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The hypothetical scannin@HS) method provides thabsoluteentropy and free energy from a
Boltzmann sample generated by Monte Carlo, molecular dynamics or any other exact simulation
procedure. Thus far HS has been applied successfully to magnetic and polymer chain models; in this
paper and the following one it is extended to fluid systems by treating a Lennard-Jones model of
argon. With HS a probability?; approximating the Boltzmann probability of system configuration

i is calculated with a stepwise reconstruction procedure, based on adding atoms gradually
layer-by-layer to an initially empty volume, where they are replaced in their positiané&\aeach

step a transition probabilitfTP) is obtained from local grand canonical partition functions
calculated over a limited space of the still unvisitéature) volume, the larger this space the better

the approximationP; is the product of the step TPs, whereRnis an upper bound of thebsolute
entropy, which leads to upper and lower bounds for the free energy. We demonstrate that very good
results for the entropy and the free energy can be obtained for a wide range of densities of the argon
system by calculating TPs that are based on only a very limited future volum&0G8 American
Institute of Physics.[DOI: 10.1063/1.1625919

I. INTRODUCTION methods’®2° and other related techniqués® are also in-
cluded in this categojy Thermodynamic integrationiTl)
Calculation of theabsoluteentropySand the Helmholtz  methods provide the difference in the free enery¥ m n
free energyF of complex many-body systems by computer (and in some casesS;, ,) between two microstates andn,
simulation is an extremely difficult problem that has beenand only when the absolute entropy of one microstate is
given considerable attentioisee Refs. 1-4, and references known can that of the other be obtained.
cited therein. Using any simulation technique, it is relatively While Tl is a robust approach that has been applied suc-
easy to calculate the enerdy,, which is “written” on sys-  cessfully to highly complex systems, difficulties arise when
tem configuratiori in terms of microscopic interactiorte.g.,  the integration path includes a phase transition; also, for pro-
Lennard-Jones interactions of argpand for the same rea- teins, for example, such integration is feasible only if the
son to calculate structural quantities such as the radial distritructural variance between the two microstates is very
bution function of a fluid, or the radius of gyration of a small. Therefore, it is important to develop methods that pro-
polymer. On the other hand, calculatifig- —In PP requires  vide InP;, thereby enabling one to calculate the absofte
knowledge of thevalue of the Boltzmann probabilityP?,  andF, from two separate simulations of the microstates
which is the sampling probability. Howeve®? is not pro-  andn; in this caseAF , = F,— F, can be calculated even
vided directly by the commonly usetynamicaltechniques, for significantly differentmicrostates since the integration
the Metropolis Monte CarldMC)®> method and molecular process is avoided.
dynamics(MD);® therefore, at an absolute temperatdie Such an approach has been proposed by Meirovitch,
F=E-TSis unknown as well. For some models, €.g., awhere two related approximate techniques, the local states
protein in vacuum, this problem can somewhat be alleviateghethod3>-4° (see also Refs. 41-%%nd the hypothetical
by treating a microstatéi.e., the local MD or MC fluctua-  scanning(HS) method“6~%! have been developed and ap-
tions around a stable conformation such as éheelix) by pjied to a wide range of systems, magnets, polymer chains,
harmonic or quasiharmonic approximations, meaning thapeptides, and loops in proteins. These methods demonstrate
P® is assumed to be Gaussfart” In most cases, however, that fike the energy, IR, is also “written” on system con-
the commonly used methods for calculatifgand S are  figyrationi in terms of a product of transition probabilities
based on reversible thermodynamic integration over physic h—pS), where each method provides a different prescription
guantities such as the energy, temperature, pressure, and the “reading” of these TPs from. Thus, the absolute
specific heat, as well as nonphysical paramétérs~' entropy, like the energy, can be obtained approximately from
(free energy perturbation methods, histogram analysig given Boltzmann sample generated by MC or MD any
other exact methgd even in cases where Tl is practically
3 Author to whom correspondence should be addressed. unfeasible.
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Our long-range objective is to extend these methods to a

L
protein immersed in a box of explicit solve(watep; how- . . . . . ‘ . .

ever, none of them have been applied thus far to a continuum L kL+1 |

fluid model. Therefore, in this paper and the following one

we extend the HS method to a Lennard-Jones model of lig- L‘ ‘ . . ® ® ® @
uid argon, because HS was found to be significantly more -4 B3 k2 Rl

efficient than the local states method for treating the molecu- ® ® ® ® Q O O

lar van der Waals repulsions in a dense environment. With

HS a probabilityP; approximating the Boltzmann probabil- O O O O O O O O

ity of system configurationis calculated by a reconstruction

procedure based on adding atoms gradually to an initially

empty volume, where they are placed in their positions at O O Q O Q O O O

in this process the volume is divided into small cells whichgiG, 1. A diagram illustrating théth step of the DS constructiofor HS
are visited in ainear order, line-by-line, layer-by-layer. At reconstructionof a square Ising lattice df XL spins. The target sitk is

each step a TP is obtained by systematically calculating localenoted by a square and the“uncovered” spins (at sitesk—L, k—L

; i ; . 1,...k—2,k—1) are denoted by empty circles with two crossing lines. In
grand canonical partition functions over a limited space Of::':ddition to the “uncovered sites,” the full circles denote lattice sites which

the still unvisited(future) Y0|Ume- P; is the product of the  phaye also been filled with spirfs-1) in previous steps of the construction
step TPs, where IR, estimates theabsoluteentropy that process, while the empty circles denote the still empty lattice sites. The
leads to upper and lower bounds for the free energy. future partition functionsZ™ (k) andZ™ (k) for o =+1 and—1, respec-
For simplicity before treating argon, we describe HS astively, are calculated from the configurations of thi fiture spins defined
. ' . : ! over the 10-site rectangle; notice that the interaction energy between the
applied to the ?Fluaf? IS”j]g Iatt'ce'_Where.the effect of th(';'.mcovered spins at sitek;-1, k—2, k—L, andk—L+1 and their nearest
boundary conditions is discussed in detail. Then, a grandeighbor future spins is considered. The “spiral” boundary conditions be-
canonical future scanning for calculating the TPs of argon igween SDiEL and spin 1 of the nextbrowI is Ol(tjapicter?| bly ff:m ;arrowed (irrn]e
; ; er words, we imagine spib to be placed to the left of spin 1 when
dISCU'SSGd, and. t.he HS res“"fs are compared '[Q those Obtamga culating spin 1's ing:eracti?)msThe TIES arep*=Z*/(Z*+Z’§) andp~
by using an efficient Tl technique. In the following paper thez(l_p+).
TPs are calculated in an alternative way, by a counting pro-
cedure based on Metropolis MC simulations within the

framework of the canonical ensemble.

This model can straightforwardly be simulated by the
usual Metropolis MC method, where one starts from an ar-
bitrary spin configuration, changes it gradually in the course
Il. THEORY AND METHODS of the run, and calculates averages of properties of interest

T q d the th FHS § i fuid i after the system has been equilibrated. Alternatively, this sys-
0 understand the theory o or a continuum fluid it o 1y a5 "heen viewed by Alexandrowie®® (see also

proves convenient to introduce it first in terms of the SQUArgiKuchi®) as a longlinear chain of spins that can be con-
Ismg lattice, Whlch is equwale_nt to a lattice gas .model of astructed by adding spins to an initially empty lattice step-by-
fluid. The lIsing model consists ON.:LXL SpIns oy, step with the help of approximate transition probabilities
oy= +1 (1.sks N), wherg nearest neighbor spinskand| (TPS. A related method, called direct scannifpS) was
interact with ferromagnet!c energy Joyo, (3>0). The to- suggested later by Meirovitcli,where a set of approximate
tal energy of syste_m conflglérgtlons denoted byE; and the TPs, is obtained by scannirigture spin configurations off
Boltzmann probability of, Py is empty lattice sites close to the target ssee beloy, where

g exp—[E;/kgT] the approximation can be improved systematically by in-

I — (1) creasingf. This DS procedure is the basis of the HS method

) ) and therefore is described below in detail.
where T is the absolute temperaturkg is the Boltzmann

constant, and is the partition function. The ensemble aver- A- The DS procedure

age(E) of the energy is With the DS procedure, one starts from &=L XL
emptylattice, and determines the spins step-by-step, row-by-
(E)zz PPE;, (2)  row using TPs. At stefk of the processk—1 spins have
|

already been fixed and one seeks to determine the spin at the
and the entropy and the free energy can formally be exvacant sitek (the “target” site). The lastL spins added to the
pressed as ensemble averag&s,and(F) but we shall de- lattice are called the “uncovered” spitisee Fig. 1 Because
note them in the usual way yandF, respectively, of the nearest neighbor interaction, the TPs depend on these
L uncovered spins, but not on the covered ofies, spins 1
S=(S)= _kBE piB In piB (3) tok—L—1, which were determined in the past, see Fig. 1
[ where the effect of an uncovered spin is expected to decrease
and as its distance from sitk increases. ThexactTP at stepk
would require calculating two partition functions; (k) and
F=(F>=E PiB[Ei+kBTIn PiB]:<E>_TS @) Z7 (k) over theemptypart of the Iatt'ice[theN—(k—l) still
i vacant sitesk, k+1,...N], where sitek is populated by a

Downloaded 02 Dec 2003 to 136.142.92.42. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



12086  J. Chem. Phys., Vol. 119, No. 23, 15 December 2003 Szarecka, White, and Meirovitch

spin +1 or —1, respectively; the corresponding TPs arefor a continuum 3D model; furthermore, for a large enough
ZT(K/INZ'(k)+Z (k)] and Z (K)/[Z"(k)+Z (k)]. system their effect becomes negligible. Thus, to define a
These partition functions are based on summation of the ercompletely homogeneous set of TPs, suppose that a rectan-
ergy exponentials of all the possible spin configurations ovegular (rather than squayelsing “superlattice” of KL XL
the vacant sites in the presence of (fieed) configuration of  spins (i.e., of K successivesquare Ising lattices ofL X L
the uncovered spins. That is, interaction energies betweesping has been generated by DS with spiral boundary con-
vacant sites and the fixed uncovered spins are also taken inglitions, and let us examine the middle lattices, say from lat-
account. In this respect determination of sgimlways de- tice 2 toK— 1. Obviously, with this construction the TPs for
pends on the past, i.e., the previously determibhespinsk the first row are defined in the same way as for internal spins,
—1,..k—L. In practice, this calculation is not feasible for a because of the presence of the last row of spins of the pre-
large lattice and one can calculaé andZ™~ only approxi-  vious square lattice. Also, the rectangle of future sysee
mately over a limited rectangular part of the empty latticeFig. 1) is not changed for the last rows of each square lattice,
consisting off empty sites, such as the ten empty sites apbecause if needed it is defined also over sites of the next
pearing in the rectangle in Fig. 1; the corresponding approxisquare latticdi.e., the future is openThus, the probability
mate TPs, are denoteui(*,f,«), wherea is a set of pa- of a square Ising lattice generated with this procedure is
rameters(discussed latgrthat are optimized by a minimum p . Pi(f,a), wherep,,, is a DS probability of the last row
free energy criterion, of the previously generated lattice. Because the energy of
. interaction between the first and last rows of successive lat-
Z7(k,f,a@) . : ) o .
= ) (5) tices is calculated the total number of spin—spin interactions
Z7(kf,a)+Z (kf,a) is 2N, as for periodic boundary conditiorisee discussion
below), and the related entropy is —kgIn Pi(f,a). These
boundary conditions® denoted BC2, can be extended to an
Ising model on a simple cubic lattice as well, by adding the
spins layer-by-layer where for each layer they are added
N row-by-row as described above.
The homogeneous BC2 boundary conditions described
Pi(f’a):kll Pu(f,a), ®)  above for DS are not the commonly used boundary condi-
i i tions. Typically the Ising model is studied with periodic
wherep,(f, ) is the TP of the spin selected at skeThere- 1,4, nqary conditions, where row 1 interacts with the last row,
fore, the absolute entropy and free enefigs.(3) and(4)] | and the first and last spins at each row interact as well. In
can be calculated and very good approximations for thesﬁractice one defines image lattices where rows-@, —2
guantities indeed have been obtained by the DS me'i%od.etc_ are the images of rows L— 1, andL — 2, respectively,
{Notice that unl_lke the calculations carried gut in Ref. B5,  ,nd similar images are defined for columns 1 an€learly,
can also be estimated &yfrom a sample of siza generated  onstructing by DS an Ising lattice with periodic boundary
by Pi(f,a), whereZ=1/nX{ exf —E/ksTVP(f,a).} conditions is very inconvenient because of the need to define
a special set TPs for the boundaries. For example, since row
1 interacts with both rows 2 and 0, the immediate future of
row 1 is defined not only by vacant sites of say, rows 2, 3,
To maintain alinear construction, the natural treatment and 4, but also by the symmetrical sites on rows-Q, and
of the boundaries with the DS procedure is by imposing—2 that are the images of rows L—1, andL —2, respec-
“spiral” boundary conditions. Thus, the first spin of a row tively. This means that to treat row 1 on the same level of
becomes a nearest neighbor to the last spin of the previowpproximation as applied to internal spins, the number of
row, i.e., these are interacting spifs®e Fig. 1 This defini-  future sites considered should be at lealst@&her tharf; for
tion leads to a “homogeneous” set of TPs, i.e., TPs that aréhe same reason,fZuture sites are also required for calcu-
defined exactly the same for internal and boundary spindating the TP of the first spin of each row. On the other hand,
Still, this procedure is not completely homogeneous, becauder rows close to the last row, one should consider the
when the last row is approached the size of the rectangle dfiteraction energy of the future spins with the image row
future spins should be decreased to remain within the limitst 1, which is defined by the already constructed row 1. Simi-
of the lattice; also, the first row is not “neighbored” by a larly, for each row, calculating TPs for spins that are close to
previous row, which requires defining a particular set of TPshe end siteL, requires considering the image sgin-1,
for the first row. These spins can be chosen in various waysvhich is defined by the already constructed spin 1 of the
where a simple one is to select them independently at rarsame row. In practice, treating Zpins can be computation-
dom[p(+)=p(—)=0.5], or with p(+)=(m+1)/2 if the ally undesirable and the number of different cases to be con-
magnetizationm is known (at least approximately Notice  sidered is large, becoming significantly larger for three-
that with such choices the probabili§;(f,a) [Eq. (6)] is  dimensional models, which makes the programming
well defined over the entire system df 2onfigurations, i.e., cumbersome. Approximate implementation of periodic
2 Pi(f,a)=1; these boundary conditions are denoted BC1boundary conditions within the framework of DS is called
As discussed below, defining homogeneous boundar3C3.
conditions simplifies the programming immensely, especially  As pointed out earlier, folarge systems the effect of the

pk(+!fia)

Using this method one can generate a sampletaifsti-
cally independentsing configurations, where in contrast to
the MC method, thevalue of the construction probability of
configurationi is known,

B. Treatment of the boundaries
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boundaries becomes negligible and DS with different bound- 12345
ary conditions will lead practically to the same results. How- rowl[abcde
ever, it is much easier to program a DS procedure based on row2|fghij
the homogeneous TH&C2) than on the inhomogeneous a spins
TPYBC3), especially when boundary effects are complex, rowS|vwxyz

e.g., for three-dimensional systems and models that depend
on long-range interactions and strong repulsions, as the

Lennard-Jones model for argon, studied in the present paper. 1MAge image
2-10 12345 678
C. The HS method b X yZ VWXV ZVWX

. . . ¢ d el|empty 1" row
One can simulate &rge square Ising lattice by DS or

alternatively by the Metropolis MC method with periodic
boundary conditions. If the temperatufas not too close to
the critical temperature and the future scanning is based on a

rectangular box larger than the correlation length, statistical mage image
averages and fluctuations of various quantities such as the 2-10 12345678
energy, entropy, or magnetization obtained from the two c XYy Z VWXYZVWX
samples would be the same within the statistical error, be- cdefabecd abc
cause the effect of the boundaries is negligBlén this re- h i j|empty 2™ row

spect the two samples are equivalent and independent of the
methods used to generate them; notice, however, that DS,
unlike MC also prOVIdeS the absolute entropy. . FIG. 2. The BC4 boundary conditions for a square Ising ma@eA 5x5
The HS methodand the local states method not dis- |sjng lattice where the spins of the first, second, and last rows are specified
cussed hepeenables one to calculate the entropy of a sampley letters.(b) The periodic boundary conditions used to reconstruct the first
generated byany exact procedure, in particular the MC row of this lattice. Notice that this row remains open to the right throughout
- . jts construction processgc) Upon completion of the first row, “right-hand”
method. Thus, relylng on the above equalence’ one a#mages(a, b, and ¢ are then added and used for the reconstruction of the
sumes that the MC sample has rather been constructed R¥cond row; also added at the beginning of the reconstruction of the second
DS, which allows reconstructing the TPs tligipothetically — row are the “left-hand” imagesh, i, and ). The boundaries and the recon-
were used to build configuratianwith DS. In practice, one struction of the other rows is similar; note, however, for the last rows the
tarts from an emptv latti nd at h skeoal |, t rectangle of future spinsee Fig. 1if necessary might also be defined over
Sf S from a _e ply latlice, _a at eac palculaies the continuing rows 6, 7, etc., i.e., the lattice is open “beldand “to the
Z"(f,a) andZ™ (f,a) from whichp,(f,) [Eq. (5)] for the  right” in the current row.
actual spin appearing at this site in configurations ob-
tained. The product of these TPs leadsP¢f,«) [Eq. (6)]
and to the corresponding entropy functior®(f,a). One  neous set of TPs for HS. Thus, row 1 is reconstructed in the
can show thas" is a rigorous upper bound for the correct presence of image row 0 defined by #mownspin configu-
entropy?*® and FA(f, ) is therefore a lower bound free en- ration of rowL. Likewise, to reconstruct spin 1 of any rgw

ergy functional, the image spins at sites 6,1, —2, etc. of rowj (defined by
the knownspins at sites, L—1, L — 2, etc. of rowj, respec-
SAf,a)= —kg X, PEINP;(f,a); (7)  tively) are considered for calculating the required TP. On the
[ other hand, for reconstructing the last spins of fjolsay, at
FA(f,a)=(E)— TS\(f,a). ®) sitesL—3,L—2,L—1, andL), the image spins of this row at

sitesL+1, L+ 2, etc. are not considered, i.e., these sites are

Notice thatS"* andF*, like (E), SandF in Egs.(2), (3), and  treated as vacant, as for BC2; thus, when the spins in the last
(4), respectively, are defined over teatire ensemble of 2 sites of rowj are reconstructed the corresponding rectangles
Ising configurations; in practic8® andF* areestimatecby  are defined partially over sites that pertain to image columns
S* andF* from a sample of size generated with an exact L+1, L+2, etc. that are not part of tHex L lattice. Like-
method such as the Metropolis method. For examplewise, image spins in rows+1,...,2 are ignored, i.e., these
Sh=—(kg/n) =7 In P(f,a), wheret denotes theth configu-  sites remain vacant; therefore, the same rectangle of future
ration in the sample. Thus, the entropy, like the energy, ispins for calculating the TPs is used for all the rows, where
“written” on the system configurations in terms of the loga- for the last rows part of this rectangle is defined over future
rithm of transition probabilities. The optimal values of the sites of rowsL +1 and higher, again as in BC2; see Fig. 2.
parametersy are those that minimiz&€”* or maximizeF*. It should be pointed out that BC4 differs conceptually

Because the MC sample is typically generated with pefrom BC1, BC2, and BC3 in that the HS reconstruction at the
riodic boundary conditions, one option is to reconstruct theboundaries does not depend only on spins that were recon-
Ising configurations with the inhomogeneous set of TPs foistructed in the past but also on the images of spins that will
these boundaries defined earlier as BC3, or the more homde determined in future steps of the HS process. However,
geneous set of TP@hat include the spiral connectionde-  these future spins are used to define a homogeneous environ-
noted BC1. However, we describe now an additional set ofment for calculating the TPs of spins close and at the bound-
boundaries denoted BC4 that lead to a completely homogearies; in this respect each spin on the lattice is reconstructed
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under exactly the same rules, which characterizes to a great Typically, several approximations for FA(f,a),
extent the situation in a very large system. In principle, thes&8(f,«), andFM(f,«) are calculated as a function hfand
future boundary spins could be replaced by any set of spintheir convergence enables one to determine the correct free
that are distributed according to the Boltzmann probabifity. energy with high accuracy.

Again, for a large system, the effect of the BC4 boundary

conditions vanishes. BC4 is found to be very useful for ac the correlation between o*(f,a) and FA(f,a)

continuum model of argon, where the effect of the atomic

repulsions is strong, while such repulsions do not exist at all  The fluctuationlstandard deviationo of the correctfree

in the Ising model. energy,F, [Eq. (4)] is zero, whileF”(f,«) has nonzero fluc-

tuation, g, 46:51.58

1/2

D. Upper bounds for the free energy oh= 2 PEIFA(f,a)]?— (14
I

2

Z PiBFiA(f,a))

One can define another approximate free energy func- d h imatiof i dtod
tional denotedFB(f,«) (Ref. 48 [F® is defined over the For a good enough approximatiot? is expected to decrease

: ; ; as the approximation improves. It has been sugg&sted
whole ensemble, see discussion following E@s.and (8)], express the correlation betweBA(f,«) anda”(f,a) by the

approximate function,
FA(f,a)=F*®+C[o*(f,a)]”, (15

B : whereF®" is the extrapolated value of the free energy, and
F (';'“)ZF [Eq.B(4)] and equality occurs wheRi(f,@) ¢ andg are parameters to be optimized by best-fitting results
=Pi [Eq. (D], F5(f,a), the upper bound dF, can t_’eeit" for FA(f,a) and *(f,a) for differentf. One can also cal-
matedby F® from a sample of size generated withP®,  cyjate the tangent to the function at the lowest value obtained
using importance sampling, for o”(f,a); if Eq. (15) defines a concave-down function
n and this trend oF*(¢*) is assumed to hold for bettéun-
Zi=aPi(f )X B ke TILE ke TN Py(T, )] . calculated approximationsF”*, the intersection of the tan-
i, P(f,a)exd E /kgT] gent with the vertical axi§o”(f,«)=0] defines an upper
(10 pound forF denotedF'(f,) that depends on the largest
wheret denotes théth configuration in the sample obtained value off used in the best-fit process. Thus, in parallel to Eq.
with a correctBoltzmann simulation carried out with the MC (1), one defines the average'*(f,a),
or MD methods, for example(The factors 1 in the nu- FM2(f,a)=[FA(f,a) + FU®(f,a)]/2. (16)
merator and the denominator are cancelddbwever, the
staUsAtlcaI reliability of this es'Flma_mo(unll_ke the estlmqtlon F. The model of argon
of F”) decreases sharply with increasing system size, be-

FB(f,a)=2>, Pi(f,a)[Ei+kgT InP;(f,a)], (9)

where according to the free energy minimum princifle,

FB(f,a)=

cause the overlap between the probability distributi®fs In this paper we extend HS to a system Mfatoms

and P;(f,a) decreases exponentiallgee discussion in Ref. contained in a 3D “box” of volumeV [(NVT) ensembl¢

39). interacting via a Lennard-Jones potentiatgon atomp
Another way to estimatd=B(f,a) is by using a “re-

) (17)

o 12 o 6
versed Schmidt proceduré®*which enables one to extract d(r)=4e (—) - —)
from the givenunbiasedsample of sizen generated WitkPiB ' '
an effectively smaller biased sample generated with wherer (in A) is the distance between a pair of atoms,
Pi(f,«). Thus, the configurations of the unbiased sample are/kg=119.8 K ando=3.405 A. Denoting the Cartesian co-
treated consecutively. If a configuratiowas accepted to the ordinates and their differentials by' anddx", respectively,
biased sample, the next configuratipmvould be accepted the configurationalBoltzmann probability densitp(x") is

with a transition probabilityA;; , P = exif — EGMN) ke T1/Zy
Aij = min{l,eXQ(Ej - EI)/kBT] PJ(f,Cl’)/Pl(f,C()} (11)

Equation(11) is a generalized MC procedure, which satisfies =exf - E(XN)”‘B-'_]/IQ expl —E(x")/kgT]dx",

the detailed balance condition and is carried out with random

numbers. The acceptance r&erovides a measure for the (18

effective sizef the accepted biased sample, where Q=VN and E(XN):Ei<j¢(rij) is the potential en-
R=NacceplNs (12) ergy. The total entropis

wheren,g..iS the number of accepted configurations. S=S-+S.=S.—k j Y IFVN o (xN) TdxN 19
Given thatFA(f,a) and FB(f,a), are calculated and 6o e Te T8 Qp( NINVEp() ], (19

their deviations fronF (in the absolute valug¢sre approxi-
mately equal, their averageM!(f,«) becomes a better ap-
proximation than either of them individually,

where S is the entropy of the ideal gas at the same tem-
perature and density, arf} is the excess entropy to be esti-
mated by HS. The corresponding excess Helmholtz free en-
FML(f,a)=[FA(f,a)+ FB(f,a)]/2. (13)  ergyis,

Downloaded 02 Dec 2003 to 136.142.92.42. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



J. Chem. Phys., Vol. 119, No. 23, 15 December 2003 Entropy and free energy of fluids. | 12089

N Ne N a real atom, i.e., an atom to be reconstructed, occupies cube
Fe= LZP(X JEXDAX"=TS=E-TS, (200 mof the target celk, its coordinates are used for calculating
Em-en » rather than the center of the cube. Similay is
whereE is the average potential energy. However, to com-optained as a sum ové(f—1)/2 “doublets” denotedQy’,
pare our results to those obtained by other methods we shajhere
also calculate the configurational free energy, dendied®

Zn

,j_—
N!U3N)' ) 2

AC: - kBT In

where the partition functioZy, is defined in Eq(18). T Emn)/keTpl. (24)

In this equationEy,, is the interaction energy between
G. The HS method applied to argon imaginary atoms placed at the centers of cabef cell i and
) _ _ cuben of cell j. Correspondingly, fod>2, Q4 is a summa-

This system was simulated by the Metropolis MC tion overf!/[(f—d)!d!] terms. The TFP* (P ) for an oc-
method and the free energy and entropy were calculated withpied (unoccupied target cellk, is proportional to the sum
HS from the corresponding samples. Conforming with thef the partition function terms that includexclude cell k.
equivalence of the Ising and the lattice gas model$=an  Tnys, for the lowest approximation, where the only future
pccupgled site,~1=an unoccupied silethe box is divided  cell is the target celk(f=1), Q, consists of one term,
into L°=LXLXL cubic cells with the maximal size thgt still =, =1+ Q, ex wksT] and
guarantees that no more than one center of a spherical argon
molecule occupies a cell. However, to approximate the mol- P*=Q, exd u/kgT]/E,, P =1-P"=1/Z,. (25
ecules in continuum each cell is further divided inteb
xbx b subcells, called cubes. Notice that because the intefowever, in the case of an occupied target cell, unlike for the
action is long-range, unlike for the Ising model, deeper lay-Sing model, one has to define the @ensityp™ for placing
ers than the uncovered layer should be considered in th@" atom at cuben,

calculation of the TPs. S — B 3
Each sample configuration was reconstructed using HS, Pr=P exi~Emen /e Tpl/QuA

where at stegk, N atoms have already been treated and :eXF[_Em—env/kBTp+:u/kBT]/ElA3- (26)
placed in their positions and the TP of the target ¢kl o
(which might be an occupied or an unoccupied )csHould In the next approximationf(= 2) the target celldenoted

be determined. ArxactTP will require calculating the two 1) and an additional nearest neighbor future ¢eénoted 2
canonicalpartition functionsZ* (k) andz~ (k) (defined for are considered. One then calculat€s=Qi+Q3, Q,
the present continuum model for the remaining =Q3% andE,=1+Q,exfuksT]+Q,exfg2u/ksT], lead-
N— N, atoms distributed in the3— (k—1) remaining cells. ing to

However, because only a limited numbesf future cells are
considered, the population in these cells can range from
(all thef cells are emptyto min(f,N—N,). We define arand

0 P =Qiexdul/ksTl/E,+Q,exy 2ulksT]/E,,

- 2 =
partition function Z;, over thef cells P™=1+QiexdulkeTl/=,. (27
Ei(k)=1+Q (k) exd u/kgT]+ Qu(kK)exd 2u/kgT] In the same way as above one can show that the TP density
for placing an atom at cube of cell 1 (the target celk) is
+--Qg(k)exd f u/kgT]. (22 p™=pM+ pi"

Qq(k) is a canonical partition function af atoms occupying m_ — .3
f cells, and u is a chemical potential. For example, p1=€XHd —Em.en, [KeTp+ u/kgTI/ELA

Q,==!_,Q!, whereQ! (which will also be referred to as a m (28)
“singlet”) is a partition function of future cell (i=1,f) P2 =EXH ~ Em.en, kaTp+2u/KpT]

(from now onk will be omitted in the definition of the par- I

tition functionsQ), X > exd —(En eny+ Emn)/KaTp]Veune E2A°.
n=1
|
i chbe i . . .
Q1= e 21 ex —Em.en 'KgTp]- (23 Calculating the TPs for better approximatiorfs>(2) is
m=

straightforward. Thus, the transition probability densitje8,

In this equationV,eis the cube’s volumeA is the de Bro- and the transition probabilities for the empty cells, both de-
glie wavelength, (62/2rmkgT)Y?, where h is the Planck noted by (TP), are reconstructed for each configuratiaf
constant, andn is the mass of the atork,,, ., is the energy  the sample. Their product defines an approximate probability
of interaction of an imaginary atom placed at the center oflensity,o(x",f,@) over conformational spageompare with
cube m of cell i (unless an atom appears in) with the  P;(f,a), Eq.(6)],
already reconstructed, atoms and the summation over the E kT
cubgs apprommates the mtegrfa\bxr{—'Eem/kBTp]dx over IT (TP =N p(x,f, ) ~N! exf —E(X")/KgT]
celli; T, is a temperature parameter discussed below. When =~ "« Zy

. (29)
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TABLE I. Densities, temperatures, and geometrical parameters for systelrs 216 atoms?

Box length Cell length

p* =No®/V T*=kgT/e T (K) A L L3 Peell A
0.846 0.806 96.53 21.6 9 729 0.296 2.40
0.75 1.15 137.77 22.49 9 729 0.296 2.50
0.5 1.35 161.73 25.74 11 1331 0.162 2.34
0.1 1.058 126.74 44.02 18 5832 0.037 2.45

&/, andkg are the volume and the Boltzmann constant, respectivedyid e are the Lennard-Jones parameters
[Eqg. (17)], p* andT* are the reduced density and temperature, respective/the number of cells in each
dimension, ange is N/L3.

which yields the entropy function&®, usingp(x",f,«) and  total number of cells, which is-0.3 for p* =0.846. Most of
Egs.(7) and(19), wherea is defined below. Thél! in Eq.  the calculations were performed filir= 216 atoms, however,
(29) is required because with the HS reconstruction the atin order to check the effect of the boundary conditions we
oms are not labeled. also studied a significantly larger system oRN
It should be noted that becaukes small and the future =1728 atoms.

cells are positioned differently from one rebuilding step to  Five HS approximations were applied, based bn
another with respect to the previously placed atoms, the re=1-4 future cells, where fof=1 only the target cell was
lated thermodynamic system is not a ush@mogeneous considered while fof >1 some or all of its nearest neighbor
grand canonical system; therefore, the chemical poteptial cells were taken into account as well. In every casef all
and the temperature appearing in E(&2)—(28) might be  singlets were taken into account and an approximation is
different from the corresponding bulk values. In fact, thetherefore denoted bf/d, whered is the number of doublets
optimal values of these quantities are those that minimize theonsidered. Notice that creation of tripletsfir- 4 adjacent
approximate entrop*(f,a) [Eq. (7)] or in turn maximize  cells is very unlikely because the corresponding,=0.75
the corresponding free ener@y*(f,«) [Eq. (8)]. More spe-  constitutes a large fluctuation already for the highest density
cifically, becausd, u, andA always appear in the equations studied,p.;=0.3; therefore, the effect of triplets is ignored.
as multiples of exju/kgT/A®, we fix A using the simulation  Obviously, iff is increased to 5 or 6, the.y value of triplets
temperatureT [the “true” thermodynamic temperature that decreases to 0.6 and 0.5, respectively, and their effect be-
appears iF=E-TS" e.g., Eqs(4), (8), and(20)], and use  comes important. We carried out a preliminary study using
this T also in expul/kgT]. On the other handu and the  f>4 where the effect of triplets was taken into account, and
temperature denoted, in the equations above are opti- thus verified the potential for this higher approximation to
mized. Asf is increased one would expeth and u to ap-  improve the results. The computer time increased signifi-
proach their bulk values. Moreover, we have found that ascantly, however, and we decided for now not to perform a
signing individual parametersu; to different partition  systematic study. In the best approximation presented here,
function terms(e.g.,Q}) decreas&” dramatically; these pa- 4/ all of the possible four singlets and six doublets were
rameters define the set denoteddyn Egs. (5)—(15). taken into account. Another parameter that affects the ap-

proximation is the number of cubdsubcells |=bXbXxb.

We appliedb=3, 4, and 5 and found, as one would expect,
IIl. RESULTS AND DISCUSSION that in most casels=5 has led to the best results, i.e., to the
smallest entropyS® [Eq. (7)]. In the other few cases we
attribute the slightly smalle8* obtained forb=3 or 4 to an
incorrect treatment of the atomic repulsions by these rela-

We present results for argon obtained with the boundaryively crude meshes.

conditions BC4, which are suitable for a continuum liquid Initially, we generated samples of argon systems\of
and are easy to program. Spiral boundaries, on the other216 and 1728 atoms at different densities and temperatures
hand, are inappropriate because they are likely to imposésee Table)l under(standard periodic boundary conditions
undesired repulsions among the image and boundary atomssing the Metropolis MC method; in all cases the Lennard-
We have studied the system at four different densities andones interactions were truncated at 10.8nmich is half of
temperatures. The two highest reduced densitieghe box length of theN=216 system with the highest den-
p*=No>/V=0.846 and 0.75see Table ), correspond to sity, see Table)l With this procedure at each MC step an
liquid argon, and those for 0.5 and 0.1 correspond to what watom is selected at random, a trial random move is generated
loosely describe as a supercritical fluid and a dense gas, revthin a small Cartesian cube around the atom position, and
spectively. We have chosen these values in order to coverthe move is accepted or rejected according to the usual MC
large range of conditions and to compare our results witlcriterion; the cubgstep size was adjusted to obtain an ac-
those obtained with other methods. The densities, tempera&eptance rate of-0.5. After every 5081 MC steps the cur-
tures, box and cell lengths, and the number of cells appear irent configuration was recorded for a future analysis, which
Table [; also presented in the tableds,, the number of has led to uncorrelated samples as indicated by the calculated
atomsN (i.e., the number of occupied celldivided by the autocorrelation functions of the energy and entropy. It should

A. The systems studied and the approximations
applied
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TABLE II. Comparison between the optimal paramgfé,g;andm and their  tjon, oP [Eq. (14)] for three cases;;»*:O.846 andN=216,
thermodynamic counterparf§,and u, for the approximation 1/8. p* =0.846 and\N=1728, ando* =0.75 andN =216, for five

o T (K) T (K) —uq (kcal/mol)  —u (kcal/mo)? approximations. As expected, in all cagegd eN(F*) that is
0.846 96.71 96.53 T 001 th_e lower bound of the corr.ect free e.nergy, increases system-
0.75 125.76  137.77 2.78 2.75 atically as the approximation improves. Also, the
0.5 17550  161.73 3.10 3.46 A./eN(F?) results forN= 1728 are only slightly smaller, by
0.1 123.18  126.74 2.68 2.79

no more than 0.003, than their counterparts obtained\for
2The results foru are presented up to the second decimal place; their sta=216. This is important, meaning that the effect of the
tistical errors are much smaller. boundary conditions already foi=216 is small. For good
enough approximations, the fluctuations are expected to de-

be pointed out that the long-rangail) correctior® has been ~ crease as the approximation improves, which is materialized

added to the energy of each sampled configuration. for p*=0.75 but is only satisfied for approximations 1-3 of
p*=0.846. The latter results probably stem from the fact that
B. Optimization of parameters the fluctuations are insensitive to the relatively small de-

- A -
The first stage of the HS implementation is the optimi—crease’ by 0.02 and 0.007 in the valuesAgf eN(F7) in

zation of the temperature paramelgyand the chemical po- going from approximation 3 to 4 and from 4 to 5, as com-
tential parametergy; that were assigned to each singlet angPared to the larger decrease of 0.084 and 0.074 between ap-

doublet, thus, totaling 11 for the best approximation, 4/6Proximation 1 and 2 and 2 and 3, respectively. pt#=0.75
These parameters were optimized gradually by a simpléhe decrease o%./eN(F”) by 0.043 between approximation
Monte Carlo procedure applied initially to tiieepeatefire- 3 to 4 is relatively large, and the fluctuation of approximation
construction of one configuration, and followed by refine-4 is therefore significantly smaller than that of approximation
ment cycles based on five and twenty configurations. For th8; this probably reflects the fact that a better HS approxima-
highest approximation this procedure runs typically over-tion is defined forp* =0.75 than forp* =0.846.

night on a 2 GHz PC; less time is needed for the lower  Therefore, to analyze the correlation between the results
approximations. The optimal set pf andT,, i.e., those that ¢ the free energy and its fluctuatig&q. (15)] one should

. . . . A .
;nmgmze the evr\1/trohpy fu?ctlogeﬁ],ta}re us”edfl?hthe HS pro- - consider only results with decreasing fluctuations such as
uction uns. We nave found that for all of the approxima-y, o ¢4 approximations 1, 2, and 4, or 1, 2 and 5, for

tions studied the maximal deviation of the optimiZEgval- ; .
ues from the corresponding thermodynamicptemp-gfei[u:se p*=0.846. In Tz_ible IV we dls_play the best-fit result; based
by 11%. The differentu; values obtained for a given ap- on Eq. (15), which were obtained from the appropriate re-

proximation deviate from their average by up to 17%. InSults of Table Ill. It should be pointed out again that the
Table Il results are presented fps and T, obtained for all best-fit function should be concave down, i.e., the exponent
of the densities for the approximation 1/0. The thermody-8 should be larger than 1. This condition has not been met
namic chemical potential values provided in the table werdor most of the results fop*=0.75 and for 1, 2, and 5 for
calculated from the pressure and the free energy obtainest =0.846 (N=216). The table reveals thak./eN(F"P)
from thermodynamic integration rursee Appendix It is  which is the intersection of the tangent to the curve with the
evident that the parametezs deviate from their thermody-  ordinate, as expected, is always an upper bound. The corre-
namic counterpartsy by no more than 10%. sponding averages,./eN(FM2) [Eq. (16)], and the extrapo-
lated valuesA./eN(F®®¥) for each system are relatively
spread but their average is equal within the error bars to the

In Table Il results are displayed for the free energyvalue obtained by thermodynamic integrati@r), which is
functional per atomA./eN(F*) [Eq. (21)] and its fluctua- considered to be correct.

C. The free energy fluctuations

TABLE IlI. Results for the free energy functional,/eN(F*) [Egs.(8) and(21)] and its fluctuationpg™, for
different approximation8.

p*=0.846N=216 p*=0.846N=1728 p*=0.75N=216

Approx.

No. Approx.  —A./eN(FA) ot —Ac/eN(FA) ot —A./eN(F?) ot

1 1/0 4.5305 0.0416 4.5320 0.0144 3.9346 0.0439
2 2/1 4.4470 0.0376 4.4490 0.0134 3.8724 0.0392
3 3/2 4.3729 0.0324 4.3753 0.0120 3.8153 0.0337
4 4/3 4.3532 0.0326 4.3558 0.0120 3.7720 0.0321
5 4/6 4.3464 0.0331 4.3492 0.0120 3.7662 0.0317

TI 4.1201) 4.12987) 3.6451)

3 areN are defined in Table I. The statistical errors of the free energy and the fluctuatibfg. (14)] are
smaller than=0.0005. The statistical errors of the Tl results appear in parentheses, e.g(1%2020
+0.001.
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TABLE IV. Upper bound and extrapolated values fyy/eN based on the  we have verified that the result f@* =0.75 is statistically

i a . .
correlation betweer, and o™ [Egs. (14~(16)]. reliable. The results foA./eN(F®) appear in Table V.
Approx. —A./eN(F") —A,/eN(EM2) —A./eN(F®®) —A_/eN(TI) Table V summari;e_s the various results .for the free en-
ergy forN=216, providing thereby a comparison of our ap-
proximations with the Tl values. It should first be pointed out

p*=0.846N=216

1,2,3 4.024 4.199 4.292 .
124 3.784 4.069 4.064 that _forpfzo.l the results were obtained for the lowest ap-
Average 4.165) 4.12Qq1) proximation 1/0(based on the target cell onlpecause the

better approximations did not improve the results. For

p"=0.846N=1728 p*=0.846, 0.75, 0.5, and 0.1 th&./eN(F*) values under-

1,2,3 3.919 4,147 4.303 ,

1,24 3.669 4.012 4163 estimate the correct ones by no more than 5.5%, 3.3%, 0.9%,

1,2,5 3.538 3.943 4.025 and 0.6%, respectively. The corresponding minimal devia-

Average 4.106) 4.12987) tions of A./eN(FM?1) (and forp* =0.846 and 0.75 the devia-
p*=0.75N=216 tions of the average results obtained in Table IV that are

1,2,3 3.513 3.664 3.709 denoted in Table V by an asterisire 1.4 %, 1.6%(1.4* %),

3,4,5 3.256 3.511 3.731 0.26%, and 0.25%. We also provide free energy results for

Average 3.68) 3.64491) argon obtained by others, which are close to our Tl values;

%W stands for the upper bound BT[Eq. (16)], FM2 denotes the average _howe:/er, the hlgheit density and_temper_ature in these stud-
free energy[Eq. (16)], F®® is the extrapolated free enerf§ig. (15)], and  1€S, p* =0.835 andT* =0.81 are slightly different from our
Tl stands for the free energy obtained by thermodynamic integration that iyaluesp* =0.846 andT* =0.806.

considered to be exact. The values in the forth column and the rows de- Table VI displays results for the excess entro@y[Eq
noted “average” are averages of the related free energy results denote, ;

FM2 andF®®. The notation for the errors is defined in the caption of Table &9)]’ and for completeness also the corresponding results for
m the excess free enerdy./T [Eq. (20)] and the average po-
tential energyE/T. In this representation the deviations of
the HS results from the correct values increase as compared
to those obtained by, in Table V. Thus, the minimum
deviations of theF” values are 7%, 5.5%, 2.1%, and 4.3%
As discussed earlier, upper bounds for the free energfor p*=0.846, 0.75, 0.5, and 0.1, respectively, whereas the
can also be obtained By® [Egs.(9) and(10)], and indeed, corresponding deviations & are, 1.9%, 2.5% (2.4 %),
reliable results forA./eN(FB) were obtained for the low 0.5%, and 1.4%. The errors of the entropy are larger than
density systems op*=0.75, 0.5, and 0.1, where the HS their free energy counterparts, increasing to 7.9%, 4%, 1.6%,
approximation improves; as expected, the corresponding vaknd 4.7% forS®, and to 2.2%, 1.9% (1.8%), 0.5%, and
ues of the acceptance raR[Eq. (12)], 1.4%, 3.9%, and 1.3% forSM, for p*=0.846, 0.75, 0.5, and 0.1, respectively.
8.9%, increase as well. Notice that whik=1.4% is rela- As expectedE/T and S, both increase as the density de-
tively low, it stems from a single low free energy configura- creases.
tion that appeared in the beginning of the process. However, To study the effect of the boundary conditions on the
by calculating block averages of the results A/ eN(FB) free energy, we carried out calculations f=216 and

D. Results for the entropy and the free energy

TABLE V. Results for the free energ@. [Eq. (21)] of an argon system of 216 atorhs.

p*=Na®/V  —A./leN(FA) —A./eN(FB) —A./eN(FM) —A./eN(TI) —A./eN (others
0.846 4.346 4.166)* 4.12Q1) 4.152)P
4.173°

4.104)

0.75 3.766 3.64(b) 3.7043) 3.6451) 3.6712)°
3.65 (5)* 3.643)°

3.65(a)°

0.5 3.839 3.79) 3.8152) 3.8051) 3.832)°
3.793)°

3.852)°

0.1 3.995 3.96®) 3.9812) 3.9711) 3.962)°
3.97(3)f

@The HS approximation is the samiéd=4/6 for the first three densities and 1/0 {6f=0.1; the sample size
in all cases is 5000 configurations. TRE results are based on Eq40) and(11), leading to the corresponding
FM results] FM=FM!, see Eq(13)]. Results forF™ appearing with an asterisk are those denoted “average”
in Table IV. Tl are the thermodynamic integration results. The statistical errors.faN(F”) are smaller than
+0.0005(see Table Il). The notation for the errors is defined in the caption of Table III.
PReference 26.
‘Reference 24.
‘Reference 27.
°Reference 25.
'Reference 23.
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TABLE VI. Results for the energy, entropy, and the free energy of an argon system with 216%atoms.

— S, [cal(K mol)] —F¢/T [cal{K mol)]
P* —E/T [cal(K mol)] A s Tl FA FM Tl
0.846 14.798(1) 6.3643) 6.8215)* 6.9234) 8.430 (2) 7.9715* 7.8753)
0.75 8.827¢4) 4.8482) 4.9536) 5.0543) 3.981 (1) 3.8756) 3.7722)
0.75 8.827%4) 5.05 (9)* 5.0563) 3.78 (9)* 3.7722)
0.5 4.97305) 2.6552) 2.6894) 2.7032) 2.31815) 2.2843) 2.2702)
0.1 1.758(2) 0.7843) 0.8105) 0.82973) 0.97154) 0.9484) 0.9292)

3 is the average Lennard-Jones potential en¢Egy (20)], S, is the excess entrodiEq. (19)], andF, is the excess free ener@iq. (20)]. S* is based on
Eq. (7), with p;(f,a) replacingP;(f,@). The results forS* and F* are based on the best HS approximations for each de®ltys obtained from E
—FEM)/T, whereFM is defined byrM?* [Eq. (13)] and when the results appear with an asterisk ¥y [Eq. (16)] (see also the caption of Table VIl denotes
the thermodynamic integration results.

p*=0.846 with the boundary conditions BC3 discussed earmethod®® For good enough approximations the HS method
lier. We applied BC3 with different levels of approximation. provides upper and lower bounds for the free energy, and in
One, applied to 4/3 is based on eight parametéis dnd  particular it is suitable for treating large systems. Still, we
sevenu;) only, whereas with the best approximation alto- consider the present study as an initial development of the
gether 83 parameters were defined by assigning diffegent HS approach for liquids. Thus, in the following article we
to different boundary regions of the box. These two treat-describe a different implementation of the HS ideas, where
ments have led t\./eN(F*)=—4.546. and—4.484, re- the calculation of the transition probabilities is based not on
spectively, which constitutes a significant increase in the fregalculating future partition functions, but on simulating fu-
energy for the better approximation. This demonstrates th&ure configurations by the Monte Carlo method and counting
strong effects of the boundaries in the BC3 treatment fothe population of the target cell and the target cube of inter-
small systems. StillA./eN(F”)=—4.484 is significantly est. We expect both implementations to further be improved
lower than—4.346 obtained with BC4see Table V. How-  as they applied to the more complex models of water.

ever, as discussed earlier, a better treatment of BC3 would

make the calculation highly complex. The BC3 treatment of

the boundaries is expected to improve as the system siZ&ZCKNOWLEDGMENTS

increases, which indeed is demonstrated by the significantly
higher valueA./eN(F*) = — 4.476 obtained with the 4/3 ap- GM
proximation(with eight parametejdor 1728 atoms as com-
pared to—4.546 obtained for 216 atoms.

This work was supported by NIH Grant No. 7R01
61916-02 and partially by NIH Grant No. 1R01
GM66090-01.

IV. SUMMARY AND CONCLUSIONS APPENDIX: FREE ENERGY CALCULATIONS USING

. . . . THERMODYNAMIC INTEGRATION
In this article we have extended for the first time the

hypothetical scanning method to a fluid system. It has been Most of the free energy values for Lennard-Jones fluids
demonstrated that by considering only four future cells veryin the literature are relatively old hence of limited accuracy.
good results can be obtained for a large range of argon dern exception is the more recent extensive work of the Gub-
sities, where even for the highest density studied the error dfins group, which enables one to determine the free energy
A. is ~1.4%, of F./T is ~1.9% and that of the access en- numerically from a polynomial expression of the equation of
tropy, Se is ~2.2%. A HS analysis of 5000 configurations state based on 33 adjustable parameters that were fitted to a
based on dividing the cell intb®>=43 cubes requires-6 h  large amount of simulation datd.However, we have found
CPU on a 2 GHz Athlon processor; this time increases tat beneficial to obtain values for comparison that exactly
~35 h for b=5; for comparison, the Tl calculation de- match the systems and the simulation/running conditions
scribed in the Appendix requireet4 h CPU. It should be used by us to study HS. Therefore, we calculated highly
pointed out that the HS analysis is especially suitable folaccurate results for the free energy and entropy of the present
parallel computing where each processor treats a partial cosystems independently using a version of thermodynamic in-
figuration, a single or several configurations. The method categration(Tl), which is described here in some detall; the
systematically be improved by considering two or three adreader is also referred to several review arti¢iésyhere a
ditional future cells, where, however, treating the time con-wider scope of this approach is given.

suming triplets is required; as discussed above, this can be With Tl the free energy of a liquid of giveNVT can be
carried out efficiently on a computer cluster that at this pointobtained by integrating the change in the free energy in go-
is not available for us. An efficient handling of the triplets ing from an ideal gas with the sam¢VT (the reference
might be achieved by replacing the systematic future scarstatg to the liquid of interest. Thus a coupling parameter,
ning by a Monte Carlo integration procedure, where posiis added to the potential energy, which allows one to define a
tions in the future cells are selected at random, as carried ouonphysical path connecting the reference state0) to the
before within the framework of the double scanningliquid state(\=1),
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zium integration to estimate the uncertainty in the over all
E(XNJ\)ZZ, é(rij ), (A1) free energy change. These uncertainty estimates are reason-
) ably consistent with observed differences in independent
where ¢(rij ,\) is the scaled Lennard-Jones pair potential,runs. Though we have chosen to integrate over a large num-
becoming(rj;) [Eq.(17)] for \=1 and 0 forn=0. Because ber of \ values(simulation pointy, very good results can be
the partition function can be formally written as a function of obtained with far fewer values. On the systems we checked,
\, the derivative of the Helmholtz free energy can be evaluthe results for 11 and 24 values agreéwith 41) within the

ated as an ensemble average, calculated uncertainties.
N Reliable integration results can usually be obtained with
IF [ dE(XY,N\) . 5 .
(== (A2) a shift parameter value of 9°Awhich generally promotes a
I\ I\ A very smooth quadratuyeThis choice can however give rise

I%o negative pressures. This has never caused problems with

The change in the Helmholtz free energy is therefore give o
ge! z ! aw the 216-atom system. However, a collaggbase transition

b i . .
y was observed in the 1728 atom system using dhialue. To
19F avoid negative pressureg,can be reduced or alternatively,
AF= Oﬁd)" (A3 the integration can be carried out at a higher temperature.

The free energy at the desired temperature is then obtained
where the integration is approximated as a quadrature overfiom another integrationover T), using the derivative,
discrete number of derivative points. Here, each derivative ay(F/T)/9(1/T)=E. Results from this alternative path are
\; is obtained from a simulation of the respective scaledconsistent within the calculated uncertainty.
system a,; . As a further check on our values, we also integrated the

From a practical point of view, the particular path chosenfree energy using a series of microcanonidsl\(,E) MD
(i.e., the scaling formcan strongly influence the reliability simulations over a physical path a,(V,T) points(p is the
of the results. For example, in scalings involving the Creatiorpressure and hetl€ is the total energy This path is started
of atoms, small but energetically acceptable pair separationgsom a dilute gas al =200 K (assumed ide#l and thus the
at one value of\, can correspond to very high repulsive free energy is analytically evaluate. and E are varied
energies for slightly largek. This gives rise to very high (point by poin} over the path, which ultimately ends at the
(and variablg values for the derivative, thus causing difficul- liquid state of interest. A¥ is decreasedE is changed in
ties in the integration procesthe “van der Waals end point  such a way thaT stays close to 200 Ki.e., above the critical
catastrophe]. Therefore, we have used a shifted scaling potemperaturg thus avoiding the crossing of a phase transi-
tential, introduced by Zacharia al,** tion. After the liquid density has been reach&ds lowered
to achieve the desired. p and T are ensemble averaged at
each @,V,T) point (a total of 112 simulations The entropy
(rizj +8(1—\))° (rﬁ- +8(1—\))3 change, from the analytically calculable ideal gas to the lig-

(A4) uid state, is integrated over the path as

0_12 0.6

qb(l’ij ,)\):)\46

where the shift parametes, prevents divergence in the po- 1 p

tential (and its derivativeat small pair separations.is gen- ASZJ tdeEJF de , (AS)
erally kept fixed along the path. Other efficient scalings/ b

integrations are available, see for example, Ref. 62. where the firstmost dilut¢ simulation started at a pressure

The scaled system was simulated at 41 evenly space®f ~10 atm and a small correction to the entropy was added
values of\ using the standard Metropolis MC method in the Using the second virial coefficient for argon. The procedure
canonical (N,V,T) ensemble. Each simulation was run to awas carried out for a system of 216 atoms at the liquid state,
total of 5x10° MC steps (10 for 1728 atoms The pair p*=0.846,T=96.53 K. The results for the configurational
interactions were truncated at 10.8 A. Formally, we addedielmholtz free energyEq. (21)] obtained from this ap-
the long-range corrections to the ensemble-averaged deriv@foach and the potential scaling approach agree to within
tives. (The integrated contribution of these derivative correc-l€ss than 0.1%.
tions is trivially equivalent to the long-range energy correc-
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