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Table 4. Comparison of the MCMAB Parameters Used for Leu-
Enkephalin and Deltorphin.*

Leu-enkaphalin
(constant )

Leu-enkaphalin
(variable w)

Deltorphin

Parameters (constant w)

T*—single angle 750 K 850 K 850 K
Th, or T% — 650 K 700 K
Diow for single angles 0.25 0.25 0.28
Pow Pxixa — 0.25:— 0.25:0.1

*The parameters for Leu-enkephalin are taken from article I. 7%, T’fw,, and
T’i] \, are defined in eq. (2) and explained in the text following eq. (3). pjoy
is defined in eqs. (4) and (5). p4,, and p,, ., are the probabilities for treating

a ¢— or a x,—x- pair in the last stage of MCMAB, respectively.

Summary

In this work the MCMAB method has been tested further by
applying it to an ECEPP/2 model of the heptapeptide deltorphin
that is significantly larger than Leu-enkephalin studied in our
previous work, article I. It has been demonstrated that on average
the number of energy minimizations required by MCMAB to
locate the GEM is 3.1 times smaller than that required by MCM,
a factor that is slightly larger than ~2.7 obtained for Leu-enkepha-
lin. It should be emphasized that using single angle probabilities
has been found insufficient and the above efficiency has been
gained by taking into account also correlations of the backbone
pairs ¢-s and side-chain pairs y,—x,, as has also been found for
Leu-enkephalin with variable w. This suggests that including cor-
relations between x, and x5, ¢ and x,, and correlations among
three and four angles might be important for larger peptides—a
point that has been emphasized by others as well.** The fact that
the optimal parameters for the three models studied thus far are
comparable gives reason to believe that they will not change
significantly for other peptides as well. On the other hand, the
parameters n; are expected to increase with the molecular size but
this correlation might be established only in the future when larger
peptides than deltorphin will be studied. However, MCM has been
found more efficient than MCMAB to locate low energy minima.
It should be pointed out that calculation of the probabilities with
MCMAB does not increase computer time significantly (20,000
MC steps require ~5 h CPU on a PC equipped with a 2 GHz
processor) because most of the calculation time is spent on the
energy minimizations. Because MCMAB does not rely on a struc-
tural organization, one would expect that tailoring its main features
to available clustering techniques'”"'® would enhance its efficiency
even further. The present ideas can be incorporated in conforma-
tional search procedures of linear or cyclic macromolecules, loops
in proteins, and other systems that can be expressed by internal
coordinates.
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