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Absolute entropy and free energy of fluids using the hypothetical scanning
method. I. Calculation of transition probabilities from local grand
canonical partition functions

Agnieszka Szarecka, Ronald P. White, and Hagai Meirovitcha)
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~Received 1 August 2003; accepted 22 September 2003!

The hypothetical scanning~HS! method provides theabsoluteentropy and free energy from a
Boltzmann sample generated by Monte Carlo, molecular dynamics or any other exact simulation
procedure. Thus far HS has been applied successfully to magnetic and polymer chain models; in this
paper and the following one it is extended to fluid systems by treating a Lennard-Jones model of
argon. With HS a probabilityPi approximating the Boltzmann probability of system configuration
i is calculated with a stepwise reconstruction procedure, based on adding atoms gradually
layer-by-layer to an initially empty volume, where they are replaced in their positions ati. At each
step a transition probability~TP! is obtained from local grand canonical partition functions
calculated over a limited space of the still unvisited~future! volume, the larger this space the better
the approximation.Pi is the product of the step TPs, where lnPi is an upper bound of theabsolute
entropy, which leads to upper and lower bounds for the free energy. We demonstrate that very good
results for the entropy and the free energy can be obtained for a wide range of densities of the argon
system by calculating TPs that are based on only a very limited future volume. ©2003 American
Institute of Physics.@DOI: 10.1063/1.1625919#
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I. INTRODUCTION

Calculation of theabsoluteentropySand the Helmholtz
free energyF of complex many-body systems by comput
simulation is an extremely difficult problem that has be
given considerable attention~see Refs. 1–4, and referenc
cited therein!. Using any simulation technique, it is relative
easy to calculate the energy,Ei , which is ‘‘written’’ on sys-
tem configurationi in terms of microscopic interactions~e.g.,
Lennard-Jones interactions of argon!, and for the same rea
son to calculate structural quantities such as the radial di
bution function of a fluid, or the radius of gyration of
polymer. On the other hand, calculatingS;2 ln Pi

B requires
knowledge of thevalue of the Boltzmann probability,Pi

B ,
which is the sampling probability. However,Pi

B is not pro-
vided directly by the commonly useddynamicaltechniques,
the Metropolis Monte Carlo~MC!5 method and molecula
dynamics~MD!;6,7 therefore, at an absolute temperatureT,
F5E2TS is unknown as well. For some models, e.g.,
protein in vacuum, this problem can somewhat be allevia
by treating a microstate~i.e., the local MD or MC fluctua-
tions around a stable conformation such as thea-helix! by
harmonic or quasiharmonic approximations, meaning t
PB is assumed to be Gaussian.8–15 In most cases, howeve
the commonly used methods for calculatingF and S are
based on reversible thermodynamic integration over phys
quantities such as the energy, temperature, pressure, an
specific heat, as well as nonphysical parameters1–4,16–27

~free energy perturbation methods, histogram analy

a!Author to whom correspondence should be addressed.
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methods,28,29 and other related techniques30–34 are also in-
cluded in this category!. Thermodynamic integration~TI!
methods provide the difference in the free energy,DFm,n

~and in some casesDSm,n) between two microstatesm andn,
and only when the absolute entropy of one microstate
known can that of the other be obtained.

While TI is a robust approach that has been applied s
cessfully to highly complex systems, difficulties arise wh
the integration path includes a phase transition; also, for p
teins, for example, such integration is feasible only if t
structural variance between the two microstates is v
small. Therefore, it is important to develop methods that p
vide lnPi , thereby enabling one to calculate the absoluteFm

and Fn from two separate simulations of the microstatesm
and n; in this caseDFm,n5Fm2Fn can be calculated eve
for significantly differentmicrostates since the integratio
process is avoided.

Such an approach has been proposed by Meirovi
where two related approximate techniques, the local st
method4,35–40 ~see also Refs. 41–45! and the hypothetica
scanning~HS! method4,46–51 have been developed and a
plied to a wide range of systems, magnets, polymer cha
peptides, and loops in proteins. These methods demons
that like the energy, lnPi is also ‘‘written’’ on system con-
figuration i in terms of a product of transition probabilitie
~TPs!, where each method provides a different prescript
for the ‘‘reading’’ of these TPs fromi. Thus, the absolute
entropy, like the energy, can be obtained approximately fr
a given Boltzmann sample generated by MC or MD~or any
other exact method!, even in cases where TI is practical
unfeasible.
4 © 2003 American Institute of Physics

IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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12085J. Chem. Phys., Vol. 119, No. 23, 15 December 2003 Entropy and free energy of fluids. I
Our long-range objective is to extend these methods
protein immersed in a box of explicit solvent~water!; how-
ever, none of them have been applied thus far to a continu
fluid model. Therefore, in this paper and the following o
we extend the HS method to a Lennard-Jones model of
uid argon, because HS was found to be significantly m
efficient than the local states method for treating the mole
lar van der Waals repulsions in a dense environment. W
HS a probabilityPi approximating the Boltzmann probabi
ity of system configurationi is calculated by a reconstructio
procedure based on adding atoms gradually to an initi
empty volume, where they are placed in their positions ai;
in this process the volume is divided into small cells whi
are visited in alinear order, line-by-line, layer-by-layer. A
each step a TP is obtained by systematically calculating lo
grand canonical partition functions over a limited space
the still unvisited~future! volume. Pi is the product of the
step TPs, where lnPi estimates theabsoluteentropy that
leads to upper and lower bounds for the free energy.

For simplicity, before treating argon, we describe HS
applied to the square Ising lattice, where the effect of
boundary conditions is discussed in detail. Then, a gr
canonical future scanning for calculating the TPs of argon
discussed, and the HS results are compared to those obt
by using an efficient TI technique. In the following paper t
TPs are calculated in an alternative way, by a counting p
cedure based on Metropolis MC simulations within t
framework of the canonical ensemble.

II. THEORY AND METHODS

To understand the theory of HS for a continuum fluid
proves convenient to introduce it first in terms of the squ
Ising lattice, which is equivalent to a lattice gas model o
fluid. The Ising model consists ofN5L3L spins sk ,
sk561 (1<k<N), where nearest neighbor spins atk and l
interact with ferromagnetic energy2Jsks l (J.0). The to-
tal energy of system configurationi is denoted byEi and the
Boltzmann probability ofi, Pi

B is

Pi
B5

exp2@Ei /kBT#

Z
, ~1!

where T is the absolute temperature,kB is the Boltzmann
constant, andZ is the partition function. The ensemble ave
age^E& of the energy is

^E&5(
i

Pi
BEi , ~2!

and the entropy and the free energy can formally be
pressed as ensemble averages,^S& and^F& but we shall de-
note them in the usual way byS andF, respectively,

S5^S&52kB(
i

Pi
B ln Pi

B ~3!

and

F5^F&5(
i

Pi
B@Ei1kBT ln Pi

B#5^E&2TS. ~4!
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This model can straightforwardly be simulated by t
usual Metropolis MC method, where one starts from an
bitrary spin configuration, changes it gradually in the cou
of the run, and calculates averages of properties of inte
after the system has been equilibrated. Alternatively, this s
tem has been viewed by Alexandrowicz52,53 ~see also
Kikuchi54! as a longlinear chain of spins that can be con
structed by adding spins to an initially empty lattice step-b
step with the help of approximate transition probabiliti
~TPs!. A related method, called direct scanning~DS! was
suggested later by Meirovitch,55 where a set of approximat
TPs, is obtained by scanningfuture spin configurations onf
empty lattice sites close to the target site~see below!, where
the approximation can be improved systematically by
creasingf. This DS procedure is the basis of the HS meth
and therefore is described below in detail.

A. The DS procedure

With the DS procedure, one starts from anN5L3L
emptylattice, and determines the spins step-by-step, row-
row using TPs. At stepk of the process,k21 spins have
already been fixed and one seeks to determine the spin a
vacant sitek ~the ‘‘target’’ site!. The lastL spins added to the
lattice are called the ‘‘uncovered’’ spins~see Fig. 1!. Because
of the nearest neighbor interaction, the TPs depend on th
L uncovered spins, but not on the covered ones~i.e., spins 1
to k2L21, which were determined in the past, see Fig.!,
where the effect of an uncovered spin is expected to decr
as its distance from sitek increases. TheexactTP at stepk
would require calculating two partition functions,Z1(k) and
Z2(k) over theemptypart of the lattice@theN2(k21) still
vacant sites,k, k11,...,N], where sitek is populated by a

FIG. 1. A diagram illustrating thekth step of the DS construction~or HS
reconstruction! of a square Ising lattice ofL3L spins. The target sitek is
denoted by a square and theL ‘‘uncovered’’ spins ~at sitesk2L, k2L
11,...,k22, k21) are denoted by empty circles with two crossing lines.
addition to the ‘‘uncovered sites,’’ the full circles denote lattice sites wh
have also been filled with spins~61! in previous steps of the constructio
process, while the empty circles denote the still empty lattice sites.
future partition functions,Z1(k) and Z2(k) for sk511 and21, respec-
tively, are calculated from the configurations of the 210 future spins defined
over the 10-site rectangle; notice that the interaction energy between
uncovered spins at sites,k21, k22, k2L, andk2L11 and their nearest
neighbor future spins is considered. The ‘‘spiral’’ boundary conditions
tween spinL and spin 1 of the next row is depicted by an arrowed line~In
other words, we imagine spinL to be placed to the left of spin 1 when
calculating spin 1’s interactions!. The TPs arep15Z1/(Z11Z2) and p2

5(12p1).
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



re

e
ve

e
in

a

ice
ap
x

to
f

es
d

,

nt
in
w
io

ar
in
u
e
i

a
P

ay
ra

1
a
ll

gh
e a
tan-

on-
lat-
r
ins,
pre-

ice,
ext

is

of
lat-

ons

an
he
ded

bed
di-

ic
w,
. In

ry
fine
row
of
3,

of
of

u-
nd,

i-
to

the
-
on-
e-

ing
ic
d
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spin 11 or 21, respectively; the corresponding TPs a
Z1(k)/@Z1(k)1Z2(k)# and Z2(k)/@Z1(k)1Z2(k)#.
These partition functions are based on summation of the
ergy exponentials of all the possible spin configurations o
the vacant sites in the presence of the~fixed! configuration of
the uncovered spins. That is, interaction energies betw
vacant sites and the fixed uncovered spins are also taken
account. In this respect determination of spink always de-
pends on the past, i.e., the previously determinedL spinsk
21,...,k2L. In practice, this calculation is not feasible for
large lattice and one can calculateZ1 andZ2 only approxi-
mately over a limited rectangular part of the empty latt
consisting off empty sites, such as the ten empty sites
pearing in the rectangle in Fig. 1; the corresponding appro
mate TPs, are denotedpk(6, f ,a), wherea is a set of pa-
rameters~discussed later! that are optimized by a minimum
free energy criterion,

pk~1, f ,a!5
Z1~k, f ,a!

Z1~k, f ,a!1Z2~k, f ,a!
. ~5!

Using this method one can generate a sample ofstatisti-
cally independentIsing configurations, where in contrast
the MC method, thevalueof the construction probability o
configurationi is known,

Pi~ f ,a!5)
k51

N

pk~ f ,a!, ~6!

wherepk( f ,a) is the TP of the spin selected at sitek. There-
fore, the absolute entropy and free energy@Eqs.~3! and~4!#
can be calculated and very good approximations for th
quantities indeed have been obtained by the DS metho55

$Notice that unlike the calculations carried out in Ref. 55Z
can also be estimated byZ̄ from a sample of sizen generated
by Pi( f ,a), whereZ̄51/n( t

n exp@2Et /kBT#/Pt(f,a).%

B. Treatment of the boundaries

To maintain alinear construction, the natural treatme
of the boundaries with the DS procedure is by impos
‘‘spiral’’ boundary conditions. Thus, the first spin of a ro
becomes a nearest neighbor to the last spin of the prev
row, i.e., these are interacting spins~see Fig. 1!. This defini-
tion leads to a ‘‘homogeneous’’ set of TPs, i.e., TPs that
defined exactly the same for internal and boundary sp
Still, this procedure is not completely homogeneous, beca
when the last row is approached the size of the rectangl
future spins should be decreased to remain within the lim
of the lattice; also, the first row is not ‘‘neighbored’’ by
previous row, which requires defining a particular set of T
for the first row. These spins can be chosen in various w
where a simple one is to select them independently at
dom @p(1)5p(2)50.5#, or with p(1)5(m11)/2 if the
magnetizationm is known ~at least approximately!. Notice
that with such choices the probabilityPi( f ,a) @Eq. ~6!# is
well defined over the entire system of 2N configurations, i.e.,
( Pi( f ,a)51; these boundary conditions are denoted BC

As discussed below, defining homogeneous bound
conditions simplifies the programming immensely, especia
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for a continuum 3D model; furthermore, for a large enou
system their effect becomes negligible. Thus, to defin
completely homogeneous set of TPs, suppose that a rec
gular ~rather than square! Ising ‘‘superlattice’’ of KL3L
spins ~i.e., of K successivesquare Ising lattices ofL3L
spins! has been generated by DS with spiral boundary c
ditions, and let us examine the middle lattices, say from
tice 2 toK21. Obviously, with this construction the TPs fo
the first row are defined in the same way as for internal sp
because of the presence of the last row of spins of the
vious square lattice. Also, the rectangle of future spins~see
Fig. 1! is not changed for the last rows of each square latt
because if needed it is defined also over sites of the n
square lattice~i.e., the future is open!. Thus, the probability
of a square Ising lattice generated with this procedure
prowPi( f ,a), whereprow is a DS probability of the last row
of the previously generated lattice. Because the energy
interaction between the first and last rows of successive
tices is calculated the total number of spin–spin interacti
is 2N, as for periodic boundary conditions~see discussion
below!, and the related entropy is;2kB ln Pi(f,a). These
boundary conditions,55 denoted BC2, can be extended to
Ising model on a simple cubic lattice as well, by adding t
spins layer-by-layer where for each layer they are ad
row-by-row as described above.

The homogeneous BC2 boundary conditions descri
above for DS are not the commonly used boundary con
tions. Typically the Ising model is studied with period
boundary conditions, where row 1 interacts with the last ro
L, and the first and last spins at each row interact as well
practice one defines image lattices where rows 0,21, 22,
etc. are the images of rowsL, L21, andL22, respectively,
and similar images are defined for columns 1 andL. Clearly,
constructing by DS an Ising lattice with periodic bounda
conditions is very inconvenient because of the need to de
a special set TPs for the boundaries. For example, since
1 interacts with both rows 2 and 0, the immediate future
row 1 is defined not only by vacant sites of say, rows 2,
and 4, but also by the symmetrical sites on rows 0,21, and
22 that are the images of rowsL, L21, andL22, respec-
tively. This means that to treat row 1 on the same level
approximation as applied to internal spins, the number
future sites considered should be at least 2f rather thanf; for
the same reason, 2f future sites are also required for calc
lating the TP of the first spin of each row. On the other ha
for rows close to the last row,L one should consider the
interaction energy of the future spins with the image rowL
11, which is defined by the already constructed row 1. Sim
larly, for each row, calculating TPs for spins that are close
the end site,L, requires considering the image spinL11,
which is defined by the already constructed spin 1 of
same row. In practice, treating 2f spins can be computation
ally undesirable and the number of different cases to be c
sidered is large, becoming significantly larger for thre
dimensional models, which makes the programm
cumbersome. Approximate implementation of period
boundary conditions within the framework of DS is calle
BC3.

As pointed out earlier, forlarge systems the effect of the
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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boundaries becomes negligible and DS with different bou
ary conditions will lead practically to the same results. Ho
ever, it is much easier to program a DS procedure base
the homogeneous TPs~BC2! than on the inhomogeneou
TPs~BC3!, especially when boundary effects are compl
e.g., for three-dimensional systems and models that dep
on long-range interactions and strong repulsions, as
Lennard-Jones model for argon, studied in the present pa

C. The HS method

One can simulate alarge square Ising lattice by DS o
alternatively by the Metropolis MC method with period
boundary conditions. If the temperatureT is not too close to
the critical temperature and the future scanning is based
rectangular box larger than the correlation length, statist
averages and fluctuations of various quantities such as
energy, entropy, or magnetization obtained from the t
samples would be the same within the statistical error,
cause the effect of the boundaries is negligible.55 In this re-
spect the two samples are equivalent and independent o
methods used to generate them; notice, however, that
unlike MC also provides the absolute entropy.

The HS method~and the local states method not di
cussed here! enables one to calculate the entropy of a sam
generated byany exact procedure, in particular the M
method. Thus, relying on the above equivalence, one
sumes that the MC sample has rather been constructe
DS, which allows reconstructing the TPs thathypothetically
were used to build configurationi with DS. In practice, one
starts from an empty lattice, and at each stepk calculates
Z1( f ,a) andZ2( f ,a) from which pk( f ,a) @Eq. ~5!# for the
actual spin appearing at this site in configurationi is ob-
tained. The product of these TPs leads toPi( f ,a) @Eq. ~6!#
and to the corresponding entropy functionalSA( f ,a). One
can show thatSA is a rigorous upper bound for the corre
entropy,48 and FA( f ,a) is therefore a lower bound free en
ergy functional,

SA~ f ,a!52kB(
i

Pi
B ln Pi~ f ,a!; ~7!

FA~ f ,a!5^E&2TSA~ f ,a!. ~8!

Notice thatSA andFA, like ^E&, SandF in Eqs.~2!, ~3!, and
~4!, respectively, are defined over theentire ensemble of 2N

Ising configurations; in practiceSA andFA areestimatedby
SA andFA from a sample of sizen generated with an exac
method such as the Metropolis method. For exam
SA52(kB /n)( t

n ln Pt(f,a), wheret denotes thetth configu-
ration in the sample. Thus, the entropy, like the energy
‘‘written’’ on the system configurations in terms of the log
rithm of transition probabilities. The optimal values of th
parametersa are those that minimizeSA or maximizeFA.

Because the MC sample is typically generated with
riodic boundary conditions, one option is to reconstruct
Ising configurations with the inhomogeneous set of TPs
these boundaries defined earlier as BC3, or the more ho
geneous set of TPs~that include the spiral connections! de-
noted BC1. However, we describe now an additional se
boundaries denoted BC4 that lead to a completely homo
Downloaded 02 Dec 2003 to 136.142.92.42. Redistribution subject to A
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neous set of TPs for HS. Thus, row 1 is reconstructed in
presence of image row 0 defined by theknownspin configu-
ration of rowL. Likewise, to reconstruct spin 1 of any rowj,
the image spins at sites 0,21, 22, etc. of rowj ~defined by
theknownspins at sitesL, L21, L22, etc. of rowj, respec-
tively! are considered for calculating the required TP. On
other hand, for reconstructing the last spins of rowj ~say, at
sitesL23, L22, L21, andL!, the image spins of this row a
sitesL11, L12, etc. are not considered, i.e., these sites
treated as vacant, as for BC2; thus, when the spins in the
sites of rowj are reconstructed the corresponding rectang
are defined partially over sites that pertain to image colum
L11, L12, etc. that are not part of theL3L lattice. Like-
wise, image spins in rowsL11,...,2L are ignored, i.e., these
sites remain vacant; therefore, the same rectangle of fu
spins for calculating the TPs is used for all the rows, wh
for the last rows part of this rectangle is defined over futu
sites of rowsL11 and higher, again as in BC2; see Fig.

It should be pointed out that BC4 differs conceptua
from BC1, BC2, and BC3 in that the HS reconstruction at
boundaries does not depend only on spins that were re
structed in the past but also on the images of spins that
be determined in future steps of the HS process. Howe
these future spins are used to define a homogeneous env
ment for calculating the TPs of spins close and at the bou
aries; in this respect each spin on the lattice is reconstru

FIG. 2. The BC4 boundary conditions for a square Ising model.~a! A 535
Ising lattice where the spins of the first, second, and last rows are spec
by letters.~b! The periodic boundary conditions used to reconstruct the fi
row of this lattice. Notice that this row remains open to the right through
its construction process.~c! Upon completion of the first row, ‘‘right-hand’’
images~a, b, and c! are then added and used for the reconstruction of
second row; also added at the beginning of the reconstruction of the se
row are the ‘‘left-hand’’ images~h, i, and j!. The boundaries and the recon
struction of the other rows is similar; note, however, for the last rows
rectangle of future spins~see Fig. 1! if necessary might also be defined ove
the continuing rows 6, 7, etc., i.e., the lattice is open ‘‘below’’~and ‘‘to the
right’’ in the current row!.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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under exactly the same rules, which characterizes to a g
extent the situation in a very large system. In principle, th
future boundary spins could be replaced by any set of s
that are distributed according to the Boltzmann probability56

Again, for a large system, the effect of the BC4 bound
conditions vanishes. BC4 is found to be very useful fo
continuum model of argon, where the effect of the atom
repulsions is strong, while such repulsions do not exist a
in the Ising model.

D. Upper bounds for the free energy

One can define another approximate free energy fu
tional denotedFB( f ,a) ~Ref. 48! @FB is defined over the
whole ensemble, see discussion following Eqs.~7! and ~8!#,

FB~ f ,a!5(
i

Pi~ f ,a!@Ei1kBT ln Pi~ f ,a!#, ~9!

where according to the free energy minimum principle57

FB( f ,a)>F @Eq. ~4!# and equality occurs whenPi( f ,a)
5Pi

B @Eq. ~1!#; FB( f ,a), the upper bound ofF, can beesti-
matedby FB from a sample of sizen generated withPi

B ,
using importance sampling,

FB~ f ,a!5
( t51

n Pt~ f ,a!exp@Et /kBT#@Et1kBT ln Pt~ f ,a!#

( t51
n Pt~ f ,a!exp@Et /kBT#

,

~10!

wheret denotes thetth configuration in the sample obtaine
with a correctBoltzmann simulation carried out with the MC
or MD methods, for example.~The factors 1/n in the nu-
merator and the denominator are canceled.! However, the
statistical reliability of this estimation~unlike the estimation
of FA) decreases sharply with increasing system size,
cause the overlap between the probability distributionsPi

B

andPi( f ,a) decreases exponentially~see discussion in Ref
39!.

Another way to estimateFB( f ,a) is by using a ‘‘re-
versed Schmidt procedure,’’39,48which enables one to extrac
from the givenunbiasedsample of sizen generated withPi

B

an effectively smaller biased sample generated with
Pi( f ,a). Thus, the configurations of the unbiased sample
treated consecutively. If a configurationi was accepted to the
biased sample, the next configurationj would be accepted
with a transition probabilityAi j ,

Ai j 5min$1,exp@~Ej2Ei !/kBT#Pj~ f ,a!/Pi~ f ,a!%. ~11!

Equation~11! is a generalized MC procedure, which satisfi
the detailed balance condition and is carried out with rand
numbers. The acceptance rateR provides a measure for th
effective sizeof the accepted biased sample,

R5naccept/n, ~12!

wherenacceptis the number of accepted configurations.
Given that FA( f ,a) and FB( f ,a), are calculated and

their deviations fromF ~in the absolute values! are approxi-
mately equal, their averageFM1( f ,a) becomes a better ap
proximation than either of them individually,

FM1~ f ,a!5@FA~ f ,a!1FB~ f ,a!#/2. ~13!
Downloaded 02 Dec 2003 to 136.142.92.42. Redistribution subject to A
at
e
s

y
a
c
ll

c-

e-

re

s
m

Typically, several approximations for FA( f ,a),
FB( f ,a), andFM1( f ,a) are calculated as a function off, and
their convergence enables one to determine the correct
energy with high accuracy.

E. The correlation between sA
„f ,a… and FA

„f ,a…

The fluctuation~standard deviation! s of thecorrect free
energy,F, @Eq. ~4!# is zero, whileFA( f ,a) has nonzero fluc-
tuation,sA,46,51,58

sA5F(
i

Pi
B@Fi

A~ f ,a!#22S (
i

Pi
BFi

A~ f ,a! D 2G1/2

. ~14!

For a good enough approximationsA is expected to decreas
as the approximation improves. It has been suggested46 to
express the correlation betweenFA( f ,a) andsA( f ,a) by the
approximate function,

FA~ f ,a!5Fextp1C@sA~ f ,a!#b, ~15!

whereFextp is the extrapolated value of the free energy, a
C andb are parameters to be optimized by best-fitting resu
for FA( f ,a) and sA( f ,a) for different f. One can also cal-
culate the tangent to the function at the lowest value obtai
for sA( f ,a); if Eq. ~15! defines a concave-down functio
and this trend ofFA(sA) is assumed to hold for better~un-
calculated! approximationsFA, the intersection of the tan
gent with the vertical axis@sA( f ,a)50# defines an upper
bound for F denotedFup( f ,a) that depends on the large
value off used in the best-fit process. Thus, in parallel to E
~13!, one defines the average,FM2( f ,a),

FM2~ f ,a!5@FA~ f ,a!1Fup~ f ,a!#/2. ~16!

F. The model of argon

In this paper we extend HS to a system ofN atoms
contained in a 3D ‘‘box’’ of volumeV @(NVT) ensemble#
interacting via a Lennard-Jones potential~argon atoms!,

f~r !54eF S s

r D 12

2S s

r D 6G , ~17!

where r ~in Å! is the distance between a pair of atom
e/kB5119.8 K ands53.405 Å. Denoting the Cartesian co
ordinates and their differentials byxN anddxN, respectively,
the configurationalBoltzmann probability densityr(xN) is

r~xN!5exp@2E~xN!/kBT#/ZN

5exp@2E~xN!/kBT#/E
V

exp@2E~xN!/kBT#dxN,

~18!

where V5VN and E(xN)5( i , jf(r i j ) is the potential en-
ergy. The total entropyS is

S5SIG1Se5SIG2kBE
V

r~xN!ln@VNr~xN!#dxN, ~19!

whereSIG is the entropy of the ideal gas at the same te
perature and density, andSe is the excess entropy to be es
mated by HS. The corresponding excess Helmholtz free
ergy is,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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Fe5E
V

r~xN!E~xN!dxN2TSe5E2TSe, ~20!

whereE is the average potential energy. However, to co
pare our results to those obtained by other methods we s
also calculate the configurational free energy, denotedAc ,26

Ac52kBT lnS ZN

N!s3ND , ~21!

where the partition functionZN is defined in Eq.~18!.

G. The HS method applied to argon

This system was simulated by the Metropolis M
method and the free energy and entropy were calculated
HS from the corresponding samples. Conforming with
equivalence of the Ising and the lattice gas models~115an
occupied site,215an unoccupied site!, the box is divided
into L35L3L3L cubic cells with the maximal size that sti
guarantees that no more than one center of a spherical a
molecule occupies a cell. However, to approximate the m
ecules in continuum each cell is further divided intol 5b
3b3b subcells, called cubes. Notice that because the in
action is long-range, unlike for the Ising model, deeper l
ers than the uncovered layer should be considered in
calculation of the TPs.

Each sample configuration was reconstructed using
where at stepk, Nk atoms have already been treated a
placed in their positions and the TP of the target cell~k!
~which might be an occupied or an unoccupied cell! should
be determined. AnexactTP will require calculating the two
canonicalpartition functions,Z1(k) andZ2(k) ~defined for
the present continuum model! for the remaining
N2Nk atoms distributed in theL32(k21) remaining cells.
However, because only a limited numberf of future cells are
considered, the population in these cells can range fro
~all the f cells are empty! to min(f,N2Nk). We define agrand
partition function, J f , over thef cells

J f~k!511Q1~k!exp@m/kBT#1Q2~k!exp@2m/kBT#

1¯Qf~k!exp@ f m/kBT#. ~22!

Qd(k) is a canonical partition function ofd atoms occupying
f cells, and m is a chemical potential. For exampl
Q15( i 51

f Q1
i , whereQ1

i ~which will also be referred to as
‘‘singlet’’ ! is a partition function of future celli ( i 51,f )
~from now onk will be omitted in the definition of the par
tition functionsQ!,

Q1
i 5

Vcube

L3 (
m51

l

exp@2Em-env /kBTp#. ~23!

In this equationVcube is the cube’s volume,L is the de Bro-
glie wavelength, (h2/2pmkBT)1/2, where h is the Planck
constant, andm is the mass of the atom.Em-env is the energy
of interaction of an imaginary atom placed at the center
cube m of cell i ~unless an atom appears inm! with the
already reconstructedNk atoms and the summation over thel
cubes approximates the integral* exp@2Eenv /kBTp#dx over
cell i; Tp is a temperature parameter discussed below. W
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a real atom, i.e., an atom to be reconstructed, occupies c
m of the target cellk, its coordinates are used for calculatin
Em-env , rather than the center of the cube. Similarly,Q2 is
obtained as a sum overf ( f 21)/2 ‘‘doublets’’ denotedQ2

i , j ,
where

Q2
i , j5S Vcube

L3 D 2

(
m51

l

(
n51

l

exp@2~Em-env1En-env

1Em,n!/kBTp#. ~24!

In this equationEm,n is the interaction energy betwee
imaginary atoms placed at the centers of cubem of cell i and
cuben of cell j. Correspondingly, ford.2, Qd is a summa-
tion over f !/ @( f 2d)!d! # terms. The TPP1 (P2) for an oc-
cupied~unoccupied! target cellk, is proportional to the sum
of the partition function terms that include~exclude! cell k.
Thus, for the lowest approximation, where the only futu
cell is the target cellk( f 51), Q1 consists of one term
J1511Q1 exp@m/kBT# and

P15Q1 exp@m/kBT#/J1 , P2512P151/J1 . ~25!

However, in the case of an occupied target cell, unlike for
Ising model, one has to define the TPdensityrm for placing
an atom at cubem,

rm5P1 exp@2Em-env /kBTp#/Q1L3

5exp@2Em-env /kBTp1m/kBT#/J1L3. ~26!

In the next approximation (f 52) the target cell~denoted
1! and an additional nearest neighbor future cell~denoted 2!
are considered. One then calculatesQ15Q1

11Q1
2, Q2

5Q2
1,2, and J2511Q1 exp@m/kBT#1Q2 exp@2m/kBT#, lead-

ing to

P15Q1
1 exp@m/kBT#/J21Q2 exp@2m/kBT#/J2 ,

P2511Q1
2 exp@m/kBT#/J2 . ~27!

In the same way as above one can show that the TP de
for placing an atom at cubem of cell 1 ~the target cellk! is
rm5r1

m1r2
m ,

r1
m5exp@2Em-env /kBTp1m/kBT#/J2L3

~28!
r2

m5exp@2Em-env /kBTp12m/kBT#

3 (
n51

l

exp@2~En-env1Em,n!/kBTp#Vcube/J2L6.

Calculating the TPs for better approximations (f .2) is
straightforward. Thus, the transition probability densities,rm

and the transition probabilities for the empty cells, both d
noted by (TP)k , are reconstructed for each configurationi of
the sample. Their product defines an approximate probab
density,r(xN, f ,a) over conformational space@compare with
Pi( f ,a), Eq. ~6!#,

)
k

~TP!k5N!r~xN, f ,a!'N!
exp@2E~xN!/kBT#

ZN
, ~29!
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE I. Densities, temperatures, and geometrical parameters for systems ofN5216 atoms.a

r* 5Ns3/V T* 5kBT/e T (K)
Box length

~Å! L L3 rcell

Cell length
~Å!

0.846 0.806 96.53 21.6 9 729 0.296 2.40
0.75 1.15 137.77 22.49 9 729 0.296 2.50
0.5 1.35 161.73 25.74 11 1331 0.162 2.34
0.1 1.058 126.74 44.02 18 5832 0.037 2.45

aV, andkB are the volume and the Boltzmann constant, respectively.s ande are the Lennard-Jones paramete
@Eq. ~17!#, r* andT* are the reduced density and temperature, respectively,L is the number of cells in each
dimension, andrcell is N/L3.
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which yields the entropy functionalSA, usingr(xN, f ,a) and
Eqs.~7! and ~19!, wherea is defined below. TheN! in Eq.
~29! is required because with the HS reconstruction the
oms are not labeled.

It should be noted that becausef is small and the future
cells are positioned differently from one rebuilding step
another with respect to the previously placed atoms, the
lated thermodynamic system is not a usualhomogeneous
grand canonical system; therefore, the chemical potentiam,
and the temperature appearing in Eqs.~22!–~28! might be
different from the corresponding bulk values. In fact, t
optimal values of these quantities are those that minimize
approximate entropySA( f ,a) @Eq. ~7!# or in turn maximize
the corresponding free energyFA( f ,a) @Eq. ~8!#. More spe-
cifically, becauseT, m, andL always appear in the equation
as multiples of exp@m/kBT#/L3, we fix L using the simulation
temperatureT @the ‘‘true’’ thermodynamic temperature tha
appears inF5E2TSA, e.g., Eqs.~4!, ~8!, and~20!#, and use
this T also in exp@m/kBT#. On the other hand,m and the
temperature denotedTp in the equations above are opt
mized. Asf is increased one would expectTp andm to ap-
proach their bulk values. Moreover, we have found that
signing individual parametersm i to different partition
function terms~e.g.,Q1

j ) decreaseSA dramatically; these pa
rameters define the set denoted bya in Eqs.~5!–~15!.

III. RESULTS AND DISCUSSION

A. The systems studied and the approximations
applied

We present results for argon obtained with the bound
conditions BC4, which are suitable for a continuum liqu
and are easy to program. Spiral boundaries, on the o
hand, are inappropriate because they are likely to imp
undesired repulsions among the image and boundary at
We have studied the system at four different densities
temperatures. The two highest reduced densit
r* 5Ns3/V50.846 and 0.75~see Table I!, correspond to
liquid argon, and those for 0.5 and 0.1 correspond to what
loosely describe as a supercritical fluid and a dense gas
spectively. We have chosen these values in order to cov
large range of conditions and to compare our results w
those obtained with other methods. The densities, temp
tures, box and cell lengths, and the number of cells appea
Table I; also presented in the table isrcell , the number of
atomsN ~i.e., the number of occupied cells! divided by the
ec 2003 to 136.142.92.42. Redistribution subject to A
t-

e-

e

-

y

er
se

s.
d

s,

e
re-
r a
h
a-
in

total number of cells, which is;0.3 for r*50.846. Most of
the calculations were performed forN5216 atoms, however
in order to check the effect of the boundary conditions
also studied a significantly larger system ofN
51728 atoms.

Five HS approximations were applied, based onf
51 – 4 future cells, where forf 51 only the target cell was
considered while forf .1 some or all of its nearest neighbo
cells were taken into account as well. In every case, af
singlets were taken into account and an approximation
therefore denoted byf /d, whered is the number of doublets
considered. Notice that creation of triplets inf 54 adjacent
cells is very unlikely because the correspondingrcell50.75
constitutes a large fluctuation already for the highest den
studied,rcell50.3; therefore, the effect of triplets is ignore
Obviously, if f is increased to 5 or 6, thercell value of triplets
decreases to 0.6 and 0.5, respectively, and their effect
comes important. We carried out a preliminary study us
f .4 where the effect of triplets was taken into account, a
thus verified the potential for this higher approximation
improve the results. The computer time increased sign
cantly, however, and we decided for now not to perform
systematic study. In the best approximation presented h
4/6 all of the possible four singlets and six doublets we
taken into account. Another parameter that affects the
proximation is the number of cubes~subcells! l 5b3b3b.
We appliedb53, 4, and 5 and found, as one would expe
that in most casesb55 has led to the best results, i.e., to t
smallest entropy,SA @Eq. ~7!#. In the other few cases we
attribute the slightly smallerSA obtained forb53 or 4 to an
incorrect treatment of the atomic repulsions by these re
tively crude meshes.

Initially, we generated samples of argon systems ofN
5216 and 1728 atoms at different densities and temperat
~see Table I! under~standard! periodic boundary conditions
using the Metropolis MC method; in all cases the Lenna
Jones interactions were truncated at 10.8 Å~which is half of
the box length of theN5216 system with the highest den
sity, see Table I!. With this procedure at each MC step a
atom is selected at random, a trial random move is gener
within a small Cartesian cube around the atom position,
the move is accepted or rejected according to the usual
criterion; the cube~step! size was adjusted to obtain an a
ceptance rate of;0.5. After every 500N MC steps the cur-
rent configuration was recorded for a future analysis, wh
has led to uncorrelated samples as indicated by the calcu
autocorrelation functions of the energy and entropy. It sho
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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be pointed out that the long-range~tail! correction19 has been
added to the energy of each sampled configuration.

B. Optimization of parameters

The first stage of the HS implementation is the optim
zation of the temperature parameterTp and the chemical po
tential parameters,m i that were assigned to each singlet a
doublet, thus, totaling 11 for the best approximation, 4
These parameters were optimized gradually by a sim
Monte Carlo procedure applied initially to the~repeated! re-
construction of one configuration, and followed by refin
ment cycles based on five and twenty configurations. For
highest approximation this procedure runs typically ov
night on a 2 GHz PC; less time is needed for the low
approximations. The optimal set ofm i andTp , i.e., those that
minimize the entropy functionalSA, are used in the HS pro
duction runs. We have found that for all of the approxim
tions studied the maximal deviation of the optimizedTp val-
ues from the corresponding thermodynamic temperatureT is
by 11%. The differentm i values obtained for a given ap
proximation deviate from their average by up to 17%.
Table II results are presented form i andTp obtained for all
of the densities for the approximation 1/0. The thermod
namic chemical potential values provided in the table w
calculated from the pressure and the free energy obta
from thermodynamic integration runs~see Appendix!. It is
evident that the parametersm i deviate from their thermody
namic counterparts,m by no more than 10%.

C. The free energy fluctuations

In Table III results are displayed for the free ener
functional per atom,Ac /eN(FA) @Eq. ~21!# and its fluctua-

TABLE II. Comparison between the optimal parametersTp andm1 and their
thermodynamic counterparts,T andm, for the approximation 1/0.a

r* T (K) T (K) 2m1 (kcal/mol) 2m ~kcal/mol!a

0.846 96.71 96.53 2.12 2.21
0.75 125.76 137.77 2.78 2.75
0.5 175.50 161.73 3.10 3.46
0.1 123.18 126.74 2.68 2.79

aThe results form are presented up to the second decimal place; their
tistical errors are much smaller.
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tion, sA @Eq. ~14!# for three cases,r*50.846 andN5216,
r*50.846 andN51728, andr*50.75 andN5216, for five
approximations. As expected, in all casesAc /eN(FA) that is
the lower bound of the correct free energy, increases syst
atically as the approximation improves. Also, th
Ac /eN(FA) results forN51728 are only slightly smaller, by
no more than 0.003, than their counterparts obtained foN
5216. This is important, meaning that the effect of t
boundary conditions already forN5216 is small. For good
enough approximations, the fluctuations are expected to
crease as the approximation improves, which is materiali
for r*50.75 but is only satisfied for approximations 1–3
r*50.846. The latter results probably stem from the fact t
the fluctuations are insensitive to the relatively small d
crease, by 0.02 and 0.007 in the values ofAc /eN(FA) in
going from approximation 3 to 4 and from 4 to 5, as com
pared to the larger decrease of 0.084 and 0.074 between
proximation 1 and 2 and 2 and 3, respectively. Forr*50.75
the decrease ofAc /eN(FA) by 0.043 between approximatio
3 to 4 is relatively large, and the fluctuation of approximati
4 is therefore significantly smaller than that of approximati
3; this probably reflects the fact that a better HS approxim
tion is defined forr*50.75 than forr*50.846.

Therefore, to analyze the correlation between the res
of the free energy and its fluctuation@Eq. ~15!# one should
consider only results with decreasing fluctuations such
those for approximations 1, 2, and 4, or 1, 2 and 5,
r*50.846. In Table IV we display the best-fit results bas
on Eq. ~15!, which were obtained from the appropriate r
sults of Table III. It should be pointed out again that t
best-fit function should be concave down, i.e., the expon
b should be larger than 1. This condition has not been m
for most of the results forr*50.75 and for 1, 2, and 5 for
r*50.846 (N5216). The table reveals thatAc /eN(Fup)
which is the intersection of the tangent to the curve with
ordinate, as expected, is always an upper bound. The co
sponding averages,Ac /eN(FM2) @Eq. ~16!#, and the extrapo-
lated values,Ac /eN(Fextp) for each system are relativel
spread but their average is equal within the error bars to
value obtained by thermodynamic integration~TI!, which is
considered to be correct.

a-
9
2
7
1
7

TABLE III. Results for the free energy functionalAc /eN(FA) @Eqs.~8! and ~21!# and its fluctuation,sA, for
different approximations.a

Approx.
No. Approx.

r*50.846N5216 r*50.846N51728 r*50.75N5216

2Ac /eN(FA) sA 2Ac /eN(FA) sA 2Ac /eN(FA) sA

1 1/0 4.5305 0.0416 4.5320 0.0144 3.9346 0.043
2 2/1 4.4470 0.0376 4.4490 0.0134 3.8724 0.039
3 3/2 4.3729 0.0324 4.3753 0.0120 3.8153 0.033
4 4/3 4.3532 0.0326 4.3558 0.0120 3.7720 0.032
5 4/6 4.3464 0.0331 4.3492 0.0120 3.7662 0.031

TI 4.120~1! 4.1298~7! 3.645~1!

ar* areN are defined in Table I. The statistical errors of the free energy and the fluctuations,sA @Eq. ~14!# are
smaller than60.0005. The statistical errors of the TI results appear in parentheses, e.g., 4.120~1!54.120
60.001.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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D. Results for the entropy and the free energy

As discussed earlier, upper bounds for the free ene
can also be obtained byFB @Eqs.~9! and ~10!#, and indeed,
reliable results forAc /eN(FB) were obtained for the low
density systems ofr*50.75, 0.5, and 0.1, where the H
approximation improves; as expected, the corresponding
ues of the acceptance rateR @Eq. ~12!#, 1.4%, 3.9%, and
8.9%, increase as well. Notice that whileR51.4% is rela-
tively low, it stems from a single low free energy configur
tion that appeared in the beginning of the process. Howe
by calculating block averages of the results forAc /eN(FB)

TABLE IV. Upper bound and extrapolated values forAc /eN based on the
correlation betweenAc andsA @Eqs.~14!–~16!#.a

Approx. 2Ac /eN(Fup) 2Ac /eN(FM2) 2Ac /eN(Fextp) 2Ac /eN(TI)

r*50.846N5216
1,2,3 4.024 4.199 4.292
1,2,4 3.784 4.069 4.064
Average 4.16~6! 4.120~1!

r*50.846N51728
1,2,3 3.919 4.147 4.303
1,2,4 3.669 4.012 4.163
1,2,5 3.538 3.943 4.025
Average 4.10~5! 4.1298~7!

r*50.75N5216
1,2,3 3.513 3.664 3.709
3,4,5 3.256 3.511 3.731
Average 3.65~5! 3.645~1!

aFup stands for the upper bound ofF @Eq. ~16!#, FM2 denotes the average
free energy@Eq. ~16!#, Fextp is the extrapolated free energy@Eq. ~15!#, and
TI stands for the free energy obtained by thermodynamic integration th
considered to be exact. The values in the forth column and the rows
noted ‘‘average’’ are averages of the related free energy results den
FM2 andFextp. The notation for the errors is defined in the caption of Ta
III.
Downloaded 02 Dec 2003 to 136.142.92.42. Redistribution subject to A
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we have verified that the result forr*50.75 is statistically
reliable. The results forAc /eN(FB) appear in Table V.

Table V summarizes the various results for the free
ergy for N5216, providing thereby a comparison of our a
proximations with the TI values. It should first be pointed o
that for r*50.1 the results were obtained for the lowest a
proximation 1/0~based on the target cell only! because the
better approximations did not improve the results. F
r*50.846, 0.75, 0.5, and 0.1 theAc /eN(FA) values under-
estimate the correct ones by no more than 5.5%, 3.3%, 0.
and 0.6%, respectively. The corresponding minimal dev
tions ofAc /eN(FM1) ~and forr*50.846 and 0.75 the devia
tions of the average results obtained in Table IV that
denoted in Table V by an asterisk! are 1.4*%, 1.6%~1.4*%!,
0.26%, and 0.25%. We also provide free energy results
argon obtained by others, which are close to our TI valu
however, the highest density and temperature in these s
ies, r*50.835 andT* 50.81 are slightly different from our
valuesr*50.846 andT* 50.806.

Table VI displays results for the excess entropy,Se @Eq.
~19!#, and for completeness also the corresponding results
the excess free energy,Fe /T @Eq. ~20!# and the average po
tential energyE/T. In this representation the deviations
the HS results from the correct values increase as comp
to those obtained byAc in Table V. Thus, the minimum
deviations of theFA values are 7%, 5.5%, 2.1%, and 4.3
for r*50.846, 0.75, 0.5, and 0.1, respectively, whereas
corresponding deviations ofFM are, 1.9*%, 2.5%~2.4*%!,
0.5%, and 1.4%. The errors of the entropy are larger t
their free energy counterparts, increasing to 7.9%, 4%, 1.
and 4.7% forSA, and to 2.2*%, 1.9% ~1.8*%!, 0.5%, and
1.3% forSM, for r*50.846, 0.75, 0.5, and 0.1, respective
As expectedE/T and Se both increase as the density d
creases.

To study the effect of the boundary conditions on t
free energy, we carried out calculations forN5216 and

is
e-
ed
ge’’
TABLE V. Results for the free energy,Ac @Eq. ~21!# of an argon system of 216 atoms.a

r* 5Ns3/V 2Ac /eN(FA) 2Ac /eN(FB) 2Ac /eN(FM) 2Ac /eN(TI) 2Ac /eN ~others!

0.846 4.346 4.16~6!* 4.120~1! 4.15~2!b

4.17~3!c

4.10~4!d

0.75 3.766 3.641~5! 3.704~3! 3.645~1! 3.67~2!b

3.65 ~5!* 3.64~3!c

3.65~a!e

0.5 3.839 3.790~3! 3.815~2! 3.805~1! 3.83~2!b

3.79~3!c

3.85~2!e

0.1 3.995 3.967~3! 3.981~2! 3.971~1! 3.96~2!b

3.97~3!f

aThe HS approximation is the same,f /d54/6 for the first three densities and 1/0 forr*50.1; the sample size
in all cases is 5000 configurations. TheFB results are based on Eqs.~10! and~11!, leading to the corresponding
FM results@FM5FM1, see Eq.~13!#. Results forFM appearing with an asterisk are those denoted ‘‘avera
in Table IV. TI are the thermodynamic integration results. The statistical errors forAc /eN(FA) are smaller than
60.0005~see Table III!. The notation for the errors is defined in the caption of Table III.

bReference 26.
cReference 24.
dReference 27.
eReference 25.
fReference 23.
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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TABLE VI. Results for the energy, entropy, and the free energy of an argon system with 216 atoms.a

P* 2E/T @cal/~K mol)]

2Se @cal/~K mol)] 2Fe /T @cal/~K mol)]

SA SM TI FA FM TI

0.846 14.798~1! 6.364~3! 6.82~15!* 6.923~4! 8.430 ~2! 7.97~15!* 7.875~3!
0.75 8.8279~4! 4.848~2! 4.953~6! 5.056~3! 3.981 ~1! 3.875~6! 3.772~2!
0.75 8.8279~4! 5.05 ~9!* 5.056~3! 3.78 ~9!* 3.772~2!
0.5 4.9730~5! 2.655~2! 2.689~4! 2.703~2! 2.3181~5! 2.284~3! 2.270~2!
0.1 1.758 ~2! 0.784~3! 0.810~5! 0.829~3! 0.9715~4! 0.948~4! 0.929~2!

aE is the average Lennard-Jones potential energy@Eq. ~20!#, Se is the excess entropy@Eq. ~19!#, andFe is the excess free energy@Eq. ~20!#. SA is based on
Eq. ~7!, with r i( f ,a) replacingPi( f ,a). The results forSA and FA are based on the best HS approximations for each density.SM is obtained from (E
2FM)/T, whereFM is defined byFM1 @Eq. ~13!# and when the results appear with an asterisk byFM2 @Eq. ~16!# ~see also the caption of Table V!. TI denotes
the thermodynamic integration results.
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r*50.846 with the boundary conditions BC3 discussed e
lier. We applied BC3 with different levels of approximatio
One, applied to 4/3 is based on eight parameters (Tp and
sevenm i) only, whereas with the best approximation alt
gether 83 parameters were defined by assigning differenm i

to different boundary regions of the box. These two tre
ments have led toAc /eN(FA)524.546. and24.484, re-
spectively, which constitutes a significant increase in the f
energy for the better approximation. This demonstrates
strong effects of the boundaries in the BC3 treatment
small systems. StillAc /eN(FA)524.484 is significantly
lower than24.346 obtained with BC4~see Table V!. How-
ever, as discussed earlier, a better treatment of BC3 w
make the calculation highly complex. The BC3 treatment
the boundaries is expected to improve as the system
increases, which indeed is demonstrated by the significa
higher valueAc /eN(FA)524.476 obtained with the 4/3 ap
proximation~with eight parameters! for 1728 atoms as com
pared to24.546 obtained for 216 atoms.

IV. SUMMARY AND CONCLUSIONS

In this article we have extended for the first time t
hypothetical scanning method to a fluid system. It has b
demonstrated that by considering only four future cells v
good results can be obtained for a large range of argon
sities, where even for the highest density studied the erro
Ac is ;1.4%, ofFe /T is ;1.9% and that of the access e
tropy, Se is ;2.2%. A HS analysis of 5000 configuration
based on dividing the cell intob3543 cubes requires;6 h
CPU on a 2 GHz Athlon processor; this time increases
;35 h for b55; for comparison, the TI calculation de
scribed in the Appendix required;4 h CPU. It should be
pointed out that the HS analysis is especially suitable
parallel computing where each processor treats a partial
figuration, a single or several configurations. The method
systematically be improved by considering two or three
ditional future cells, where, however, treating the time co
suming triplets is required; as discussed above, this can
carried out efficiently on a computer cluster that at this po
is not available for us. An efficient handling of the triple
might be achieved by replacing the systematic future sc
ning by a Monte Carlo integration procedure, where po
tions in the future cells are selected at random, as carried
before within the framework of the double scanni
Downloaded 02 Dec 2003 to 136.142.92.42. Redistribution subject to A
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method.59 For good enough approximations the HS meth
provides upper and lower bounds for the free energy, an
particular it is suitable for treating large systems. Still, w
consider the present study as an initial development of
HS approach for liquids. Thus, in the following article w
describe a different implementation of the HS ideas, wh
the calculation of the transition probabilities is based not
calculating future partition functions, but on simulating f
ture configurations by the Monte Carlo method and count
the population of the target cell and the target cube of in
est. We expect both implementations to further be improv
as they applied to the more complex models of water.
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APPENDIX: FREE ENERGY CALCULATIONS USING
THERMODYNAMIC INTEGRATION

Most of the free energy values for Lennard-Jones flu
in the literature are relatively old hence of limited accura
An exception is the more recent extensive work of the G
bins group, which enables one to determine the free ene
numerically from a polynomial expression of the equation
state based on 33 adjustable parameters that were fitted
large amount of simulation data.60 However, we have found
it beneficial to obtain values for comparison that exac
match the systems and the simulation/running conditi
used by us to study HS. Therefore, we calculated hig
accurate results for the free energy and entropy of the pre
systems independently using a version of thermodynamic
tegration~TI!, which is described here in some detail; th
reader is also referred to several review articles,1–4 where a
wider scope of this approach is given.

With TI the free energy of a liquid of givenNVT can be
obtained by integrating the change in the free energy in
ing from an ideal gas with the sameNVT ~the reference
state! to the liquid of interest. Thus a coupling parameter,l,
is added to the potential energy, which allows one to defin
nonphysical path connecting the reference state~l50! to the
liquid state~l51!,
IP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp
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E~xN,l!5(
i , j

f~r i j ,l!, ~A1!

wheref(r i j ,l) is the scaled Lennard-Jones pair potent
becomingf(r i j ) @Eq. ~17!# for l51 and 0 forl50. Because
the partition function can be formally written as a function
l, the derivative of the Helmholtz free energy can be eva
ated as an ensemble average,

]F

]l
5 K ]E~xN,l!

]l L
l

. ~A2!

The change in the Helmholtz free energy is therefore gi
by

DF5E
0

1 ]F

]l
dl, ~A3!

where the integration is approximated as a quadrature ov
discrete number of derivative points. Here, each derivativ
l i is obtained from a simulation of the respective sca
system atl i .

From a practical point of view, the particular path chos
~i.e., the scaling form! can strongly influence the reliability
of the results. For example, in scalings involving the creat
of atoms, small but energetically acceptable pair separati
at one value ofl, can correspond to very high repulsiv
energies for slightly largerl. This gives rise to very high
~and variable! values for the derivative, thus causing difficu
ties in the integration process~the ‘‘van der Waals end poin
catastrophe’’!. Therefore, we have used a shifted scaling p
tential, introduced by Zachariaset al.,61

f~r i j ,l!5l4eF s12

~r i j
2 1d~12l!!6

2
s6

~r i j
2 1d~12l!!3G ,

~A4!

where the shift parameter,d, prevents divergence in the po
tential ~and its derivative! at small pair separations.d is gen-
erally kept fixed along the path. Other efficient scaling
integrations are available, see for example, Ref. 62.

The scaled system was simulated at 41 evenly spa
values ofl using the standard Metropolis MC method in t
canonical (N,V,T) ensemble. Each simulation was run to
total of 53106 MC steps (107 for 1728 atoms!. The pair
interactions were truncated at 10.8 Å. Formally, we add
the long-range corrections to the ensemble-averaged de
tives.~The integrated contribution of these derivative corre
tions is trivially equivalent to the long-range energy corre
tion atl51.! The quadrature accounted for curvature, in th
triplets of successive derivative points were fitted to pie
wise quadratic functions~two of these piecewise quadratic
can be averaged between each pair of points, except a
ends!. The derivatives were generally very smooth, a
simple trapezium integrations~i.e., the derivative function is
taken as linear between each point! typically gave free en-
ergy changes that were different from the piecewise q
dratic quadrature by only 0.05% or less. Uncertainty val
in the ensemble-averaged derivatives were calculated f
the standard deviation of block averages. These uncertai
were used in a standard error propagation~assuming a trape
Downloaded 02 Dec 2003 to 136.142.92.42. Redistribution subject to A
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zium integration! to estimate the uncertainty in the over a
free energy change. These uncertainty estimates are rea
ably consistent with observed differences in independ
runs. Though we have chosen to integrate over a large n
ber ofl values~simulation points!, very good results can be
obtained with far fewer values. On the systems we check
the results for 11 and 21l values agree~with 41! within the
calculated uncertainties.

Reliable integration results can usually be obtained w
a shift parameter value of 9 Å2 ~which generally promotes a
very smooth quadrature!. This choice can however give ris
to negative pressures. This has never caused problems
the 216-atom system. However, a collapse~phase transition!
was observed in the 1728 atom system using thisd value. To
avoid negative pressures,d can be reduced or alternatively
the integration can be carried out at a higher temperat
The free energy at the desired temperature is then obta
from another integration~over T!, using the derivative,
](F/T)/](1/T)5E. Results from this alternative path ar
consistent within the calculated uncertainty.

As a further check on our values, we also integrated
free energy using a series of microcanonical (N,V,E) MD
simulations over a physical path of (p,V,T) points ~p is the
pressure and hereE is the total energy!. This path is started
from a dilute gas atT5200 K ~assumed ideal!, and thus the
free energy is analytically evaluated.V and E are varied
~point by point! over the path, which ultimately ends at th
liquid state of interest. AsV is decreased,E is changed in
such a way thatT stays close to 200 K~i.e., above the critical
temperature!, thus avoiding the crossing of a phase tran
tion. After the liquid density has been reached,E is lowered
to achieve the desiredT. p and T are ensemble averaged
each (p,V,T) point ~a total of 112 simulations!. The entropy
change, from the analytically calculable ideal gas to the
uid state, is integrated over the path as

DS5E
path

F1

T
dE1

p

T
dVG , ~A5!

where the first~most dilute! simulation started at a pressu
of ;10 atm and a small correction to the entropy was ad
using the second virial coefficient for argon. The proced
was carried out for a system of 216 atoms at the liquid st
r*50.846, T596.53 K. The results for the configuration
Helmholtz free energy@Eq. ~21!# obtained from this ap-
proach and the potential scaling approach agree to wi
less than 0.1%.
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