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Absolute entropy and free energy of fluids using the hypothetical scanning
method. II. Transition probabilities from canonical Monte Carlo
simulations of partial systems

Ronald P. White and Hagai Meirovitcha)

Center for Computational Biology and Bioinformatics and Department of Molecular Genetics and
Biochemistry, University of Pittsburgh School of Medicine, W1058 BST, Pittsburgh, Pennsylvania 15261

~Received 1 August 2003; accepted 22 September 2003!

A variant of the hypothetical scanning~HS! method for calculating the absolute entropy and free
energy of fluids is developed, as applied to systems of Lennard-Jones atoms~liquid argon!. As in the
preceding paper~Paper I!, a probability Pi approximating the Boltzmann probability of system
configurationi, is calculated with a reconstruction procedure based on adding the atoms gradually
to an initially empty volume, where they are placed in their positions ati; in this process the volume
is divided into cubic cells, which are visited layer-by-layer, line-by-line. At each step a transition
probability ~TP! is calculated and the product of all the TPs leads toPi . At stepk, k21 cells have
already been treated, where among themNk are occupied by an atom. A canonical metropolis Monte
Carlo ~MC! simulation is carried out over a portion of the still unvisited~future! volume thus
providing an approximate representation of theN2Nk as yet untreated~future! atoms. The TP of
target cell k is determined from the number of visits of future atoms to this cell during the
simulation. This MC version of HS, called HSMC, is based on a relatively small number of
efficiencyparameters; their number does not grow and their values are not changed as the number
of the treated future atoms is increased~i.e., as the approximation improves!; therefore,
implementing HSMC for a relatively large number of future atoms~up to 40 in this study! is
straightforward. Indeed, excellent results have been obtained for the free energy and the entropy.
© 2003 American Institute of Physics.@DOI: 10.1063/1.1625920#
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I. INTRODUCTION

In the preceding paper,1 called here Paper I, the hypo
thetical scanning~HS! ~Refs. 2 and 3! method was applied to
a system of Lennard-Jones particles~argon atoms! at differ-
ent densities and temperatures, and very good results
been obtained for the absolute entropy,S, and the absolute
free energy,F. With this method a Monte Carlo~MC! ~Ref.
4! or molecular dynamics~MD! ~Refs. 5 and 6! sample is
analyzed by reconstructing each of the sample’s config
tions step-by-step and calculating the corresponding tra
tion probabilities~TPs!. More specifically, the volume of the
NVT system is divided intoL3 cells, which are visited in a
linear order, row-by-row, layer-by-layer, starting from a
empty volume. The TPs of the empty and occupied cells
calculated and their product leads to an approximation of
Boltzmann probability density. At stepk of the reconstruc-
tion process the system consists of an already visited vol
of k21 cells containingNk atoms and an unvisited~or fu-
ture! volume ofL32k11 cells; one has to calculate the T
of the ‘‘target’’ cell k. Obtaining an exact TP would requir
calculating future partition functions based on all of the co
figurations of theN2Nk remaining future atoms within the
still unvisited future volume in the presence of theNk al-
ready fixed atoms—an unfeasible task for a large syst
Therefore, in Paper I we have calculatedapproximatefuture

a!Author to whom correspondence should be addressed.
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grand partition functions in a gridlike fashion based on up
two future atoms, which can occupy the target cell and
three nearest neighbor future cells. While very satisfact
results have been obtained, we have argued there that fu
improvement is feasible through a consideration of seve
more future cells populated by up to three particles.

However, one would like to be able to apply even bet
approximations, based on a significantly larger number of
future atoms, which might be necessary for treating m
complex systems such as water. Therefore, in this pape
propose an alternative technique for calculating the T
where at each step the future atoms considered are simu
by the Metropolis MC method4 within a limited future vol-
ume around the target cell, and the TP for a vacant~occu-
pied! cell is obtained from the fraction of MC steps fo
which the target cell is vacant~occupied!. Thus, the deter-
ministic grand-canonical treatment of Paper I is replaced
a stochastic procedure carried out within the framework
the canonical ensemble. While the present stochastic pro
produces some noise, the number of future argon ato
treated can be increased dramatically~up to 40 in this study!,
leading to a significant improvement in the accuracy for
lower and upper bounds ofFA and the results forSA as
compared to those obtained in Paper I.

To distinguish between the two methods we name
grand-canonical~GC! HS procedure of Paper I, HSGC, an
the present Monte Carlo-based HS technique, HSMC.
described in Paper I, HSGC requires optimization of a re
6 © 2003 American Institute of Physics
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12097J. Chem. Phys., Vol. 119, No. 23, 15 December 2003 Entropy and free energy of fluids. II
tively large number of chemical potential and temperat
parameters. In this respect HSMC is much simpler a
straightforward because the number of parameters to be
timized is minimal, and the number of atoms is consta
However, to make HSMC efficient a well suited MC proce
should be applied and the main part of the next section
devoted to discussing this process.

The HSMC method is based on the HS theory develo
in Paper I. We assume that the reader is familiar with
philosophy of the HS method and the details of its step-
step reconstruction procedure~in particular, the BC4 bound
ary conditions! described in the Introduction and Methods
Paper I. For clarity the numbers of equations of Paper I
ferred to in this paper will be preceded by the letter I. F
comparison we apply HSMC to a system of 216 argon ato
in the two highest densities studied in Paper I.

II. THEORY AND IMPLEMENTATION

As mentioned above, with HSMC~as with HSGC in
Paper I! we seek to calculate the entropy from a sample
argon configurations simulated by MC or MD in the fram
work of theNVT ensemble. The crux of the HSMC metho
is the new way for calculating the TPs for a vacant or
occupied target cell at each step of the HS reconstruc
process. Thus, at stepk a fixed partial structure is defined b
the atoms and vacant cells reconstructed in previous st
To define the TP of target cellk, we consider a nearby regio
~a portion of the total future volume that contains the tar
cell! and place within it a number,Nf , of movable future
atoms. These future atoms, which interact with each o
and with the atoms of the fixed structure, are moved wit
this limited region by a Metropolis MC simulation. The TP
determined from the number of visits of the future atoms
the target cell counted during the MC simulation.

A. A basic HSMC procedure

To calculate a TP we denote byM tot the total number of
attemptedmoves~steps! in the MC run for thekth target cell
and byM cell the number of MC steps in which a future ato
is located in the target cell; the probabilityP1(P2) for the
target cell being occupied~vacant! is estimated by

P15
M cell

M tot
, P2512P1. ~1!

Moreover, for an occupied target cell we need to calcul
the TP density of the atom to be at the specific atom loca
exhibited in the configuration. In Paper I, the cell was
vided into smaller subcells termed cubes; here, we ce
such a cube at the atom position, and count the numbe
times an atom was observed in this cube during the
simulation. From these counts we estimate the TP densityrm

@compare with Eq.~I.26!#,

rm5P1S M cube

M cell
D S 1

Vcube
D5S M cube

M tot
D S 1

Vcube
D , ~2!
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whereVcubeis the cube volume andM cubeis the total number
of counts observed in the cube. In this equation the proba
ity density over the cube volume is assumed to be uniform
condition, which will be changed later.

The total product of all of the (TP)k , the transition prob-
ability densitiesrm and the transition probabilities for th
empty cells, provides an estimate for the probability dens
of the configuration. The protocol described here@as in Paper
I, Eq. ~I.29!# yields,

)
k

~TP!k5N!r~xN,Nf ,a!'N!
exp@2E~xN!/kBT#

ZN
,

~3!

where r(xN,,Nf ,a) is an approximate probability densit
that depends on the number of future atoms,Nf , and a set of
parameters,a; xN is a 3N vector of the Cartesian coordinate
of the N atoms.@Notice thatNf , appearing in Eq.~3! above
replaces the number of future cells,f in Eq. ~I.29! defined for
the HSGC procedure in Paper I.# The ~Boltzmann! average
of the log of this estimate for each configuration leads to
functional,SA @Eq. ~I.7!# that is an upper bound for the co
rect entropy.

B. The simulation region

At stepk, Nf future atoms are simulated in the vicinit
of the target cellk. More specifically, the future atoms mov
in a portion,Vf , of the total future volume, which include
the target cell and a nearby region. The geometry of t
region is partially determined by thek21 previously visited
cells that are excluded. In accordance with the homogene
boundary conditions, BC4, described in Paper I, bound
cells, vacant or containing fixed image atoms are also trea
as previously visited. Thus, excluded for the future ato
are:~1! the layers ‘‘below’’ the current layer where the targ
cell resides~i.e., those in the2z direction!, ~2! the rows of
the current layer already visited by the reconstruction proc
~in the 2y direction!, and~3! the part of the already treate
current row~in the 2x direction!. Defining the center of the
target cell as the origin of the coordinates, the1x, 1y, and
1z directions all point toward the future volume. A two
dimensional representation of the simulation region is sho
in Fig. 1.

To keep the future atoms close to the target cell, they
restricted by an infinitely repulsive hemispherical shell
radius Rc measured from the center of the target cell~see
Fig. 1!. The volume of this region is somewhat arbitrary, b
it should be close to the average volume occupied byNf

particles in the liquid. We generally chooseRc such that the
density of the future atoms in the hemispherical volume
75% of the actual liquid density.

C. The basic Monte Carlo simulation

In its simplest form, the simulation of the future atoms
carried out by the standard Metropolis MC method4 within
the restricted future volume. Thus, a trial move is genera
by selecting a future atom at random and displacing it
random within a small Cartesian cube. All of the interactio
between the displaced atom and the other movable fu
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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12098 J. Chem. Phys., Vol. 119, No. 23, 15 December 2003 R. P. White and H. Meirovitch
atoms and the atoms in the fixed partial structure~within the
cutoff distance of 10.8 Å—half the box length; as in Pape!
are calculated before and after the trial move which is
cepted or rejected according to the standard Metropolis
terion. A move that would carry a future atom outside of t
future volume defined above is rejected.

The initial configuration of the future atoms is generat
randomly within the hemispherical future volume, and t
atoms are then subjected to an equilibration period du
which the step size is periodically adjusted to achieve
proximately 50% acceptance. Following the equilibration p
riod, counts inside the target cell and inside the cube
accumulated after every attempted move. To increase
ciency several enhancements have been applied as disc
below.

D. The ‘‘near neighbor rule’’

Because the number,Nf , of future atoms treated is rela
tively small and the future volume beyond the hemispher
region is empty, simulating these atoms can lead to an in
mogeneous environment~especially near the boundarie!
typified by expanded on partially evaporated structures
would like, as much as possible, to emulate the liquidl
environment around the target cell and not have the tra
tion probabilities strongly influenced by such surface effec
This can partially be achieved by varying the radiusRc or
optimizing the temperature to minimize the entropy fun
tional, SA as was done in Paper I.

It should be noted however, that simply choosing a sm
constraining volume is undesirable. Given the same c
straining value,Rc , there can still be great variability in th
effective amount of~energetically accessible! volume avail-
able to the future atoms from one reconstruction step to

FIG. 1. A two-dimensional~2D! illustration of thekth step of the HSMC
reconstruction procedure. The 2D ‘‘volume’’ is divided into cells, wherek
21 of them have already been considered in previous steps; only thek
21 cells are shown in the figure. A cell can include the coordinates of o
a single atom. Thus, these cells can be divided into two groups, the e
ones and theNk cells occupied by previously reconstructed atoms~denoted
by full black circles!, which are kept fixed at their positions.~Some of these
cells/atoms could be image cells/atoms defined by the BC4 boundary
ditions.! The partial future 2D volume considered (Vf) is defined by a half-
circle, which includes the target cell,k, depicted by dotted lines. This futur
volume contains theNf future atoms~denoted by full gray circles! that are
moved during the Monte Carlo simulation. These atoms can visit the ta
cell k and their counts in this cell lead to the transition probability of
empty cell or the transition probability density of an occupied one.
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other. For example, the neighboring previously defined
oms can at times be positioned toward the ‘‘outside edge’
their ~previously defined! cells. In these cases their van d
Waals radii extend well into the future volume making
appreciable fraction of this volume energetically inacc
sible. At other times, the previously defined atoms can
average be backed away from the edges of their cells lea
a much larger proportion of the future volume accessible
the future atoms. A small constraining volume, that wou
more effectively suppress evaporation in the latter ca
would be completely inappropriate for the former case d
the high energy compressed environment it would create.
this reason, the constraining volume must always be cho
to give a future atom density~within the hemispherical future
volume! that is somewhat less than the liquid density. Y
despite this, we would like the future atoms to behave s
that the local density in the vicinity of the target cell is clo
to the true liquid density.

We have found that an effective remedy to this proble
is to implement what we call a ‘‘near neighbor rule.’’ Th
goal is to make the limited number of future atoms~with its
inevitable surface! look like it was ‘‘carved out’’ of a real
bulk liquid environment. The environment around any sing
atom in a bulk solid of many substances contains 12 n
neighbors. The situation changes somewhat for the liq
but it is still reasonable to imagine that an atom will ha
close to this number of near neighbors, especially if o
increases the definition of the near neighbor distance to a
for stretched pair separations. Thus, if the future atoms w
a sample ‘‘carved out’’ of the bulk liquid, one would expe
the surface atoms of this sample to have at least a few
neighbors~in the sample!. Therefore, in our MC simulation
we impose that every future atom must have a minim
number,nnmin , of near neighbors, defined by a separation
r nn or less. Any MC trial move that would cause a violatio
of this condition is simply rejected. In practice the number
additional rejections due to this rule is small, therefore
mobility of the future atoms will not be drastically reduce

Reasonable values fornnmin and r nn can be easily cho-
sen through a consideration of simple physical properties
the liquid system. A reasonable choice forr nn is anywhere in
the vicinity of the first minimum in the radial distribution
function. Thus, for argon, we definer nn55 Å, and most
commonly usennmin54, where the choices,nnmin53 or 5
also work well. Note that these choices are consistent w
the;5–8 near neighbors that should be expected to be m
ing ~for a surface atom! after the sample of future atoms
‘‘carved out’’ of the bulk.

The near neighbor rule has the desirable effect of ke
ing the future atoms intact and lessens the importance of
hemispherical constraining shell, in that there are fewer
counters with it. This widens the range of reasonable cho
for Rc . For example, very similar results are obtained wh
the density in the~hemispherical! future volume is varied in
the range of 0.4–0.8 times the liquid density. Furthermo
because the atoms tend to stay ‘‘condensed’’ at all temp
tures, the optimal simulation temperature is nearly identi
to the real liquid temperature. In other words, one can sim
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choose the liquid temperature as the HSMC simulation te
perature.

E. Utilization of an ensemble averaged
weighting factor

We have found that the performance of HSMC
strongly sensitive to the choice of the cube size. As has b
pointed out earlier, Eq.~2! is based on a uniform probabilit
density over the entire cube. Given the likelihood~in con-
tinuum fluids! for repulsive van der Waals overlaps upon
small change in a atom position, it should not be surpris
that the assumption of a uniform probability density w
eventually prevent further improvement in the results.
have found, for example, that halving the cube volume co
pared to the typical volume used in the HSGC calculatio
results in significantly lowerSA values. Complications are
encountered, however, if one tries to make this volume
tremely small, because the counts accumulated in the c
become statistically unreliable. Here we describe a sim
prescription which allows one to determine more accura
the probability density at a specific point, that in our case
the exact location of an atom at the center of the cube, w
out using extremely small cube sizes which would scarify
cube counts.

It is helpful to use a more refined notation for the tra
sition probability density,rm @Eq. ~2!#; here it is written as
r i(x

Nk,x8). This is the probability density for any futur
atom, i, to be located at the~exact! position, x8, the exact
location of the atom to be reconstructed in the target c
where the configuration of the previously determinedNk at-
oms isxNk; it should be pointed out that from now onNk

also includes the fixed image atoms at stepk. As in the sim-
plest form of the implementation described above, a c
~cube8! is centered around point,x8. Counts are accumulate
in cube8 during the MC simulation, and the probability
determined for cube8 to be occupied by any future atom,i.
We write this probability explicitly here asPi ;cube8(x

Nk,x8).
Over the course of the simulation, the following modi

cation is introduced. Every time an atomi is recorded in
cube8, we imagine a virtual displacement, which transport
to the exact location,x8 ~keeping all other atoms fixed!. The
energy,E8(xNk,x8;xNf21), is calculated for all of the pair
interactions of the displaced atom, atx8. That is, its interac-
tions with theNk defined atoms and the remainingNf21
future atoms. This energy is compared wit
Ei(x

Nk;xi ,xNf21), the corresponding ‘‘undisplaced’’ energ
value of atom,i, as it appears in the HSMC simulation. Th
Boltzmann factor for this energy difference is ensemble
eraged over all cases where an atom is located anywhe
cube8. With this ensemble average, the transition probabi
density,r i(x

Nk,x8), can be computed as

r i~xNk,x8!5Pi ;cube8~xNk,x8!
1

Vcube

3^exp@2~E8~xNk,x8;xNf21!

2Ei~xNk;xi ,xNf21!!/kBT#& i ;cube8 . ~4!
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It is seen that the ensemble average acts as a weigh
factor, which corrects the coarser estimate given forrm in
Eq. ~2!. Unsurprisingly, typical values for the ensemble a
erage are on the order of 1. These corrections are impor
however. They provide a far more accurate and effici
means to obtain the transition probability and improve
overall results significantly. A detailed derivation of Eq.~4!
is given in the Appendix.

F. Preferential Monte Carlo sampling

Another way to significantly improve the HSMC resul
is to employ preferential sampling in the MC simulation,7–10

a procedure that is commonly used in simulations of a so
in solution. Because solution properties are most stron
determined by the nearby environment of the solute m
ecule, it can be very beneficial to invest more computatio
resources on moving solvent molecules that are in the vi
ity of the solute. A very similar situation occurs with HSMC
where the most important atoms to be moved are the clo
ones to the target cell. These atoms most directly determ
the cell and cube counts@M cell andM cube, see Eqs.~1! and
~2!, respectively#, and sampling them more frequently indee
has provided a substantial enhancement in the reliability
the counting statistics.

A variety of forms of preferential sampling procedur
are available, where their common feature is that the nor
Metropolis acceptance criteria must be changed to prop
account for the preferential~i.e., more frequent! trial prob-
abilities given to the atoms close to certain locations of
terest. The schemes given in Ref. 7 are relatively easy
implement and the appropriate references therein can be
sulted for details. We have used the smooth preferen
weighting scheme of Owicki,8 in which the trial probability
is weighted by a smooth function in the form

f ~r !51/~r y1c!, ~5!

wherey is a constant often chosen to be an integer andc is a
constant that sometimes is taken to be zero; in our caser is
the distance of the atom from the center of the target c
Using c50, this distance can approach zero as an at
comes very close to the center of the target cell, thus cau
a complete dominance of the weighting by this atom unti
moves away.~This scenario does not arise in applicatio
where r is a solvent–solute distance, because the van
Waals repulsion keepsr from becoming small.! For this rea-
son, we usec.0. We have found that for argony52 works
very well along with values forc within the range 2–4 Å2

~where r is in Å!. Alternatively, we have also used a 1/r 2

weighting that becomes flat for values ofr 2 that are less than
;3 Å2.

G. Effects of sampling convergence

The magnitude of the cells’ TPs~or TP densities! can
vary considerably. The TP of an empty target cell that
mostly covered by a van der Waals overlap~from a nearby
atom in a previously defined cell! is relatively large~close to
1!, thus contributing very little to lnPk(TP)k ,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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lnF)
k

~TP!kG5(
k

ln~TP!k . ~6!

On the other hand, a reconstructed atom at a relatively ‘‘
common’’ position has a very small TP density, contributi
thereby very strongly to lnPk(TP)k . Furthermore, ln(TP)k is
most strongly affected by statistical aberrations,dMk in the
counts of a small TP, where

d ln~TP!k'
1

~TP!k
d~TP!k5

1

~TP!k

1

M tot
dMk . ~7!

It is therefore sensible not to allot the same number of M
steps to each target cell. Preliminary estimates of the TPs
be determined from counts accumulated during the M
equilibration period, which allows categorization of the e
tent of difficulty in estimating the different TPs, and deve
opment of a reasonable budgeting of their simulation leng
Because empty cells are generally ‘‘easier’’ to handle th
occupied ones, we have considered the empty and occu
cells separately and divided each into about seven diffic
categories, where the preliminary counting period is c
ducted only after the first 5000 equilibration steps.

Due to the stochastic nature of HSMC, increasing
amount of sampling will systematically improve the estima
of SA @Eq. ~I.7!# ~whenever the sampling is not complete
converged!. This means that lnPk(TP)k will systematically
increase with increased sampling. Statistical uncertaintie
the counts~if we imagine them to be roughly symmetrical
distributed about the mean value! tend to lower the approxi-
mated values of ln(TP)k because the second term in the e
pansion ofd ln(TP)k is always negative,

d ln~TP!k'
1

~TP!k
d~TP!k2

1

~TP!k
2

1

2
~d~TP!k!

2. ~8!

Thus, a negative fluctuation in the measured TPk will lower
d ln(TP)k by a greater amount than an equivalent posit
fluctuation would raise it, meaning that reduced sampl
will lead to an overestimation of the upper bound,SA.

III. RESULTS AND DISCUSSION

To compare the present results to those of Paper I,
applied HSMC to MC samples of Lennard-Jones atoms~liq-

uid argon! in the NVT ensemble generated in Paper I. Thus ct
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we study systems ofN5216 atoms in the two highest~re-
duced! densities,r*50.846 andr*50.75, atT596.53 and
137.77 K, respectively~see Table I!. The results are~again!
compared with thermodynamic integration~TI! values calcu-
lated in Paper I. Unless specified otherwise, the HSMC r
ning conditions adhere to those given in Table I. The M
sample at each reconstructed step was generated in a
dance with the requirement of a minimum of four ne
neighbor atoms discussed in the Theory section, and pre
ential MC sampling was employed in all cases. The TPs
occupied cells were calculated according to Eq.~4! using the
ensemble averaged weighting factor. The length of an M
run depends on the estimated sampling difficulty of the c
responding target cell; therefore, we quote theaveragenum-
ber of MC steps per cell, denoted,mf .

We have applied HSMC approximations based onNf

55, 10, 20, and 40 future atoms. The results forr*50.846
andT596.53 K are presented in Tables II and III and tho
for r*50.75 in Tables IV and V. The averages ofFA andSA

given in these tables are averages over the generated sam
and the reported uncertainties are taken as the standard
viations of these averages.

A. Results for r*Ä0.846

Table II contains results for various approximations f
the configurational Helmholz free energy,Ac @Eq. ~I.21!#. As
expected, the HSMC results forAc /eN(FA) are lower than
the TI value,F(TI), which is considered to be exact the
also increase systematically as the approximation is
proved, i.e., in going fromNf55 to 40. The free energy o
the best approximation (Nf540) underestimates the corre

TABLE I. The systems studied and the HSMC running conditions.a,b

r* 5Ns3/V T (K) c Box length
~Å!

Cell length
~Å!

Cube length
~Å!

r f* /r* d

0.846 96.53 21.6 2.40 0.3429 0.75
0.75 137.77 22.49 2.50 0.3569 0.75

aIn all cases, system size is 216 atoms.
bUnless specified otherwise, the average HSMC run length is;350 000 MC
steps per cell.

cThe HSMC simulation temperature is the liquid temperature.
dThe reduced density in the hemispherical future volume isr f* 5Nfs

3/Vf

5Nfs
3/(2/3)pRc

3.
y

TABLE II. HSMC results forr*50.846 atT596.53 K.a

Nf nconfig. 2Ac /eN(FA) sA 2Ac /eN(FB) 2Ac /eN(FM1)

5 1871 4.2328~5! 0.0231~2!
10 769 4.200~1! 0.0191~5!
20 924 4.169~1! 0.0199~5! 4.125~3! 4.147~2!
40b 389 4.158~1! 0.0166~5! 4.105~4! 4.131~3!
‘‘Exact’’ ~TI!c 4.120~1! 4.120~1! 4.120~1!
HSGC ~4/6!c 4.3464~5! 0.0331~5!

aNf is the number of future atoms considered,nconfig is the sample size,Ac is the configurational free energ
@Eq. ~I.21!#, FA is a lower bound of the free energy@Eq. ~I.8!#, andsA is its fluctuation@Eq. ~I.14!#. FB is an
upper bound of the free energy@Eqs.~I.9! and ~I.10!#, andFM1 is the average ofFA andFB @Eq. ~I.13!#; the
statistical error appears in parentheses, 0.0331~5!50.033160.0005.

bFor Nf55, 10, and 20mf5350 000; forNf540mf is doubled to;700 000 MC steps per cell.
cResults taken from Tables III and V of Paper I. TI stands for the thermodynamic integration results.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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value by only;0.9% as compared to an underestimation
5.5% of the best result forAc /eN(FA) ~approximation 4/6!
obtained in Paper I~see the bottom of Table II!. Moreover,
the latter approximation is inferior even to the worst appro
mation in Table II (Nf55), which underestimates the corre
value by;2.7%. The fluctuation ofFA that is expected to
vanish for the correctF, as expected, decreases with incre
ing the approximation~besides forNf520); these results ar
significantly smaller than the fluctuation of the 4/6 appro
mation of Paper I.@The ‘‘misbehavior’’ of the fluctuation for
Nf520 is a result of the insufficient sampling~350 000 MC
steps on average! at each target cell, as discussed later.# All
these results demonstrate that the probability density of
system configurations obtained by HSMC is significan
more accurate that that obtained by HSGC in Paper I.

For the two best approximations,Nf520 and 40, we
have also obtained results forAc /eN(FB) @Eqs. ~I.9! and
~I.10!# that constitute upper bounds of the correct val
However, these results are based on relatively small sam
and are characterized by small acceptance rate values o
reversed Schmidt procedure,R50.034 and 0.024@Eq.
~I.12!#; therefore, the error bars provided forAc /eN(FB) are
probably too low. The corresponding values ofAc /eN(FM1)
@Eq. ~I.13!# constitute very good approximations, where f
Nf520 and 40, they underestimate the correct value by 0
and 0.18%, respectively.

In Table III results are presented for the excess entro
Se @Eq. ~I.19!# and the excess free energy,Fe @Eq. ~I.20!#,
where the results for the average potential energy appe

FIG. 2. The free energy functional,Ac /eN(FA) @Eq. ~I.21!# vs mf , the
average number of Monte Carlo steps per cell for the approximation b
on Nf520 future atoms.
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Table VI of Paper I. Again, the results for the approximatio
Se

A and Fe
A improve asNf is increased, where for the be

approximation (Nf540) their deviations from the correc
values are;1%, as compared to 7.9% and 7% obtained w
the best approximation~4/6! in Paper I. The correspondin
deviations of theSe

M1 and Fe
M1 values are,;0.8% for Nf

520, and smaller than 0.3% forNf540. It should be pointed
out that the entropy value forNf55 deviates from the TI
value by no more than 4%, i.e., the lowest approximat
captures 96% of the entropy relative to the ideal gas. T
implies that the per-atom properties of the liquid are larg
determined from the consideration of a region that is with
one ‘‘solvation shell’’ about the target cell. It will be inter
esting to see how well a treatment of such a small numbe
particles can perform for other conditions or substances s
as water.

B. Results for r*Ä0.75

The HSMC results forr*50.75 in Tables IV and V
show the same behavior as those forr*50.846 discussed
above but, as expected, the accuracy in general is be
Thus, the best approximation ofAc /eN(FA) (Nf540) un-
derestimates the correct~TI! value by;0.6% as compared to
the ;3.2% deviation obtained by the best result of Pape
where the latter is still larger than the;1.6% deviation of the
worst HSMC result (Nf55). The free energy fluctuation
decrease systematically as the approximation improves
they are significantly smaller than the fluctuation obtain
for the best approximation of Paper I, in accord with t
significantly better HSMC results forAc /eN(FA) discussed

ed

TABLE III. HSMC results for the excess free energy,Fe , and the excess
entropy,Se , for r*50.846 atT596.53 K.a

Nf

2Se @cal/~K mol)] 2Fe /T @cal/~K mol)]

SA SM1 FA FM1

5 6.642~3! 8.153~1!
10 6.724~5! 8.073~2!
20 6.802~6! 6.857~4! 7.997~2! 7.942~4!
40b 6.839~8! 6.896~5! 7.968~2! 7.902~5!
‘‘Exact’’ ~TI! 6.923~4! 6.923~4! 7.875~3! 7.875~3!
HSGC ~4/6! 6.364~3! 8.430~2!

aSe is defined in Eq.~I.19!; Fe is defined in Eq.~I.20!. SM1 is calculated
using FM1 and the average potential energy. The other quantities are
fined in the caption of Table II.

bmf is doubled to;700 000 MC steps per cell.
idt
TABLE IV. HSMC results forr*50.75 atT5137.77 K.a

Nf nconfig. 2Ac /eN(FA) sA 2Ac /eN(FB) 2Ac /eN(FM1) R

5 1296 3.7045~6! 0.0222~4! 3.638~3! 3.671~2! 0.033
10 1052 3.6845~6! 0.0193~5! 3.631~4! 3.658~2! 0.037
20 810 3.6759~6! 0.0184~4! 3.614~4! 3.645~2! 0.053
40b 292 3.670~1! 0.0151~5! 3.63~1! 3.650~5! 0.079
‘‘Exact’’ ~TI! 3.645~1! 3.645~1! 3.645~1!
HSGC ~4/6! 3.7662~3! 0.0317~5! 3.641~5! 3.704~3!

aThe various parameters are defined in the caption of Table II.R is the acceptance rate of the reversed Schm
procedure@Eq. ~I.12!#.

bmf is doubled to;700 000 MC steps per cell.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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above. HSMC defines a more accurate probability density
r*50.75 than forr*50.846, which is also reflected in th
larger values of the acceptance rate,R @Eq. ~I.12!# obtained
for r*50.75 (0.033<R<0.079) than for r*50.846 (R
<0.024), and in the fact that forr*50.75 the results for
Ac /eN(FB) are upper bounds for all the approximation
The largest deviation ofAc /eN(FM1) @Eq. ~I.13!# from the
correct result is by 0.7% (Nf55), where the best result~for
Nf540), is equal to the TI value within the error bars. The
results forAc /eN(FA) and Ac /eN(FM1) should be consid-
ered as excellent.

As in Table III, Table V provides results for the exce
entropy,Se @Eq. ~I.19!# and the excess free energy,Fe @Eq.
~I.20!#, where the results for the average potential ene
appear in Table VI of Paper I. ForSA and FA the results
improve asNf is increased, where for the best approximati
(Nf540) SA and FA deviate from the correct values b
0.45% and 1.1%, respectively. The results forSM1 andFM1

for bothNf520 and 40 are equal to the correct values with
the error bars.

C. The effect of the MC sample size

It is of interest to check the effect on the free ener
results by increasing,mf , the average number of MC step
per target cell. Thus, we applied HSMC to the most de
system~r*50.846! using the approximationNf520 and ten
mf values increasing from 21 875 to 3.53106. Table VI
shows that asmf is increased,Ac /eN(FA) increases as wel
in a systematic way from24.382 (mf521 875) to24.156
(3.53106) reaching a plateau for the larger values ofmf

@i.e., converging, see Fig. 2 and the discussion related to
~8!. Also, note that any choice ofmf is always consisten
with an upper bound,SA, and lower boundFA]. In conjunc-
tion with the behavior ofAc /eN(FA), the fluctuations are
also steadily decreasing asmf is increased. Likewise, fo
mf>87 500, the results forAc /eN(FB) become upper
bounds, and the corresponding values forAc /eN(FM1) are
better than their Ac /eN(FA) counterparts, becoming
;24.14 formf53.53106 ~these results are not shown in th
table!. This suggests that the approximations presented
far ~i.e., the results in the previous Tables II–V! might still
be improved by using values ofmf for which convergence
has been obtained.

TABLE V. HSMC results for the excess free energy,Fe , and the excess
entropy,Se , for r*50.75 atT5137.77 K.a

Nf

2Se @cal/~K mol)] 2Fe /T @cal/~K mol)]

SA SM1 FA FM1

5 4.956~3! 5.010~3! 3.876~1! 3.818~3!
10 4.990~4! 5.033~4! 3.841~1! 3.795~4!
20 5.005~4! 5.056~4! 3.826~1! 3.772~4!
40b 5.024~7! 5.05 ~1! 3.816~2! 3.78 ~1!
‘‘Exact’’ ~TI! 5.056~3! 3.772~2!
HSGC ~4/6! 4.848~2! 3.981~1!

aThe various parameters are defined in the caption of Table III.
bmf is doubled to;700 000 MC steps per cell.
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To check this point further we have also reconstruc
the sample ofr*50.846 with Nf510 and 5 future atoms
increasing mf from 350 000 ~Table II! to 700 000, 1.4
3106, and 3.53106. For Nf510, Ac /eN(FA) increased by
0.008, from24.200 to the converged value24.192, as com-
pared to the larger increase of 0.013, from24.169 to24.156
observed forNf520. On the other hand, forNf55 the slight
increase in the values ofAc /eN(FA) is within the error bars.,
meaning that the result formf5350 000~of Table II! is al-
ready converged. As discussed later, forNf540 increasing
mf to 3.53106 and treating a small sample has led to
further increase ofAc /eN(FA) from 24.158 to;24.141;
however, because a systematic convergence study forNf

540 is very time consuming we have not pursued this line
research. These results show that asNf is increased, the re
quired number of MC steps per~future! atom, mf /Nf , to
reach convergence increases as well, e.g., from;60 000 for
Nf55 to 175 000 forNf520. Therefore, the larger fluctua
tion for Nf520 than forNf510 ~0.0199 versus 0.0191, re
spectively! obtained in Table II stems from the relative
smaller sample,mf /Nf , generated forNf520; indeed, when
mf is increased the fluctuations of bothNf520 and 10 de-
crease, but they cannot be compared faithfully due to
large error bars.

The effect of the sample size on the convergence
cussed above forr*50.846 is expected to apply also to th
results forr*50.75, though to a lesser extent, because t
more dilute system is easier to handle by HSMC. Indeed,
fluctuations in Table III decrease monotonically asNf is in-
creased and their correlation with the corresponding val
for Ac /eN(FA) leads to very good approximations for th
free energy, by best-fitting the parameters of Eq.~I.15!. This
analysis summarized in Table VII, shows that two of t

TABLE VI. Sampling and convergence results for theNf520, 10, and 5
approximations ofr*50.846 andT596.53 K.a

mf 2Ac /eN(FA) sA nconfig.

Nf520
21 875 4.382~2! 0.055~1! 640
29 167 4.327~1! 0.0486~6! 2460
43 750 4.270~1! 0.0402~5! 1504
58 333 4.241~1! 0.0342~4! 2278
87 500 4.2129~6! 0.0290~4! 2692

175 000 4.1839~6! 0.0225~4! 1619
350 000 4.169~1! 0.0199~5! 924
700 000 4.162~1! 0.0160~9! 303

1 400 000 4.158~2! 0.0145~15! 131
3 500 000 24.156~2! 0.013~2! 119

Nf510
350 000 4.200~1! 0.0191~5! 769
700 000 4.197~1! 0.0181~10! 336

1 400 000 4.193~1! 0.0167~15! 174
3 500 000 4.192~2! 0.013~3! 69

Nf55
350 000 4.2328~5! 0.0231~2! 1871
700 000 4.232~1! 0.0224~5! 507

1 400 000 4.231~2! 0.0236~7! 260
3 500 000 4.229~3! 0.024~1! 102

aThe various parameters are defined in Table II.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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results forAc /eN(Fup) are equal or larger than the corre
value and the averages of the results forAc /eN(FM2) and
Ac /eN(Fextp), 23.656~2! and 23.661~3! underestimate the
correct value by 0.44% and 0.3%, respectively.

IV. DISCUSSION

The results obtained with HSMC, in particular those f
Ac /eN(FA), are significantly better than those obtained w
HSGC in Paper I; however, this is achieved with som
price—significantly larger computer time. For example,
the mf values used in Table II, the number of structur
reconstructed per day~24 h! are;128, 107, 80, and 31 fo
Nf55, 10, 20, and 40, respectively, using a single Athl
processor of 2.6 GHz. Thus, analyzing hundreds or th
sands of configurations using HSMC is admittedly mo
computationally demanding than some of the establis
methods~such as TI!. It should be noted, however, that th
HS approach is quite unique in that it seeks to evaluate
correct Boltzmann probability density~denoted here asPi

B)
related toany individualconfigurationi, estimating the free
energy throughF5Ei1kBT ln Pi

B , which manifests the fac
that the fluctuation ofF is zero. While, in practicePi

B is not
known exactly, for a good enough approximation the fluct
tion of FA is small and a relatively small sample is requir
for evaluatingFA, the better the approximation the small
the sample.

In this context it should be pointed out that for the be
approximations (Nf520 or 40! the accuracy obtained b
HSMC for lnPi

B of a single liquid configuration is striking
Here the fluctuations are small~Tables II and IV!, and there-
fore the uncertainty in the free energy obtained from a
single configuration is low as well. Thus, if just one config
ration is analyzed with HSMC usingNf540, the typical re-
sult for Ac /eN(FA) (r* 50.846) will fall somewhere be-
tween 24.14 and 24.175. If one pursues the sing
configuration philosophy further by increasingmf ~for Nf

540) from 700 000 to 3.53106, a calculation that only re-
quires a few hours with an Athlon processor, will give for
single configuration a very good value between24.13 and
24.15.

TABLE VII. Upper bound and extrapolated values forAc /eN based on the
correlation betweenAc and its fluctuation@Eqs.~I.14!–~I.16!#.a

Approx.
2Ac /eN

(Fup)
2Ac /eN

(FM2)
2Ac /eN
(Fextp)

2Ac /eN
(TI)

r*50.75N5216
10,20,40 3.661 3.666 3.669
5,10,20,40 3.646* 3.658* 3.665
5,10,40 3.638* 3.654* 3.663
5,20,40 3.658 3.664 3.668
Average 3.656~2!* 3.661~3! 3.645~1!

aFup stands for the upper bound ofF @Eq. ~I.16!#; only two results are equa
or larger than the correct value, and they are denoted by an asterisk.FM2

denotes the average free energy@Eq. ~I.16!# betweenFup and FA (Nf

540). Fextp is the extrapolated free energy@Eq. ~I.15!#, and TI stands for
the free energy obtained by thermodynamic integration. The values in
last row are averages of the results in the corresponding columns, whe
average forFM2 is taken only over the values that appear with an aster
The presentation of the errors is defined in the caption of Table II.
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It should also be noted that for a system of 216 atoms
approximation ofFA cannot be improved indefinitely be
cause of the difference between the periodic boundary c
ditions used to simulate the system and calculate its ene
Ei , and the boundary condition BC4~see Paper I! used to
reconstruct the system by HSMC and calculate the proba
ity density. In particular, for a relatively small system reco
structed with a largemf , the BC4 boundary conditions migh
be too restrictive; therefore,SA might become a lower bound
andFA an upper bound close to the correctF. For the same
reason, increasingNf beyond a certain value~i.e., improving
the approximation! might not lead to the expected decrea
of the fluctuation ofFA, because the fluctuation ofSA might
not approach that of the energy. Obviously, these effects
practically vanish for a large system.

V. SUMMARY AND CONCLUSIONS

In this paper we have developed HSMC—a new vari
of the HS method, which constitutes an alternative to
HSGC procedure developed in Paper I. The transition pr
abilities of HSGC are based on future partition functio
obtained by systematic numerical integrations over future
cal configurations. With HSMC, on the other hand, the T
are calculated stochastically from canonical MC simulatio
of future atoms by counting their visits to the target ce
HSMC is based on a relatively small number ofefficiency
parameters that are not changed as the number of the fu
atoms treated is increased; therefore, implementing HS
for a large numberNf of future atoms~maximum of 40 at-
oms in this study! is straightforward. Indeed, excellent re
sults, even for the lower and upper bounds,FA andSA, re-
spectively were obtained. While with HSGC the clo
environment of the target cell is treated more efficiently th
with HSMC, the number of chemical potential parameters
HSGC grows strongly as the number of future cells or futu
atoms~or both! increase, and their optimization for each a
proximation is mandatory for obtaining improved results f
SA. Therefore, in Paper I we have not attempted to exam
approximations beyond 4/6, which already has yielded v
satisfactory results. Finally, it should be pointed out that o
can envisage HS procedures that are hybrids of HSGC
HSMC, which might be more efficient than HSGC an
HSMC individually; such hybrid methods will be studied
the future.

The development of the HSGC and HSMC methods
applied to argon is only the first step in their application
more complex fluids, in particular, water. Our goal is to
able to apply this approach to MC or MD trajectories of
peptide or a small protein soaked in a box of water m
ecules, where the contribution of the polymer chain to
total free energy is calculated by the local states method,11,12

for example, and that of the water by HSMC. For that HSM
is being applied now to the TIP3P~Ref. 13! potential of
water, where the first objective is to improve the efficiency
the MC simulations.

e
the
.
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APPENDIX: DERIVATION OF THE WEIGHTING
FACTOR EXPRESSION

We begin by considering~for clarity! the probability
density for a single labeled atom, atom No. 1, to be locate
a specific coordinate position,x8, during a HSMC simulation
for the reconstruction of an occupied~target! cell, in the
presence of a fixed partial structure ofNk defined atoms.
This probability density,r1(xNk,x8), is given by

r1~xNk,x8!5
*Nf21;Vf

exp@2bE~xNk,x8;xNf21!#dxNf21

*Nf ;Vf
exp@2bE~xNk;xNf !#dxNf

,

~A1!

whereb51/kBT, Nf is the number of future atoms, andVf is
the future volume in which they move.xNk, xNf , andxNf21

represent the coordinate sets forNk , Nf , andNf21 atoms,
respectively. The integral in the denominator is the ove
configuration integral for the building step, where integ
tions are carried out over the future volume for allNf atoms.
In the numerator, integrations are carried out~over the future
volume! for Nf21 atoms with atom No. 1 fixed at the pos
tion, x8.

We also consider the probability,P1;cube8(x
Nk,x8), for

atom No. 1 to be located anywhere inside a cube~cube8!
centered around the position,x8, which is given by

P1;cube8~xNk;x8!

5
*1;cube8*Nf21;Vf

exp@2bE~xNk;x1 ,xNf21!#dxNf21dx1

*Nf ;Vf
exp@2bE~xNk;xNf !#dxNf

.

~A2!

Here, integrations in the numerator involve allNf atoms,
however, atom No. 1 ranges only over the smaller volu
inside cube8. We will ultimately construct an ensemble ave
age expression by taking the ratio of Eqs.~A1! and ~A2!,
given by

r1~xNk,x8!

P1;cube8~xNk,x8!

5
*Nf21;Vf

exp@2bE~xNk,x8;xNf21!#dxNf21

*1;cube8*Nf21;Vf
exp@2bE~xNk;x1 ,xNf21!#dxNf21dx1

.

~A3!

The numerator in Eq.~A3! must be rewritten. We begin
with a multiplication of this integral by one in the form
Downloaded 02 Dec 2003 to 136.142.92.42. Redistribution subject to A
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Vcube8
E

1;cube8
dx1G . ~A4!

Furthermore, the energy function in this integral is rewritt
as

E~xNk,x8;xNf21!5E8~xNk,x8;xNf21!1Erest~xNk;xNf21!,
~A5!

thus obtaining

E
Nf21;Vf

exp@2bE~xNk,x8;xNf21!#dxNf21

5
1

Vcube8
E

1;cube8
E

Nf21;Vf

exp@2b~E8~xNk,x8;xNf21!

1Erest~xNk;xNf21!!#dxNf21dx1 . ~A6!

E8(xNk,x8;xNf21) is the energy for all of the pair interaction
of atom No. 1, fixed atx8. In other words, its interactions
with the Nk defined atoms and the remainingNf21 future
atoms.Erest(x

Nk;xNf21) is the remaining energy of all pai
interactions which do not involve atom No. 1.

We also use a similar energy function
E1(xNk;x1 ,xNf21), which is the energy for all of the pai
interactions of atom No. 1, but for cases where atom No
could be located anywhere inside cube8. E1(xNk;x1 ,xNf21) is
defined by

E~xNk;x1 ,xNf21!5E1~xNk;x1 ,xNf21!

1Erest~xNk;xNf21!. ~A7!

We now insert one as

15expb1bE1~xNk;x1 ,xNf21!c
3expb2bE1~xNk;x1 ,xNf21!c, ~A8!

into the integral in Eq.~A6!, and substitute this form of the
integral into the numerator of Eq.~A3!. Upon regrouping of
the energy terms, we gain an ensemble average expres
for the Boltzmann factor of the energy difference resulti
from the virtual displacement of atom No. 1 into the exa
location,x8,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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r1~xNk,x8!

P1;cube8~xNk,x8!

5

1

Vcube8
*1;cube8*Nf21;Vf

exp@2b~E8~xNk,x8;xNf21!2E1~xNk;x1 ,xNf21!!#exp@2bE~xNk;x1 ,xNf21!#dxNf21dx1

*1;cube8*Nf21;Vf
exp@2bE~xNk;x1 ,xNf21!#dxNf21dx1

5
1

Vcube8
^exp@2b~E8~xNk,x8;xNf21!2E1~xNk;x1 ,xNf21!!#&1;cube8 . ~A9!
h

at

E
al
a

y

E.

,

. L.
This ensemble average is accumulated over all cases w
atom No. 1 is located anywhere in cube8. It can be used
together withP1;cube8(x

Nk,x8), which would be estimated
from the cube counts for atom No. 1, to solve forr1(xNk,x8).

We are actually interested in the~total! probability den-
sity, r i(x

Nk,x8), wherei is any atom. We note, however, th

r i~xNk,x8!5r1~xNk,x8!1r2~xNk,x8!1r3~xNk,x8!1¯

5Nfr1~xNk,x8! ~A10!

and that

Pi ;cube8~xNk,x8!5P1;cube8~xNk,x8!1P2;cube8~xNk,x8!

1P3;cube8~xNk,x8!1¯

5Nf P1;cube8~xNk,x8!. ~A11!

Thus,

r i~xNk,x8!

Pi ;cube8~xNk,x8!
5

r1~xNk,x8!

P1;cube8~xNk,x8!

5
1

Vcube8
^exp@2b~E8~xNk,x8;xNf21!

2E1~xNk;x1 ,xNf21!!#&1;cube8 . ~A12!

We also note that the value of the ensemble average in
~A9! for atom No. 1 will be identical to the more gener
ensemble average which is taken over any case where
atom, i, is in cube8. In other words,

^exp@2b~E8~xNk,x8;xNf21!2E1~xNk;x1 ,xNf21!!#&1;cube8

5^exp@2b~E8~xNk,x8;xNf21!

2Ei~xNk;xi ,xNf21!!#& i ;cube8 . ~A13!
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Thus the~total! probability density,r i(x
Nk,x8), is obtained

from

r i~xNk,x8!5Pi ;cube8~xNk,x8!
1

Vcube8

3^exp@2b~E8~xNk,x8;xNf21!

2Ei~xNk;xi ,xNf21!!#& i ;cube8 , ~A14!

where Pi ;cube8(x
Nk,x8) is obtained from the counts for an

atom being located~anywhere! in cube8 and where the en-
semble average is computed for all of these cases.

1A. Szarecka, R. P. White, and H. Meirovitch, J. Chem. Phys.119, 12084
~2003!, preceding paper.

2H. Meirovitch, J. Phys. A16, 839 ~1983!.
3H. Meirovitch, Phys. Rev. A32, 3709~1985!.
4N. Metropolis, A. W. Rosenbluth, M. N. Rosenbluth, A. H. Teller, and
Teller, J. Chem. Phys.21, 1087~1953!.

5B. J. Alder and T. E. Wainwright, J. Chem. Phys.31, 459 ~1959!.
6J. A. McCammon, B. R. Gelin, and M. Karplus, Nature~London! 267, 585
~1977!.

7M. P. Allen and D. J. Tildesley,Computer Simulation of Liquids~Clar-
enden, Oxford, 1987!.

8J. C. Owicki, inComputer Modeling of Matter, ACS Symposium Series
edited by P. Lykos~American Chemical Society, Washington, 1978!, Vol.
86, p. 159.

9W. L. Jorgensen, J. Phys. Chem.87, 5304~1983!.
10J. C. Owicki and H. A. Scheraga, Chem. Phys. Lett.47, 600 ~1977!.
11H. Meirovitch, Chem. Phys. Lett.45, 389 ~1977!.
12H. Meirovitch, S. C. Koerber, J. Rivier, and A. T. Hagler, Biopolymers34,

815 ~1994!.
13W. L. Jorgensen, J. Chandrasekhar, J. D. Madura, R. W. Impey, and M

Klein, J. Chem. Phys.79, 926 ~1983!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp


