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A variant of the hypothetical scannifglS) method for calculating the absolute entropy and free
energy of fluids is developed, as applied to systems of Lennard-Jones(&tprusargon). As in the
preceding pape(Paper ), a probability P; approximating the Boltzmann probability of system
configurationi, is calculated with a reconstruction procedure based on adding the atoms gradually
to an initially empty volume, where they are placed in their positionsiatthis process the volume

is divided into cubic cells, which are visited layer-by-layer, line-by-line. At each step a transition
probability (TP) is calculated and the product of all the TPs leadBtoAt stepk, k—1 cells have
already been treated, where among thigpare occupied by an atom. A canonical metropolis Monte
Carlo (MC) simulation is carried out over a portion of the still unvisitédture) volume thus
providing an approximate representation of tthe Ny as yet untreate(future) atoms. The TP of

target cellk is determined from the number of visits of future atoms to this cell during the
simulation. This MC version of HS, called HSMC, is based on a relatively small number of
efficiencyparameters; their number does not grow and their values are not changed as the number
of the treated future atoms is increaséice., as the approximation improvestherefore,
implementing HSMC for a relatively large number of future atofap to 40 in this studyis
straightforward. Indeed, excellent results have been obtained for the free energy and the entropy.
© 2003 American Institute of Physic§DOI: 10.1063/1.1625920

I. INTRODUCTION grand partition functions in a gridlike fashion based on up to
two future atoms, which can occupy the target cell and its
In the preceding papércalled here Paper I, the hypo- three nearest neighbor future cells. While very satisfactory
thetical scanningHS) (Refs. 2 and Bmethod was applied to  results have been obtained, we have argued there that further
a system of Lennard-Jones particlesgon atomsat differ-  improvement is feasible through a consideration of several
ent densities and temperatures, and very good results hawgore future cells populated by up to three particles.
been obtained for the absolute entrofy,and the absolute However, one would like to be able to apply even better
free energyF. With this method a Monte CarlMC) (Ref.  approximations, based on a significantly larger number of the
4) or molecular dynamic¢MD) (Refs. 5 and Bsample is  fyture atoms, which might be necessary for treating more
analyzed by reconstructing each of the sample’s configuracomplex systems such as water. Therefore, in this paper we
tions step-by-step and calculating the corresponding transpropose an alternative technique for calculating the TPs,
tion probabilities(TPs. More specifically, the volume of the \yhere at each step the future atoms considered are simulated
NVT SyStem is divided intd_3 Ce”S, which are visited in a by the Metropo”s MC methdb\/\”th"q a limited future vol-
linear order, row-by-row, layer-by-layer, starting from an yme around the target cell, and the TP for a vadaotu-
empty volume. The TPs of the empty and occupied cells argjeq) cell is obtained from the fraction of MC steps for
calculated and their product leads to an approximation of theyhich the target cell is vacaribccupied. Thus, the deter-
Boltzmann probability density. At step of the reconstruc-  mjnjstic grand-canonical treatment of Paper | is replaced by
tion process the system consists of an already visited volumg stochastic procedure carried out within the framework of
of k—1 cells containing\, atoms and an unvisite@r fu-  the canonical ensemble. While the present stochastic process
ture) volume of L3>~ k+ 1 cells; one has to calculate the TP produces some noise, the number of future argon atoms
of the “target” cell k. Obtaining an exact TP would require reated can be increased dramaticéllp to 40 in this study
calculating future partition functions based on all of the con-jgading to a significant improvement in the accuracy for the
figurations of theN—N, remaining future atoms within the |ower and upper bounds di* and the results foS* as
still unvisited future volume in the presence of tNg al-  compared to those obtained in Paper |.
ready fixed atoms—an unfeasible task for a large system. g (istinguish between the two methods we name the
Therefore, in Paper | we have calculatggproximatefuture grand-canonicalGC) HS procedure of Paper I, HSGC, and
the present Monte Carlo-based HS technique, HSMC. As
dAuthor to whom correspondence should be addressed. described in Paper I, HSGC requires optimization of a rela-
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tively large number of chemical potential and temperaturevhereVis the cube volume anill ., is the total number

parameters. In this respect HSMC is much simpler anddf counts observed in the cube. In this equation the probabil-

straightforward because the number of parameters to be ojty density over the cube volume is assumed to be uniform, a

timized is minimal, and the number of atoms is constantcondition, which will be changed later.

However, to make HSMC efficient a well suited MC process  The total product of all of the (TR) the transition prob-

should be applied and the main part of the next section isbility densitiesp™ and the transition probabilities for the

devoted to discussing this process. empty cells, provides an estimate for the probability density
The HSMC method is based on the HS theory developedf the configuration. The protocol described higas in Paper

in Paper I. We assume that the reader is familiar with thd, Eqg. (1.29)] yields,

philosophy of the HS method and the details of its step-by-

_ N
step reconstruction proceduie particular, the BC4 bound- H (TP),=N!p(xN,N¢,a)~N! exi ~E(x )/kBT],
ary condition$ described in the Introduction and Methods of k ZAN
Paper I. For clarity the numbers of equations of Paper | re- ©)

ferred to in this paper will be preceded by the letter I. Forwhere p(x™',N¢, ) is an approximate probability density
comparison we apply HSMC to a system of 216 argon atomshat depends on the number of future atoMs, and a set of
in the two highest densities studied in Paper I. parametersy; x is a 3\ vector of the Cartesian coordinates
of the N atoms.[Notice thatN;, appearing in Eq(3) above
replaces the number of future celtsn Eq. (1.29) defined for
II. THEORY AND IMPLEMENTATION the HSGC pro_cedur_e in Papel The (Bqltzma_nr) average
of the log of this estimate for each configuration leads to the
As mentioned above, with HSMCas with HSGC in  functional,S* [Eq. (1.7)] that is an upper bound for the cor-
Paper ] we seek to calculate the entropy from a sample ofrect entropy.
argon configurations simulated by MC or MD in the frame-
work of theNVT ensemble. The crux of the HSMC method B. The simulation region
is the new way for calculating the TPs for a vacant or an . . o
occupied target cell at each step of the HS reconstruction At stepk, Ny future atom§_are simulated in the vicinity
process. Thus, at stdpa fixed partial structure is defined by _Of the ‘aYge‘ celk. More specifically, the future gtorps move
the atoms and vacant cells reconstructed in previous stepI a portion, V¢, of the total future volume, which includes

To define the TP of target cedl we consider a nearby region the target cell and a nearby region. The geometry of this

(a portion of the total future volume that contains the targe{ egion is partially determined by the—1 prewously visited
cell) and place within it a numbed;, of movable future cells that are excluded. In accordance with the homogeneous

atoms. These future atoms, which interact with each Othepoundary conditions, BC4, described in Paper I, boundary

and with the atoms of the fixed structure, are moved withince"S’ vacant or containing fixed image atoms are also treated

this limited region by a Metropolis MC simulation. The TP is as previously visited. Thus, excluded for the future atoms

determined from the number of visits of the future atoms toare:(l) the layers “below” the current layer where the target

the target cell counted during the MC simulation. cell resideq(i.e., those in the-z direction, (2) the rows of
the current layer already visited by the reconstruction process

A. A basic HSMC procedure (in the —y direction, and(3) the part of the already treated
current row(in the —x direction. Defining the center of the
target cell as the origin of the coordinates, th&, +y, and

+z directions all point toward the future volume. A two-
dimensional representation of the simulation region is shown
in Fig. 1.

To keep the future atoms close to the target cell, they are
restricted by an infinitely repulsive hemispherical shell of
pr=—c (1) radius R, measured from the center of the target dske

Mot Fig. 1. The volume of this region is somewhat arbitrary, but

it should be close to the average volume occupiedN\py

Moreover, for an occupied target cell we need to calculatgarticles in the liquid. We generally chooRe such that the

the TP density of the atom to be at the specific atom locatiomlensity of the future atoms in the hemispherical volume is

exhibited in the configuration. In Paper |, the cell was di-75% of the actual liquid density.

vided into smaller subcells termed cubes; here, we center

such a cube at the atom position, and count the number @t The basic Monte Carlo simulation

times an atom was observed in this cube during the MC

simulation. From these counts we estimate the TP dep8ity

[compare with Eq(1.26)],

To calculate a TP we denote ¥, the total number of
attemptedmoves(steps in the MC run for thekth target cell
and byM . the number of MC steps in which a future atom
is located in the target cell; the probabiliB/" (P~) for the
target cell being occupie/acanj is estimated by

|
9
I
=
|
T
.+

In its simplest form, the simulation of the future atoms is
carried out by the standard Metropolis MC methodthin
the restricted future volume. Thus, a trial move is generated
by selecting a future atom at random and displacing it at
pM= P+< MCU'JE)( 1 e) _ ( Mcube)( 1 e) ) random within a small Cartesian cube. All of the interactions
Meen/ |V Miot / \ Veube ’ between the displaced atom and the other movable future

cub cub
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other. For example, the neighboring previously defined at-
oms can at times be positioned toward the “outside edge” of
their (previously defineficells. In these cases their van der

Waals radii extend well into the future volume making an

appreciable fraction of this volume energetically inacces-
sible. At other times, the previously defined atoms can on
k@Q\/ average be backed away from the edges of their cells leaving

a much larger proportion of the future volume accessible to
O Q Q the future atoms. A small constraining volume, that would

QQ more effectively suppress evaporation in the latter case,

would be completely inappropriate for the former case due

the high energy compressed environment it would create. For

FIG. 1. A two-dimensional2D) illustration of thekth step of the HSMC  this reason, the constraining volume must always be chosen

reconstruction procedure. The 2D “volume” is divided into cells, where to give a future atom densityvithin the hemispherical future

—1 of them have already been considered in previous steps; only khesevo|ume that is somewhat less than the liquid density. Yet

—1 cells are shown in the figure. A cell can include the coordinates of only

a single atom. Thus, these cells can be divided into two groups, the emthGSPite this, we would like the future atoms to behave such

ones and th&, cells occupied by previously reconstructed atdaenoted ~ that the local density in the vicinity of the target cell is close
by full black circles, which are kept fixed at their positionSome of these  tg the true liquid density.

cells/atoms could be image cells/atoms defined by the BC4 boundary con- ; :
ditions) The partial future 2D volume considered] is defined by a half- We have found that an effective remedy to this problem

circle, which includes the target cel, depicted by dotted lines. This future 1S t0 implement what we call a “near neighbor rule.” The
volume contains thél; future atomsdenoted by full gray circlgsthat are  goal is to make the limited number of future atofmsth its

moved during_the Monte; Ca_rlo simulation. These atqms can vis{t_the targefhevitable surfacelook like it was “carved out” of a real
cell k and their counts_ in this cell _Igad to t‘he transition p!’obablllty of an bulk quuid environment. The environment around any single
empty cell or the transition probability density of an occupied one.

atom in a bulk solid of many substances contains 12 near

neighbors. The situation changes somewhat for the liquid,
atoms and the atoms in the fixed partial structwvithin the  but it is still reasonable to imagine that an atom will have
cutoff distance of 10.8 A—half the box length; as in Paper | close to this number of near neighbors, especially if one
are calculated before and after the trial move which is acincreases the definition of the near neighbor distance to allow
cepted or rejected according to the standard Metropolis crifor stretched pair separations. Thus, if the future atoms were
terion. A move that would carry a future atom outside of thea sample “carved out” of the bulk liquid, one would expect
future volume defined above is rejected. the surface atoms of this sample to have at least a few near

The initial configuration of the future atoms is generatedneighbors(in the samplg Therefore, in our MC simulation

randomly within the hemispherical future volume, and thewe impose that every future atom must have a minimum
atoms are then subjected to an equilibration period duringiumber,nn,,,, of near neighbors, defined by a separation of
which the step size is periodically adjusted to achieve apr, or less. Any MC trial move that would cause a violation
proximately 50% acceptance. Following the equilibration pe-of this condition is simply rejected. In practice the number of
riod, counts inside the target cell and inside the cube argqgitional rejections due to this rule is small, therefore the

accumulated after every attempted move. To increase effinopility of the future atoms will not be drastically reduced.
ciency several enhancements have been applied as discussed Reasonable values fomn,,;, andr,,, can be easily cho-

below. sen through a consideration of simple physical properties of
the liquid system. A reasonable choice fqf, is anywhere in
D. The “near neighbor rule” the vicinity of the first minimum in the radial distribution

Because the numbeN; , of future atoms treated is rela- function. Thus, for argon, we defmenn.=5A, and most
tively small and the future volume beyond the hemisphericafommonly usenny,,=4, where the choicesiny,=3 or 5
region is empty, simulating these atoms can lead to an inhcd!so work well. Npte that these choices are consistent Wlth
mogeneous environmertespecially near the boundaries f[he~5—8 near neighbors that should be expected to be miss-
typified by expanded on partially evaporated structures Wég (for a surface atopafter the sample of future atoms is
would like, as much as possible, to emulate the liquidlike‘carved out” of the bulk.
environment around the target cell and not have the transi- The near neighbor rule has the desirable effect of keep-
tion probabilities strongly influenced by such surface effectsing the future atoms intact and lessens the importance of the

This can partially be achieved by varying the radRis or hemispherical constraining shell, in that there are fewer en-
optimizing the temperature to minimize the entropy func-counters with it. This widens the range of reasonable choices

tional, S* as was done in Paper I. for R.. For example, very similar results are obtained when
It should be noted however, that simply choosing a smalthe density in thehemisphericalfuture volume is varied in
constraining volume is undesirable. Given the same conthe range of 0.4-0.8 times the liquid density. Furthermore,
straining valueR,., there can still be great variability in the because the atoms tend to stay “condensed” at all tempera-
effective amount ofenergetically accessibl@olume avail- tures, the optimal simulation temperature is nearly identical
able to the future atoms from one reconstruction step to arto the real liquid temperature. In other words, one can simply
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choose the liquid temperature as the HSMC simulation tem- It is seen that the ensemble average acts as a weighting
perature. factor, which corrects the coarser estimate givend®8rin

Eqg. (2). Unsurprisingly, typical values for the ensemble av-
erage are on the order of 1. These corrections are important,
however. They provide a far more accurate and efficient
means to obtain the transition probability and improve the

overall results significantly. A detailed derivation of H¢)
We have found that the performance of HSMC isjs given in the Appendix.

strongly sensitive to the choice of the cube size. As has been
pointed out earlier, Eq2) is based on a uniform probability

density over the entire cube. Given the likelihogd con-  F. Preferential Monte Carlo sampling
tinuum fluid9 for repulsive van der Waals overlaps upon a

small change in a atom position, it should not be surprisingg ,, employ preferential sampling in the MC simulation?
that the assumption of a uniform probability density wil a procedure that is commonly used in simulations of a solute

eventually prevent further improvement in the results. Weln solution. Because solution properties are most strongly

havedf?ur:g, f?r (_axalmplle, that haév.m%;heHcggévmrmlet(_:omaetermined by the nearby environment of the solute mol-
pared to the typical volume used in the calcula Ionsecule, it can be very beneficial to invest more computational

- . e A . .
results tm s(;gnrllflcantly quwerS t\{alutt'-_\s. Cc:(mp;lrllgatlo?s are resources on moving solvent molecules that are in the vicin-
encountered, NOWEVET, 11 one ries 1o make this VOIUMe Xz, ot the solute. A very similar situation occurs with HSMC,

tremely small, because the counts accumulated in the cu here the most important atoms to be moved are the closest

become 'statlsu'cally unreliable. Here we describe a SImpl%nes to the target cell. These atoms most directly determine
prescription which allows one to determine more accuratel){he cell and cube counfdl oo and M ype, Se€ Eqs(l) and
the probability density at a specific point, that in our case is(z)’ respectively, and samprng themcrngre frequently indeed

the ex_act location of an atom at Fhe cent_er of the cube_, W'thhas provided a substantial enhancement in the reliability of
out using extremely small cube sizes which would scarify the[he counting statistics

cube counts.

It is helpful to use a more refined notation for the tran-
sition probability densityp™ [Eq. (2)]; here it is written as
pi(xNk,x"). This is the probability density for any future
atom, i, to be located at théexac) position, x’, the exact
location of the atom to be reconstructed in the target cell
where the configuration of the previously determimgdat-
oms isxNk; it should be pointed out that from now d¥,
also includes the fixed image atoms at steps in the sim-
plest form of the implementation described above, a cub
(cubg) is centered around point,. Counts are accumulated
in cubé during the MC simulation, and the probability is f(r)=1(r"+c), 5
determined for cubleto be occupied by any future atom,  \yherey s a constant often chosen to be an integer aisda
We write this probability explicitly here aB;;cune (X™,X').  constant that sometimes is taken to be zero; in our case

_Over the course of the simulation, the following modifi- he gistance of the atom from the center of the target cell.
cation is introduced. Every time an atoims recorded in Using c=0, this distance can approach zero as an atom
cubé, we imagine a virtual displacement, which transports itcomes very close to the center of the target cell, thus causing
to the exact locationx’ (keeping all other atoms fixédThe 5 complete dominance of the weighting by this atom until it

energy, E' (x"x";x"™%), is calculated for all of the pair ,6ves away(This scenario does not arise in applications
interactions of the displaced atom,»t That is, its interac-  \herer is a solvent—solute distance, because the van der
tions with theN, defined atoms and the remainidt—1  \yaqis repulsion keepsfrom becoming small.For this rea-
future ator[ls. This energy. IS c;ompared with, son, we use>0. We have found that for argon=2 works
Ei(x™x;,x"), the corresponding “undisplaced” energy very well along with values foc within the range 2—4 A
value of atomj, as it appears in the HSMC simulation. The (wherer is in A). Alternatively, we have also used ard/

Boltzmann factor for this energy difference is ensemble avyygighting that becomes flat for valuesrdfthat are less than

eraged over all cases where an atom is located anywhere ing 32
cubé€. With this ensemble average, the transition probability
density,p;(x"k,x"), can be computed as

E. Utilization of an ensemble averaged
weighting factor

Another way to significantly improve the HSMC results

A variety of forms of preferential sampling procedures
are available, where their common feature is that the normal
Metropolis acceptance criteria must be changed to properly
account for the preferentidl.e., more frequenttrial prob-
abilities given to the atoms close to certain locations of in-
terest. The schemes given in Ref. 7 are relatively easy to
implement and the appropriate references therein can be con-
sulted for details. We have used the smooth preferential
weighting scheme of Owicl,in which the trial probability
s weighted by a smooth function in the form

G. Effects of sampling convergence
The magnitude of the cells’ TP&@r TP densities can

pi (XN, X") = Py cupe (XN, X)

cube vary considerably. The TP of an empty target cell that is
s (exp] — (E' (xMe, x/:xNi 1 mostly covered by a van der Waals overldmm a nearby
(exd = (E'( ) atom in a previously defined cgik relatively large(close to
—E; (XM , xN ) kg T1)i: cupe - (4) 1), thus contributing very little to IBL(TP),,
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TABLE I. The systems studied and the HSMC running conditihs.

IT (7P

k

In

=; IN(TP),. (6)

p*=Nc®V T(K)® Boxlength Celllength Cube length pf/p*¢

: . (R) R) R)
On the other hand, a reconstructed atom at a relatively “un-

common” position has a very small TP density, contributing 0846 96.53 216 2.40 0.3429 0.75
thereby very strongly to Ibl,(TP), . Furthermore, In(TR)is 0.75 18777 22.49 2:50 0-3569 0.75
most strongly affected by statistical aberratiod¥ in the  an all cases, system size is 216 atoms.
counts of a small TP, where bUnless specified otherwise, the average HSMC run lengt8i50 000 MC
steps per cell.
1 “The HSMC simulation temperature is the liquid temperature.
5|n(TP)k% (T_P) 5(TP)k=ﬁ M_ oM. (7) 9The reduced density in the hemispherical future volumpfis-N¢o®/V;
k k Mot =N;o¥(2/3)7R?.

It is therefore sensible not to allot the same number of MC
steps to each target cell. Preliminary estimates of the TPs can
be determined from counts accumulated during the MGye study systems dfl=216 atoms in the two higheste-
equilibration period, which allows categorization of the ex-qyced densities,p* =0.846 andp* =0.75, atT=96.53 and
tent of d|ff|cu|ty in estimating the different TPS, and devel- 137.77 K’ respective'Ysee Tab|e)| The results aréagair)
opment of a reasonable budgeting of their simulation Iengthseompared with thermodynamic integrati6Fi) values calcu-
Because empty cells are generally “easier” to handle thanated in Paper I. Unless specified otherwise, the HSMC run-
occupied ones, we have considered the empty and occupigfhg conditions adhere to those given in Table I. The MC
cells separately and divided each into about seven difficult)éamme at each reconstructed step was generated in accor-
categories, where the preliminary counting period is congance with the requirement of a minimum of four near
ducted only after the first 5000 equilibration steps. neighbor atoms discussed in the Theory section, and prefer-

Due to the stochastic nature of HSMC, increasing theantial MC sampling was employed in all cases. The TPs for
amount of sampling will systematically improve the estimategccupied cells were calculated according to @y.using the
of $* [Eq. (1.7)] (whenever the sampling is not completely ensemble averaged weighting factor. The length of an MC
convergedl This means that IRl (TP), will systematically  ryn depends on the estimated sampling difficulty of the cor-

increase with increased sampling. Statistical uncertainties ifesponding target cell; therefore, we quote dveragenum-
the countd(if we imagine them to be roughly symmetrically per of MC steps per cell, denotea; .

distributed about the mean vajueend to lower the approxi- We have applied HSMC approximations based Mn

mated values of In(Ti)because the second term in the ex-=5 10, 20, and 40 future atoms. The results f5r=0.846

pansion ofsIn(TP), is always negative, andT=96.53K are presented in Tables Il and Ill and those
for p*=0.75 in Tables IV and V. The averagesfft andS*

1 . .
5In(TP) .~ 5 E(5(T|3)k)2_ 8 given in these tables are averages over the generated samples

1
TP O(TP)y— ——
(TP (TP)i and the reported uncertainties are taken as the standard de-

Thus, a negative fluctuation in the measureq Wil lower ~ Viations of these averages.
dIn(TP), by a greater amount than an equivalent positivea, Results for p*=0.846
fluctuation would raise it, meaning that reduced sampling

will lead to an overestimation of the upper boulsd, Table Il contains results for various approximations for

the configurational Helmholz free enerdy, [Eq. (1.21)]. As
expected, the HSMC results féx,/eN(F*) are lower than
the TI value,F(TI), which is considered to be exact they
To compare the present results to those of Paper I, walso increase systematically as the approximation is im-
applied HSMC to MC samples of Lennard-Jones atdims proved, i.e., in going fronN;=5 to 40. The free energy of
uid argon in the NVT ensemble generated in Paper I. Thus,the best approximationN;=40) underestimates the correct

Ill. RESULTS AND DISCUSSION

TABLE II. HSMC results forp*=0.846 atT=96.53 K2

N; Neonfig. —A./eN(F?) o —A./eN(FB) —A.leN(FMY
5 1871 4.23265) 0.02312)

10 769 4.2001) 0.01915)

20 924 4.1601) 0.01995) 4.1253) 4.1472)
400 389 4.1581) 0.01665) 4.1054) 4.1313)
“Exact” (TI)¢ 4.1201) 4.12Q1) 4.12Q1)
HSGC (4/6)° 4.34645) 0.03315)

¢ is the number of future atoms considereg,nsq is the sample sizeA is the configurational free energy
[Eq. (1.21)], FA is a lower bound of the free energiq. (1.8)], ando™” is its fluctuation[Eq. (1.14)]. F® is an
upper bound of the free energigqgs.(1.9) and(1.10)], andFM?! is the average of* andFB [Eq. (1.13)]; the
statistical error appears in parentheses, 0.(8340.0331+0.0005.

bFor N¢=5, 10, and 20m;=350 000; forN;=40m; is doubled to~700 000 MC steps per cell.

‘Results taken from Tables Il and V of Paper I. Tl stands for the thermodynamic integration results.
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TABLE Ill. HSMC results for the excess free enerdy,, and the excess
-4.15 P entropy,S,, for p*=0.846 atT=96.53 K2
42 // — S, [callK mol)] —F,./T [cal(K mol)]
<« -4.25 N¢ SA gM1L EA M1
B 43 / 5 6.642(3) 8.153(1)
' / 10 6.724(5) 8.073(2)
435 20 6.802(6)  6.857(4) 7.997(2) 7.942(4)
) / 40° 6.839(8)  6.896(5) 7.968(2) 7.902(5)
4.4 . . “Exact” (TI) 6.923(4) 6.923(4) 7.875(3) 7.875(3)
’ 1 10 100 1000 HSGC (4/6) 6.364(3) 8.430(2)
mg 104 33, is defined in Eq.(1.19); F, is defined in Eq.(1.20). S! is calculated
using FM! and the average potential energy. The other quantities are de-

flned in the caption of Table II.

A
FIG. 2. The free energy functionah./eN(F”?) [Eg. (1.21)] vs m;, the is doubled to~700 000 MC steps per cell.

average number of Monte Carlo steps per cell for the approximation basec{nf
on N¢= 20 future atoms.

Table VI of Paper I. Again, the results for the approximations
Sh and F4 improve asN; is increased, where for the best
approximation N;=40) their deviations from the correct
values are~1%, as compared to 7.9% and 7% obtained with
the best approximatiof4/6) in Paper I. The corresponding
deviations of theS¥'! and FM* values are~0.8% for N;
=20, and smaller than 0.3% fét;=40. It should be pointed
out that the entropy value faxX;=5 deviates from the TI

value by no more than 4%, i.e., the lowest approximation
captures 96% of the entropy relative to the ideal gas. This
implies that the per-atom properties of the liquid are largely
determined from the consideration of a region that is within
one “solvation shell” about the target cell. It will be inter-
esting to see how well a treatment of such a small number of
partlcles can perform for other conditions or substances such
as water.

value by only~0.9% as compared to an underestimation of_¢
5.5% of the best result foh./eN(F*) (approximation 4/p
obtained in Paper (see the bottom of Table)ll Moreover,
the latter approximation is inferior even to the worst approxi-
mation in Table Il N;=5), which underestimates the correct
value by ~2.7%. The fluctuation of* that is expected to
vanish for the corredt, as expected, decreases with increas-
ing the approximatioribesides folN;=20); these results are
significantly smaller than the fluctuation of the 4/6 approxi-
mation of Paper I[The “misbehavior” of the fluctuation for
N;=20 is a result of the insufficient sampli{§50 000 MC
steps on averaget each target cell, as discussed |3tal
these results demonstrate that the probability density of thé
system configurations obtained by HSMC is significantly
more accurate that that obtained by HSGC in Paper I.

For the two best approximation$y;=20 and 40, we
have also obtained results féx,/eN(FB) [Egs. (1.9) and
(1.10)] that constitute upper bounds of the correct value. The HSMC results forp*=0.75 in Tables IV and V
However, these results are based on relatively small samplehow the same behavior as those f3r=0.846 discussed
and are characterized by small acceptance rate values of tiabove but, as expected, the accuracy in general is better.
reversed Schmidt procedurdR=0.034 and 0.024[Eq. Thus, the best approximation @./eN(F”) (N;=40) un-
(1.12)]; therefore, the error bars provided fag/eN(FB) are  derestimates the correcXl) value by~0.6% as compared to
probably too low. The corresponding valuesfqf/ eN(FM?1) the ~3.2% deviation obtained by the best result of Paper |,
[Eq. (1.13)] constitute very good approximations, where for where the latter is still larger than thel.6% deviation of the
N¢=20 and 40, they underestimate the correct value by 0.6%vorst HSMC result N;=5). The free energy fluctuations
and 0.18%, respectively. decrease systematically as the approximation improves and

In Table 1l results are presented for the excess entropythey are significantly smaller than the fluctuation obtained
Se [Eq. (1.19)] and the excess free enerdy, [Eqg. (1.20)],  for the best approximation of Paper I, in accord with the
where the results for the average potential energy appear significantly better HSMC results fok./eN(F#) discussed

B. Results for p*=0.75

TABLE IV. HSMC results forp*=0.75 atT=137.77 K2

N; Neonig.  —Ac/eN(F?) o —A./eN(FB)  —A,/eN(FMY) R
5 1296 3.7046) 0.02224) 3.6343) 3.6712) 0.033
10 1052 3.6846) 0.01935) 3.631(4) 3.6582) 0.037
20 810 3.6750) 0.01844) 3.6144) 3.6452) 0.053
40° 292 3.6701) 0.01515) 3.631) 3.6505) 0.079
“Exact” (TI) 3.6451) 3.6451) 3.6451)

HSGC (4/6) 3.76623) 0.03175) 3.6415) 3.7043)

#The various parameters are defined in the caption of TabRi#.the acceptance rate of the reversed Schmidt
procedurd Eq. (1.12)].
my is doubled to~700 000 MC steps per cell.
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TABLE V. HSMC results for the excess free enerfy,, and the excess TABLE VI. Sampling and convergence results for tNe=20, 10, and 5

entropy,S,, for p*=0.75 atT=137.77 K2 approximations op* =0.846 andl =96.53 K2

— S, [cal(K mol)] —F¢/T [cal(K mol)] m; —A./eN(F?) ot Neonfig.

N¢ S svt FA gM1 N;=20
21875 4.38R2) 0.0551) 640
5 4.9563) 5.0103) 3.8761) 3.81873) 29 167 4.3271) 0.04866) 2460
10 4.9904) 5.0334) 3.8411) 3.7954) 43750 4.27Q1) 0.04025) 1504
ng 5.005%4) 5.0564) 3.8261) 3.7724) 58333 4.2401) 0.03424) 5978
a 5.0247) 5.05(1) 3.8162) 378 (1 87 500 4.21265) 0.02904) 2692
Exact” (TI)  5.0563) 3.7722) 175000 4.183%) 0.02254) 1619
HSGC(4/6)  4.8482) 3.98X1) 350000 4.1601) 0.01995) 924
&The various parameters are defined in the caption of Table lIl. 700000 4.16@) 0.01649) 303
my is doubled to~700 000 MC steps per cell. 1400000 4.15@) 0.014515) s
! 3500 000 —4.1562) 0.0132) 119

N;=10
, . ) 350 000 4.20Q1) 0.01915) 769
above. HSMC defines a more accurate probability density for ;40 ggo 4.197) 0.018110) 336
p*=0.75 than forp* =0.846, which is also reflected in the 1400000 4.19Q) 0.016715) 174
larger values of the acceptance re®g,Eq. (1.12)] obtained 3500000 4.192) 0.0133) 69

for p*=0.75 (0.033R<0.079) than forp*=0.846 R N =5
=<0.024), and in the fact that fos* =0.75 the results for 350 000 4.2326) 0.02312) 1871
A./eN(FB) are upper bounds for all the approximations. 700 000 4.2301) 0.02245) 507
The largest deviation oh./eN(FM?!) [Eq. (1.13)] from the 1400 000 4.23©) 0.02367) 260
3500 000 4.22@) 0.0241) 102

correct result is by 0.7%N;=5), where the best resulfor
N¢=40), is equal to the TI value within the error bars. Thesesthe various parameters are defined in Table Il.
results forA./eN(F*) andA./eN(FM?) should be consid-
ered as excellent.

As in Table lll, Table V provides results for the excess
entropy, S, [Eqg. (1.19)] and the excess free enerdy, [Eq.
(1.20)], where the results for the average potential energ
appear in Table VI of Paper |. F&* and F* the results

To check this point further we have also reconstructed
the sample ofp* =0.846 withN;=10 and 5 future atoms,
¥ncreasing m; from 350000 (Table 1) to 700000, 1.4
. = > . X10°, and 3.5<1CP. ForN;=10, A./eN(F") increased by
improve asN; is increased, where for the best apprOX|mat|0n0.008, from—4.200 to the converged value4.192, as com-

(N;=40)S* and F” deviate from the correct values by .
o o : M1 pared to the larger increase of 0.013, frem.169 to—4.156
0.45% and 1.1%, respectively. The results 81! andF observed fol,— 20. On the other hand, fod,—5 the slight

for bothN;=20 and 40 ar | to th rrect val within. . N
t(rjlebeorror Ifaarso and 40 are equal to the correct values increase in the values @f./eN(F*) is within the error bars.,

meaning that the result fan; =350 000(of Table 1) is al-
ready converged. As discussed later, fr=40 increasing
m; to 3.5<10° and treating a small sample has led to a
further increase ofA./eN(F*) from —4.158 to~—4.141;

It is of interest to check the effect on the free energyhowever, because a systematic convergence studyNfor
results by increasingn;, the average number of MC steps =40 is very time consuming we have not pursued this line of
per target cell. Thus, we applied HSMC to the most denseesearch. These results show that\gss increased, the re-
system(p* =0.846 using the approximatiohl;=20 and ten quired number of MC steps pefuture) atom, m;/N;, to
m; values increasing from 21875 to XAC°. Table VI  reach convergence increases as well, e.g., fre®0 000 for
shows that asn; is increasedA./eN(F*) increases as well N¢=5 to 175000 forN;=20. Therefore, the larger fluctua-
in a systematic way from-4.382 (n;=21875) to—4.156 tion for N;=20 than forN;=10 (0.0199 versus 0.0191, re-
(3.5x 10P) reaching a plateau for the larger valuesmf  spectively obtained in Table Il stems from the relatively
[i.e., converging, see Fig. 2 and the discussion related to Egmaller samplemn; /N;, generated foN;= 20; indeed, when
(8). Also, note that any choice ah; is always consistent m; is increased the fluctuations of boithy=20 and 10 de-
with an upper bound$?®, and lower boundF”]. In conjunc-  crease, but they cannot be compared faithfully due to the
tion with the behavior ofA./eN(F”), the fluctuations are large error bars.
also steadily decreasing ams; is increased. Likewise, for The effect of the sample size on the convergence dis-
m¢=87500, the results forA./eN(FB) become upper cussed above for* =0.846 is expected to apply also to the
bounds, and the corresponding values AQr eN(FMY) are  results forp* =0.75, though to a lesser extent, because this
better than their A./eN(F”) counterparts, becoming more dilute system is easier to handle by HSMC. Indeed, the
~—4.14 form;=3.5x 1(P (these results are not shown in the fluctuations in Table Ill decrease monotonicallyMgis in-
table. This suggests that the approximations presented thusreased and their correlation with the corresponding values

C. The effect of the MC sample size

far (i.e., the results in the previous Tables Il-might still  for A./eN(F”) leads to very good approximations for the
be improved by using values a@f; for which convergence free energy, by best-fitting the parameters of &4.5). This
has been obtained. analysis summarized in Table VII, shows that two of the
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TABLE VII. Upper bound and extrapolated values fdy/eN based on the
correlation betweed, and its fluctuatiofEgs. (1.14)—(1.16)].2

It should also be noted that for a system of 216 atoms the
approximation ofFA cannot be improved indefinitely be-
cause of the difference between the periodic boundary con-

—A./eN —A./eN —A./eN —A./eN “ - )

Approx. (FUP) (FM?) (F&) (TN ditions used to simulate the system and calculate its energy,

. ~ E;, and the boundary condition BG4ee Paper)lused to

p*=0.75N=216 .
10,2040 3.661 3.666 3.669 reconstruct the system by HSMC and calculate the probabil-
5,10,20,40 3.646 3.658 3.665 ity density. In particular, for a relatively small system recon-
5,10,40 3.638 3.654 3.663 structed with a largen; , the BC4 boundary conditions might
520,40 3.658 3.664 3.668 be too restrictive; therefor&® might become a lower bound
Average 3.65@)* 3.6613) 3.6451)

andF” an upper bound close to the corréctFor the same

reason, increasiny; beyond a certain valug.e., improving

the approximationmight not lead to the expected decrease
.~ of the fluctuation ofF#, because the fluctuation &" might

=40). F®P is the extrapolated free ener@fq. (1.15)], and Tl stands for h th fth Obvi v th ff, il

the free energy obtained by thermodynamic integration. The values in th&ot approac t_ at of the energy. viously, these effects wi

last row are averages of the results in the corresponding columns, where tifactically vanish for a large system.

average folFM? is taken only over the values that appear with an asterisk.
The presentation of the errors is defined in the caption of Table II.

8P stands for the upper bound Bf[Eq. (1.16)]; only two results are equal
or larger than the correct value, and they are denoted by an asteMsk.
denotes the average free enerdr. (1.16)] betweenF' and FA (N

u
results forA./eN(F"?) are equal or larger than t'\;lf correct \, < MMARY AND CONCLUSIONS
value and the averages of the results Agr eN(F"<) and

A./eN(F®%®), —3.6562) and —3.6613) underestimate the

. In this paper we have developed HSMC—a new variant
correct value by 0.44% and 0.3%, respectively.

of the HS method, which constitutes an alternative to the
HSGC procedure developed in Paper I. The transition prob-
IV. DISCUSSION abilities of HSGC are based on future partition functions

The results obtained with HSMC, in particular those for obtained by systematic numerical integrations over future lo-
A./eN(F?), are significantly better than those obtained with¢al configurations. With HSMC, on the other hand, the TPs
HSGC in Paper I; however, this is achieved with somedre calculated stochastically from canonical MC simulations
price—significantly larger computer time. For example, for©of future atoms by counting their visits to the target cell.
the m; values used in Table II, the number of structuresHSMC is based on a relatively small humber efficiency
reconstructed per dai4 h) are ~128, 107, 80, and 31 for Parameters that are not changed as the number of the future
N;=5, 10, 20, and 40, respectively, using a single Athlonatoms treated is increased; therefore, implementing HSMC
processor of 2.6 GHz. Thus, analyzing hundreds or thoufor a large numbeN; of future atoms(maximum of 40 at-
sands of configurations using HSMC is admittedly moreoms in this study is straightforward. Indeed, excellent re-
computationally demanding than some of the establishegults, even for the lower and upper bounB$, andS*, re-
methods(such as T). It should be noted, however, that the Spectively were obtained. While with HSGC the close
HS approach is quite unique in that it seeks to evaluate thenvironment of the target cell is treated more efficiently than
correct Boltzmann probability densitgenoted here agiB) with HSMC, the number of chemical potential parameters of
related toany individualconfigurationi, estimating the free HSGC grows strongly as the number of future cells or future
energy throughF =E; + kg T In P?, which manifests the fact atoms(or both increase, and their optimization for each ap-
that the fluctuation oF is zero. While, in practic® is not ~ Proximation is mandatory for obtaining improved results for
known exactly, for a good enough approximation the fluctuaS"™. Therefore, in Paper | we have not attempted to examine
tion of FA is small and a relatively small sample is required approximations beyond 4/6, which already has yielded very
for evaluatingF”, the better the approximation the smaller satisfactory results. Finally, it should be pointed out that one
the sample. can envisage HS procedures that are hybrids of HSGC and

In this context it should be pointed out that for the bestHSMC, which might be more efficient than HSGC and
approximations ;=20 or 40Q the accuracy obtained by HSMC individually; such hybrid methods will be studied in
HSMC for InPP of a single liquid configuration is striking. the future.

Here the fluctuations are sméllables Il and 1V, and there- The development of the HSGC and HSMC methods as
fore the uncertainty in the free energy obtained from anyapplied to argon is only the first step in their application to
single configuration is low as well. Thus, if just one configu- more complex fluids, in particular, water. Our goal is to be
ration is analyzed with HSMC usinly; =40, the typical re- able to apply this approach to MC or MD trajectories of a
sult for A./eN(F?) (p* =0.846) will fall somewhere be- peptide or a small protein soaked in a box of water mol-
tween —4.14 and —4.175. If one pursues the single ecules, where the contribution of the polymer chain to the
configuration philosophy further by increasimg (for N; total free energy is calculated by the local states methdd,

=40) from 700000 to 3.5 1CP, a calculation that only re- for example, and that of the water by HSMC. For that HSMC
quires a few hours with an Athlon processor, will give for ais being applied now to the TIP3MRef. 13 potential of

single configuration a very good value betweend.13 and
—4.15.

water, where the first objective is to improve the efficiency of
the MC simulations.
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APPENDIX: DERIVATION OF THE WEIGHTING
FACTOR EXPRESSION

We begin by consideringfor clarity) the probability

density for a single labeled atom, atom No. 1, to be located at

a specific coordinate positior;, during a HSMC simulation
for the reconstruction of an occupidthrge} cell, in the
presence of a fixed partial structure Nf defined atoms.
This probability densityp,(x"k,x'), is given by

Ing-1v, €xi = BE(XMex! ;XN 1) JdxM =

Ty v, €xH — BE(xNxM) JdxNr

pl(XNkixr) =

(A1)

whereB=1/kgT, N; is the number of future atoms, aig is
the future volume in which they moveN«, xNf, andxNi~?
represent the coordinate sets fdf, N¢, andN¢—1 atoms,

R. P. White and H. Meirovitch

1

chbe’

(A4)

dx
[ fl;cubé !

Furthermore, the energy function in this integral is rewritten
as

E(xNi,x ;xNim Yy = E7 (xNi, x" ; xNE 1) + E oo xNioxNi— 1)
(A5)

thus obtaining

f exfd — BE(xNe,x”;xNi~1)]dxNi 1
Nf*l;Vf

1
f f exf — B(E’ (xMNk,x";xNi ™)
Veube J1;cubé N¢—1;V¢

+ EpesOXM XN 1)) XN X

(A6)

respectively. The integral in the denominator is the overall

configuration integral for the building step, where integra-
tions are carried out over the future volume forM}l atoms.
In the numerator, integrations are carried @xer the future
volume for N;—1 atoms with atom No. 1 fixed at the posi-
tion, x'.

We also consider the probabilitP;.ce(XVk,x"), for
atom No. 1 to be located anywhere inside a cuteb€)
centered around the positiox,, which is given by

Ny
Pl;cubé(x k,x’)

T 1:cube S Ny~ 12y, @XH — BE(X Mk xq XM 1) JdxNT ™ dxy

Ing v exd — BE (XN xNt) JdxNe

(A2)
Here, integrations in the numerator involve &ll atoms,

E’ (xN,x";xNt 1) is the energy for all of the pair interactions
of atom No. 1, fixed ak’. In other words, its interactions
with the N, defined atoms and the remainihg—1 future
atoms. E,.(x"k;xN1 71 is the remaining energy of all pair
interactions which do not involve atom No. 1.

We also use a similar energy function,
E.(xNk;x,,xN1 71y, which is the energy for all of the pair
interactions of atom No. 1, but for cases where atom No. 1
could be located anywhere inside cltg, (xVk;x, ,xN171) is
defined by

B xq XM =By (xMoxy M)

however, atom No. 1 ranges only over the smaller volume

inside cubé We will ultimately construct an ensemble aver-
age expression by taking the ratio of E¢8.1) and (A2),
given by

p1(XNk,x")
P cupe (X,X")
Ing-1v, €xd — BE(xM,x;xNe ) JdxNe Tt
S acuved n -1, X — BE(M Xy XM 1) Tdx N L,
(A3)

The numerator in EqtA3) must be rewritten. We begin
with a multiplication of this integral by one in the form
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+ Epes( XN xN 1), (A7)
We now insert one as
1=exg + BE (XN xy X171
X ex — BE1(xMkxy ,xN )], (A8)

into the integral in Eq(A6), and substitute this form of the
integral into the numerator of EGA3). Upon regrouping of

the energy terms, we gain an ensemble average expression
for the Boltzmann factor of the energy difference resulting
from the virtual displacement of atom No. 1 into the exact
location, x’,

P license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 119, No. 23, 15 December 2003 Entropy and free energy of fluids. Il 12105

pl(XNkiX,)
Pl;cubé(XkaX,)
1
V_fl;cube!fofl;vfeXF[_E(E'(XNK,X';XNFl)—El(XNk;Xl,XNf*l))]exr[—,BE(xNk;xl,fofl)]deffldxl
cube
T 1;cuve SN, 1:v, €XFHL = BE(xXMkxg XN 1) JdxN ~ Tdlxy
1 7Nk x/ -y Ni—1 N Ni—1
=y (X = BB (M ) = By (XM X)) D e - (A9)

cu

This ensemble average is accumulated over all cases wheféus the(total) probability density,p;(x"k,x’), is obtained
atom No. 1 is located anywhere in cubdt can be used from
together with Py.upe (X"%,x"), which would be estimated
from the cube counts for atom No. 1, to solve fg(x"k,x").
We are actually interested in tfieotal) probability den- pi XN X") =P gupe (XM, X') v
sity, pi(x"k,x"), wherei is any atom. We note, however, that eube
X (exfd — B(E' (xNk,x";xNi~1)

_Ei(XNk;Xi 1XNf_1))]>i;cubef ) (A14)

pi(XMe,X") = p (XN X") + po (XN X )+ pa(XM X ) 4+ -
=Np1 (XN, x") (A10)

and that where P;. e (XN5,x") is obtained from the counts for any
) Ne '\ — P Nk 3 )+ P... Ny 7 atom being locatedanywherg in cub€ and where the en-
Piseupe (X74X) = P1;cupg (X XT) + Pacupe (X7H4XT) semble average is computed for all of these cases.

+ Pacupe (XK X ) 4+

:prl;cubé(XNkvX/)- (A11)
Thus,
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