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The energy function of a protein consists of a tremendous number of minima. Locating the global energy
minimum (GEM), which corresponds to the native structure, is a severe problem in global optimization. The
commonly used Monte Carlo minimization (MCM) method is based on a random selection of torsional angle
values. We suggest selecting these values with biased probabilities depending on the increased structure-
energy correlations as the GEM is approached during the search. Our method applied to models of the 5-residue
peptide Leu-enkephalin finds the GEM∼2.7 faster than MCM.

Introduction

Many every day problems treated by computational methods
(e.g., air traffic control, weather prediction) requireglobal
optimization of multivariable functions, an extremely difficult
problem in applied mathematics. Global optimization is espe-
cially severe in protein folding, where the potential energy as a
function of the 3D structure (conformation) of the polymer chain
is highly “rugged”, consisting of a tremendous number of local
minima. An important theoretical goal is to locate the global
energy minimum (GEM) structure, which ignoring entropic
effects, is the most stable structure; therefore, it can be identified
with the native structure of the protein.1 Even the ability to
predict the most stablepartial structures of a protein, such as
loops in homology modeling, is of practical importance in
rational drug design. Therefore, a great deal of effort has been
made in computational structural biology to develop efficient
methods for global optimization [also called methods for
conformational search (CS)], which has led to cross fertilization
of ideas and exchange of techniques with the wider field of
optimization theory in applied mathematics.2,3

On the molecular side, a branch of iterative CS methods (most
of them stochastic) based on energy minimization, which allows
efficient crossings of energy barriers, have been developed in
the organic chemistry community4-10 and for proteins, mainly
by the Scheraga’s group.2,11-18 The common philosophy here
is that asignificantchange (followed by minimization) of low
energy structures leads with a high probability to a decrease in
the energy as long as the change is not random over the entire
conformational space that is populated predominately by high-
energy structures. Thus, a relatively short pathway towards the
global energy minimum is defined. In general, this approach
has led to methods that are more efficient than simulated
annealing19-23 and the conventional Metroplolis Monte Carlo
(MC)24and molecular dynamics,25,26which cross energy barriers
very inefficiently at 300 K. A popular method in this category
is the Monte Carlo minimization (MCM) of Li and Scheraga,13

which has been implemented within the framework of a CS
procedure for cyclic molecules and protein loops, the local
torsional deformation method, suggested by our group.27,28With

MCM, at each MC step a conformational change of the current
structurei (with minimized energyEi) is typically carried out
by randomly selecting asmall number of dihedral angles,
defining their new valuesat randomwithin the range [-180°,-
180°], and minimizing the energy; the obtained trial structurej
(with minimized energyEj), is accepted with a Metropolis
transition probabilitypij,

whereT is a temperature parameter that affects the efficiency
significantly. Therefore, various temperature schedules were
tested,29,30but the gain in efficiency (as compared to an optimal
constantT) has been moderate at best. With another approach
developed by Totrov and Abagyan,31 the randomselection of
dihedral angle values is replaced by abiasedselection based
on the distribution of these angles in known protein structures,
which has led to a significant increase in efficiency forR-helical
peptides. Scheraga’s group, on the other hand, has pursued a
pure theoretical approach, seeking to gain efficiency not by
relying on experimental data, but by organizing the structures
in groups and selecting trial dihedral angles with some bias
based on their distribution in low energy structures. Thus, with
the conformational space annealing (CSA) method of Lee et
al.,12 where the MCM procedure is replaced by a genetic
algorithm and a build-up procedure, the average number of
energy minimizations required to reach the global minimum of
Met-enkephalin was decreased by a factor of 2 as compared to
MCM (using the ECEPP/3 potential).32-34 The efficiency of a
recently developed MCM-based procedure by Pillardy et al.,15

the conformational family Monte Carlo (CFMC) is claimed to
be comparable to that of CSA. The improved performance of
these methods seems to stem mainly from the application of
sophisticated structural clustering procedures. Other CS methods
have been developed, which are not discussed here; see for
example refs 35-38 and references therein.

In this paper, we develop an MCM-based method that relies
on the increasing correlation between structure and energy as
the GEM is approached. Thus, a biased (rather than random)
selection of dihedral angle values is imposed, which is adapted
to the structural and energetic changes occurring continuously* Corresponding author.

pij ) min {1, exp[-(Ej - Ei)/kBT]} (1)
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during the search. This method, which relies on minimal
structural organization, is called MCM with an adaptive bias
(MCMAB). We demonstrate that the efficiency of MCMAB is
enhanced by a factor of∼2.7 as compared to that of MCM for
models of the linear penta-peptide Leu-enkephalin.

Models and Methods

Molecular Models. Leu-enkephalin (H-Tyr-Gly-Gly-
Phe-Leu-OH) is modeled by the potential energy function
ECEPP/2 that assumes rigid geometry (i.e., constant bond
lengths and angles) and is based on Lennard-Jones, electrostatic,
torsional, and hydrogen-bond potentials.32,33 Two models are
studied: In model I the peptide bond anglesω are kept fixed at
180°, and therefore a conformation is defined by 19 dihedral
angles, the 10 backboneæ andψ and the 9 side-chain dihedral
angles,ø. In the second model (model II) the five backboneω
angles are allowed to vary and a conformation is defined by 24
variables. We adopt the standard dielectric constantε ) 2 of
ECEPP. This force field is implemented in the package
Fantom,39 which is used in the present calculations. We have
chosen to use this force field because of its relative simplicity;
thus, the limited number of variables makes it convenient to
study the various aspects of the present new method.

The MCMAB Process.This process consists of three stages,
the firstn < n1 MC steps,n1 e n e n2, andn > n2, respectively,
where for model I with constantω, n1 ) 50, andn2 ) 800.
During the first two stages, the usual MCM procedure is
performed where the dihedral angle values are determined at
random within the range [-180°, 180°], andT ) 400 K (eq 1)
is kept constant throughout the entire search.40 However, in the
second stage (n1 e n e n2) the program starts building the biased
probabilities (over the range [-180°, 180°]), which are used
only in the third stage. Thus, aftern1 MC steps the typical energy
of the current conformation has been reduced significantly as
compared to that of the starting structure (n ) 1), meaning that
the energy-structure correlations are strong enough to be taken
into account. Therefore, subsequent accepted structures [by the
MC criterion, eq 1] that differ significantly from each other are
retained, where two structures are considered different if at least
one dihedral angle differs by 30° or more. The acceptance rate
of the retained structures is∼0.15. For the retained structures,
the dihedral angle range [-180°, 180°] is divided intomtot ) 3
segments, [-120°, 0°], [0°, 120°], and the third segment that
consists of the two ranges [-180°, -120°] and [120°, 180°];
these three segments denoted bym (m ) 1, mtot, wheremtot )
3) are centered at the three occurring rotamers, gauche-,
gauche+, and trans, respectively. This division leads to a
relatively smooth distribution, which is essential for the success
of MCMAB (see below); the more “rugged “ distributions
obtained formtot > 3 have not led to an improvement in the
efficiency of MCM.

We denote the retained structures by the indext; thus, the
contribution of thetth retained structure (with energyEt) to the
selection probability of segmentm (m) 1,mtot) of dihedral angle
k (k ) 1,19 for constantω) is proportional to the corresponding
Boltzmann factor, exp[-Et/kBT*], where T* is a temperature
parameter to be distinguished fromT appears in the Metropolis
criterion (eq 1). Theunnormalizedselection probability,gm(k)

t

after thetth structure has been added to the group is

and the normalized probability is

The different structures are collected andPm(k)
t are updated

during the entire MCMAB search (i.e.,n g n1). However, for
eachk, Pm(k)

t is typically large (∼0.9) for a specific segmentm;
hence, it is significantly smaller for the other two segments;
this would lead to a very inefficient MCMAB process, where
some regions in the conformational space become almost
excluded, meaning that the bias should be much milder.
Therefore, at the third stage (n > n2), if Pm(k)

t is smaller than
plow it is increased (becomingpm(k)

t ) such thatpm(k)
t ∼ plow,

where

and the other two probabilities are changed topm(k)
t according

to eq 4, whered ) 0 in the numerator. We have found that for
both models I and II,plow ∼ 0.25 is an optimal value meaning
that the deviation from the random value, 1/mtot ) 1/3 is not
large. The energy of the structures added to the group decreases
in the course of the search, and on average the structures added
last have the strongest effect on the probabilities. However, the
effect of the higher energy structures is not negligible because
the optimalT* ) T1

/ ) 750 K is relatively high [we use the
notationT1

/ when single dihedral angles are treated; eqs 2 and
3 are also used (see below) to calculate probabilities foræ-ψ
pairs where the notationTφψ

/ is adopted]. Now, it should be
pointed out thatpm(k)

t is used only in the third stage, i.e., for
MC stepsn > n2; then, if anglek is chosen to be changed, a
segmentm (m) 1,mtot) is selected according to the probabilities
pm(k)

t (rather than at random, i.e., with probability 1/mtot ) 1/3)
and the value of the angle within the selected segmentm is
determined at random.

To increase efficiency, one can calculate biased probabilities
also for pairs of backbone anglesæ-ψ and side chain angles
ø1-ø2, and consider these probabilities in the MCMAB process.
We did not attempt to apply theø1-ø2 bias because Leu-
enkephalin consists of two glycine residues without side chains.
As discussed later, implementing theæ-ψ bias for model I
did not lead to a better efficiency, while for model II theæ-ψ
bias was found to be very effective.

To implement theæ-ψ bias within the MCMAB procedure,
the æ-ψ region was divided intomtot ) 4 equal quadrants
defined by partitioning theæ andψ ranges ([-180°, 180°]) into
two equal segments [-180°, 0°] and [0°, 180°]. The probabilities
(preferences) of theseæ-ψ regions were obtained by eqs 2 and
3 using the same procedure and database of conformations
collected for the single angle probabilities. However, the
probabilitiesPm(k)

t (eq 3) of the four quadrants were found to
be much more homogeneous than thePm(k)

t values of the single
angles, and therefore the balancing process of eqs 4 and 5 was
not applied, i.e., theæ-ψ probabilities were defined byPm(k)

t

(eq 3) rather than bypm(k)
t (eq 4). As mentioned above, for the

æ-ψ probabilities the temperature parameterT* (eq 2) is
denoted byTφψ

/ .

gm(k)
t ) gm(k)

t-1 + exp(-Et/kBT*) (2)

Pm(k)
t )

gm(k)
t

∑
m)1

mtot

gm(k)
t

(3)

pm(k)
t ) (gm(k)

t + d)/(∑
m

gm(k)
t + d) (4)

d ) [plow∑
m

gm(k)
t - gm(k)

t ]/[1 - plow] (5)
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Thus, in the case where single angle andæ-ψ probabilities
are used together at each MC step [at the third stage (n > n2)]
the process has two options, to treat aæ-ψ pair or a single
angle. For model II, we have found an optimal probability,pæψ,
) 0.25 for treating aæ-ψ pair, meaning that the probability
for treating a single angle is 0.75. Thus, if a random number
(within [0,1]) is smaller than 0.25, aæ-ψ pair is selected at
random, a quadrant is then chosen withPm(k)

t (eq 3) out of the
mtot ) 4 quadrants, andæ andψ values are selected at random
from the corresponding ranges. In the other case, a dihedral
angle is selected and treated according to the procedure
described earlier for a single angle.

Results and Discussion

Our criterion of efficiency is defined by the number of energy
minimizations required to reach the global energy minimum
(GEM) for the first time; the smaller this number, the better
the efficiency. Thus, the optimal values ofn1, n2, T* (eq 2),
plow (eq 5), and other parameters described below, have been
determined according to this criterion by performing many
MCM runs with different values of these parameters.

Model I. For model I the assumed GEM of-9.704 kcal/
mol is known from previous studies. To compare the efficiencies
of MCMAB and MCM for this model, we carried out 15 runs
with each method atT ) 400 K (eq 1) starting from the same
randomly chosen conformations (the MCM procedure is de-
scribed in detail in ref 40). In Table 1 we present for each run
the number of energy minimizations required to reach the GEM
for the first time, where the average number appears in the
bottom line. The table reveals that for 13 runs MCMAB required
less or equal number of minimizations than MCM and the
average number of minimizations for MCM (5110) is 2.5 times
larger than that of MCMAB (2021). As already mentioned,
implementing theæ-ψ bias together with the single angle bias
did not improve the efficiency of MCMAB for model I further,
probably due to the already fast search obtained with the single
angles bias. It is important to point out that to a large extent
the bias is not general but depends on the specific simulation

run. Thus, if the biased probabilities obtained at the third stage
of a certain run are used in the third stage of another run that
started from adifferentstructure these probabilities in general
will be ineffective, i.e., the GEM will not be reached fast.

Model II. We also applied both MCMAB and MCM to model
II (GEM ) -10.093 kcal/mol), where the anglesω are allowed
to vary during the energy minimization while they are not
changed in the MC process. Because of the larger number of
variables (24), the optimization is slower for model II than for
constantω, i.e., the number of MC steps required to reach the
low energy region is increased; correspondingly, the optimal
values,n1 ) 500, andn2 ) 1800 for model II are larger than
those found optimal for model I (n1 ) 50; n2 ) 800). The
temperature parameterT1

/ ) 800 K (eq 2) optimized for model
II is slightly higher thanT1

/ ) 750 K optimized for model I.
Fifteen randomly selected structures were generated for model

II as “seeds” for MCM and MCMAB runs. The MCM results
for the number of energy minimizations required to reach the
GEM for the first time appear in the third column of Table 1.
We performed 15 MCMAB runs based on single angle
probabilities alone to find only a marginal decrease (by∼30%)
in the average number of minimizations as compared to MCM
(results are not shown). However, the MCMAB runs based on
a combination of single angle probabilities and aæ-ψ bias have
led to results (appearing in the fourth column of Table 1) that
in 12 cases are smaller than (i.e., better) or equal to those of
MCM. The average number of minimizations required to reach
the GEM by MCMAB (3491) is smaller than the MCM average
(9885) by a factor of 2.8. This suggests that as the number of
degrees of freedom of the backbone increases it is important to
take into account also correlations between backbone dihedrals
to achieve significant enhancement in the performance. It should
be pointed out that the optimal temperature,Tψφ

/ ) 650 K (eq
2) for theæ-ψ probabilities is lower than 800 K used for the
single angle probabilities, meaning that the effect of the lowest
energy structures is more pronounced in theæ-ψ case.
Correspondingly, we have found that effectiveæ-ψ prob-
abilities should be based on lower energy structures than those
required for the single angle probabilities. Thus, for theæ-ψ
calculationsn1 increases from 500 to1000 whilen2 ) 1800 is
unchanged.

Summary. We have introduced a new procedure, MCMAB,
in which the selection of trial dihedral angles for a structural
change is not random as in the usual MCM method but is biased
toward values that have appeared frequently in previous MC
steps. Applying MCMAB to models of Leu-enkephalin has
shown that if the bias is moderate the global energy minimum
can be located on average 2.7 times faster than with MCM;
this factor is larger than factors obtained by other methods
applied to similar molecules. Therefore, MCMAB is also much
more efficient than simulated annealing that was found to be
inferior to MCM.19-23 Because MCMAB does not rely on
structural organization, one would expect that tailoring its
main features to available clustering techniques would enhance
its efficiency even further. The present results suggest that
MCMAB can also be improved by considering additional
angular-energy correlations, such as those involvingø1-ø2,
ø2-ø3, or æ-ø1. The parametersni are expected to increase for
larger peptides; however, their relation to the molecular size
and the sensitivity of all the parameters will be determined only
in future studies of longer peptides. The present ideas can be
used in conformation searches of any linear or cyclic macro-
molecule, loops in proteins, and other systems that can be
expressed by internal coordinates.

TABLE 1: Number of MC Steps (energy minimizations)
Required for Locating the Global Energy Minimum for the
First Timea

model I constantω ) 180° model II variableω

MCM MCMAB MCM MCMAB with æ-ψ bias

460 352 36740 1667
697 697 882 882

6589 1811 2492 1514
2572 1407 9437 5598
334 463 3294 2301

2128 2292 18136 4319
315 315 4938 7126

3760 2082 9100 3674
17698 3762 585 585

295 295 9740 3565
5962 1917 1335 1335
2523 1792 1850 3955
8773 4730 3036 1855
8964 2853 16801 8070

15594 5548 29908 5920
5111 2021 9885 3491

a For each model the 15 MCM runs were started from different
randomly selected structures (seeds), and at each row the MCMAB
run was started from the corresponding MCM seed. The MCMAB
results of model I are based on single angle probabilities only. The
MCMAB results for model II are based on a procedure that combines
single angle andæ-ψ probabilities (see text). The average number of
MC steps (no. of minimizations) appears in the bottom line bold-faced.
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