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Calculation of the entropy of random coil polymers with the hypothetical
scanning Monte Carlo method
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Hypothetical scanning Monte Carlo �HSMC� is a method for calculating the absolute entropy S and
free energy F from a given MC trajectory developed recently and applied to liquid argon, TIP3P
water, and peptides. In this paper HSMC is extended to random coil polymers by applying it to
self-avoiding walks on a square lattice—a simple but difficult model due to strong excluded volume
interactions. With HSMC the probability of a given chain is obtained as a product of transition
probabilities calculated for each bond by MC simulations and a counting formula. This probability
is exact in the sense that it is based on all the interactions of the system and the only approximation
is due to finite sampling. The method provides rigorous upper and lower bounds for F, which can
be obtained from a very small sample and even from a single chain conformation. HSMC is
independent of existing techniques and thus constitutes an independent research tool. The HSMC
results are compared to those obtained by other methods, and its application to complex lattice chain
models is discussed; we emphasize its ability to treat any type of boundary conditions for which a
reference state �with known free energy� might be difficult to define for a thermodynamic
integration process. Finally, we stress that the capability of HSMC to extract the absolute entropy
from a given sample is important for studying relaxation processes, such as protein folding. © 2005
American Institute of Physics. �DOI: 10.1063/1.2132285�
I. INTRODUCTION

In spite of progress achieved in the last 50 years, calcu-
lation of the entropy and free energy remains a central prob-
lem in computer simulation, which affects physics, chemis-
try, biology, and engineering.1,2 Recently, we have developed
a new technique for calculating the entropy—the hypotheti-
cal scanning Monte Carlo �HSMC� method—and applied it
to liquid argon, water,3,4 and peptides in helical, extended,
and hairpin states.5 The aim of the present paper �as that of
our preliminary study6� is to extend HSMC to lattice polymer
models, and, in particular, to examine its applicability to ran-
dom coil polymers.

It should be pointed out that lattice models have been
utilized for studying a wide range of phenomena in polymer
physics7,8 as well as in structural biology, mainly related to
protein folding and stability9 �Refs. 7 and 8 present only very
limited lists�. Because of their simplicity, these models have
been invaluable tools for understanding global properties that
do not depend strongly on molecular details. Such models
vary in complexity, ranging from self-avoiding walks on a
square lattice to chain models on enriched three-dimensional
�3D� lattices with a large effective coordination number.

Commonly, these systems are simulated by variants of
Metropolis Monte Carlo �MC�—a method that enables one
to generate samples of chain configurations i distributed ac-
cording to their Boltzmann probability Pi

B from which equi-
librium information can be extracted.10 In many cases where
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the simulation moves are local, MC is referred to as a dy-
namical method. �It is noted, however, that the technique
does not need to �and often does not� map the physical dy-
namics of the system.� Using MC it is straightforward to
calculate properties that are measured directly from i, such as
the potential energy Ei �that is obtained by summing up the
atom-atom interactions� or geometrical quantities such as the
radius of gyration. On the other hand, the value of Pi

B cannot
be obtained in a straightforward manner, which makes it dif-
ficult to obtain the absolute entropy S�−ln Pi

B directly, i.e.,
as a by-product of the simulation �like Ei�. There is a strong
interest in S as a measure of order and as an essential ingre-
dient of the free energy, F=E−TS, where T is the absolute
temperature; F constitutes the criterion of stability, which is
mandatory in the structure determination of proteins, for ex-
ample. Furthermore, because MC simulations constitute
models for dynamical processes, one would seek to calculate
changes in F and S during a relaxation process, by assuming
local equilibrium in certain parts along the MC trajectory; a
classic example is the simulation of protein folding.11

S and F are commonly calculated by thermodynamic
integration �TI� and perturbation techniques1,2 that do not
operate on a given MC sample but require conducting a
separate set of MC simulations. This is a robust approach
that enables one to calculate differences, �Sab and �Fab,
between two states a and b of a system; however, if the
structural variance of such states is large �e.g., helical and
hairpin states of a polypeptide� the integration from state a to
b becomes difficult and in many cases unfeasible. On the

other hand, if one could calculate the absolute Fa and Fb
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directly from two separate sets of simulations carried out at
states a and b, �Fab=Fa−Fb and the integration can be
avoided. Still, the absolute F can also be obtained with TI
provided that a reference state r is available, where the free
energy is known exactly and the integration path between r
and a �and b� is relatively short. A classic example is the
calculation of F of liquid argon or water by integrating the
free-energy change from an ideal-gas reference state. How-
ever, for nonhomogeneous systems such integration might
not be trivial, and in models of peptides and proteins defining
reference states that are close to the state of interest is a
standing problem. It should be noted that F and S can always
be obtained approximately from a given sample by harmonic
or quasiharmonic methods12 or by the local states method
�see below�.13

Another type of simulation method has been developed
for polymers, where a chain is constructed step by step with
transition probabilities �TPs�.14–17 The product of these TPs
leads to Pi

B, hence S is known. To this category belongs the
direct MC �DMC� �Ref. 14� procedure, the enrichment
�Rosenbluth and Rosenbluth� and the dimerization
methods,15 the scanning method,16 and other techniques.17

However, these buildup procedures are not always the meth-
ods of choice mainly because they lack the dynamical as-
pects �and simplicity� of MC, which thus has become the
commonly used method. Hence, it is important to develop
methods for calculating the entropy from MC trajectories.
Nonetheless, a hybrid of one buildup procedure, the scanning
method,16 with the dynamical MC approach has led to two
approximate techniques, the local states13 �LS� and hypo-
thetical scanning �HS� methods.18,19 These methods enable
one to calculate S and F directly from a given sample gen-
erated by any simulation technique; they are general, and
have been applied successfully to polymers, peptides, pro-
teins, magnetic systems, and lattice-gas models.2 Unlike the
harmonic and quasiharmonic methods mentioned above,12

HS and LS, in principle, can handle any chain flexibility, i.e.,
local fluctuations of a stable state �e.g., around an �-helix
structure of a peptide�, random coil fluctuations, as well as
mixtures of these two extreme cases.

Recently, the HS method has been extended to fluids and
has been further developed by replacing the deterministic
partial future scanning used to calculate the TPs with a sto-
chastic but complete scanning based on MC simulations;3–5

this HSMC method has been applied very successfully to
liquid argon, TIP3P water, and polyglycine molecules in he-
lical, extended, and hairpin states.3–5 HSMC is significantly
more accurate than HS; it provides rigorous upper and lower
bounds for F, which can be calculated from a relatively small
sample and even from a single conformation.

As stated earlier, the aim of this paper is to extend the
scope of HSMC to lattice polymer models, in particular, to
random coil chains. For that we study self-avoiding walks
�SAWs� on a square lattice—a difficult test case due to the
strong excluded volume interactions occurring in two dimen-
sions �2D�. This paper is an extension of our recent Letter6 in
which part of Table I has been presented and discussed. We
emphasize the generality of HSMC and discuss its unique

aspects for lattice systems, which makes it a powerful re-
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search tool independent of existing techniques. The HSMC
results are compared to those obtained some time ago by the
scanning method,20 to the results obtained by us using TI, to
series-expansion values,21 and to the results obtained by the
HS method.

II. THEORY

A. Statistical mechanics of SAWs

Assume a single SAW of N steps �bonds�, i.e., N+1
monomers starting from the origin on a square lattice. All the
SAWs i are equally probable with the following Boltzmann
probability:

Pi
B = 1/ZSAW, �1�

where the partition function ZSAW is the total number of dif-
ferent SAWs, and the free energy is thus

F/kBT = − S/kB = �
i

Pi
B ln Pi

B = − ln ZSAW = ln Pj
B, �2�

where kB is the Boltzmann constant, and j is any SAW. The
summations �in i� in Eq. �2� and in the rest of the paper
�except in Sec. II G� are over the ensemble of SAWs. Equa-
tion �2� demonstrates that F �and S for this particular model�
has zero fluctuation, which is a general property of the cor-
rect free energy of any system. On the other hand, the fluc-
tuation of a free-energy functional based on an approximate
probability distribution �see below� is expected to be finite.22

Equation �2� also shows that if the Boltzmann probability of
any single SAW �j� is known, F �and S for this particular
model� is known as well, which again is a general property
satisfied by any system in equilibrium.

B. The direct Monte Carlo method

An unbiased sample of SAWs on a square lattice can be
obtained by the DMC method.14 With this method a nonre-
versal random walk �ideal chain� is generated step by step,
where at step k the direction of the kth bond is chosen at
random �i.e., blindly� out of three possible directions �imme-
diate chain reversal is not allowed�. If the chosen site is
unoccupied the bond is added to the existing chain, and the
process continues; in the other case, the partial chain is dis-
carded and a new one is started. This process is very ineffi-
cient for generating long SAWs due to strong �exponential�
sample attrition. However, the entropy can be obtained from
the relation ZSAW/Zid�nsuc /nstart where Zid is the known par-
tition function of ideal chains, Zid=4�3N−1, and nstart and
nsuc are the number of chains started and the number of
SAWs of N steps succeeded, respectively; this leads to an
estimation SDMC for the entropy of SAWs,

SDMC/kB = ln�4 � 3N−1nsuc/nstart� . �3�

C. The scanning simulation method

The scanning method is a step-by-step construction
�growth� procedure, where unlike DMC, the bonds are not
selected blindly, but with TPs that are based on scanning

16
possible SAWs in future steps; thus, at step k of the pro-
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TABLE I. HSMC results for the entropy per bond of N-bond SAWs. The results were obtained from n reconstructions of a straight chain. SA �Eqs. �8� and
�15�� is an upper bound, and �A is its fluctuation �Eq. �9��. SB �Eqs. �10�, �11�, and �16�� and its Gaussian approximation SG

B �Eq. �17�� are lower bounds, and
their averages with SA are denoted by SM �Eq. �12�� and SG

M �Eq. �18��, respectively. SD �Eq. �19�� is an exact entropy functional. nfuture is related to the number
of MC steps per bond �see text�. STI ,Sscan ,Sseries, and SHS were obtained by thermodynamic integration �Eq. �26��, the scanning method �Eq. �6�, Ref. 20�, a
series-expansion formula �Eq. �20��, and the HS method, respectively. The statistical error is defined by parentheses: 1.00�3�=1.00±0.03.

nfuture SA /kB �A /kB SB /kB SG
B /kB SM /kB SG

M /kB SD /kB n

N=29 SDMC=1.016 147�5�
500 1.020 84�2� 0.018 07�2� 1.011 48�5� 1.01 137�3� 1.016 16�3� 1.016 10�2� 1.016 14�3� 1 250 000
5000 1.016 62�2� 0.005 68�2� 1.015 68�3� 1.015 68�2� 1.016 15�2� 1.016 15�2� 1.016 15�2� 125 000

50 000 1.016 18�2� 0.001 81�2� 1.016 09�3� 1.016 09�2� 1.016 14�2� 1.016 14�2� 1.016 14�2� 125 00
STI 1.016 145�3� 1.016 145�3� 1.016 145�3� 1.016 145�3� 1.016 145�3� 1.016 145�3�

Sseries 1.016 15�1� 1.016 15�1� 1.016 15�1� 1.016 15�1� 1.016 15�1� 1.016 15�1�

N=49 Sscan=1.000 904�4�
500 1.005 83�1� 0.014 24�2� 0.996 02�5� 0.995 90�3� 1.000 93�3� 1.000 86�2� 1.000 91�3� 1 250 000
5000 1.001 40�1� 0.004 48�2� 1.000 42�3� 1.000 42�1� 1.000 91�2� 1.000 91�1� 1.000 91�2� 125 000

50 000 1.000 95�1� 0.001 42�2� 1.000 85�3� 1.000 85�1� 1.000 90�2� 1.000 90�1� 1.000 90�2� 12 500
SHS 1.001 49�1� 0.004 34�1� 1.000 26�2� 1.000 57�1� 1.000 88�2� 1.001 03�1� 1.000 94�1� 250 000
STI 1.000 897�3� 1.000 897�3� 1.000 897�3� 1.000 897�3� 1.000 897�3� 1.000 897�3�

Sseries 1.000 899�5� 1.000 899�4� 1.000 899�4� 1.000 899�4� 1.000 899�4� 1.000 899�4�

N=99 Sscan=0.987 726�5�
500 0.992 94�2� 0.010 30�3� 0.9826�1� 0.982 43�6� 0.987 75�5� 0.987 69�4� 0.987 73�5� 250 000
5000 0.988 26�2� 0.003 24�3� 0.987 22�5� 0.987 22�3� 0.987 74�3� 0.987 74�2� 0.987 74�3� 25 000

50 000 0.987 77�2� 0.001 01�3� 0.987 67�4� 0.987 67�2� 0.987 72�2� 0.987 72�2� 0.987 72�3� 2500
SHS 0.989 94�1� 0.005 07�1� 0.9855�2� 0.98 74�1� 0.9878�1� 0.9887�1� 0.988 17�5� 250 000
STI 0.987 727�3� 0.987 727�3� 0.987 727�3� 0.987 727�3� 0.987 727�3� 0.987 727�3�

Sseries 0.987 730�3� 0.987 730�3� 0.987 730�3� 0.987 730�3� 0.987 730�3� 0.987 730�3�

N=149 Sscan=0.982 740�3�
500 0.988 06�2� 0.008 52�3� 0.9774�2� 0.977 25�8� 0.9827�1� 0.982 65�4� 0.9827�1� 250 000
5000 0.983 29�2� 0.002 67�3� 0.982 22�5� 0.982 23�3� 0.982 76�3� 0.982 76�2� 0.982 76�3� 25 000

50 000 0.982 81�2� 0.000 85�3� 0.982 70�4� 0.982 70�2� 0.982 75�2� 0.982 75�2� 0.982 75�3� 2500
STI 0.982 742�3� 0.982 742�3� 0.982 742�3� 0.982 742�3� 0.982 742�3� 0.982 742�3�

Sseries 0.982 740�2� 0.982 740�2� 0.982 740�2� 0.982 740�2� 0.982 740�2� 0.982 740�2�

N=249 Sscan=0.978 36�2�
500 0.983 91�3� 0.006 69�4� 0.9727�3� 0.9728�1� 0.9783�2� 0.978 33�7� 0.9783�2� 63 000
5000 0.978 89�2� 0.002 08�4� 0.977 82�8� 0.977 82�5� 0.978 36�4� 0.978 36�3� 0.978 36�5� 9100

50 000 0.978 40�2� 0.000 66�4� 0.978 29�5� 0.978 29�2� 0.978 35�3� 0.978 35�2� 0.978 35�3� 930
SHS 0.983 06�1� 0.004 01�1� 0.9745�5� 0.9791�3�* 0.9788�3� 0.9811�2� 0.9799�1� 176 000
STI 0.978 358�4� 0.978 358�4� 0.978 358�4� 0.978 358�4� 0.978 358�4� 0.978 358�4�

Sseries 0.978 360�1� 0.978 360�1� 0.978 360�1� 0.978 360�1� 0.978 360�1� 0.978 360�1�

N=399 Sscan=0.975 67�4�
500 0.981 38�6� 0.005 40�5� 0.9710�5� 0.9697�2� 0.9762�3� 0.9756�1� 0.9759�3� 9500
5000 0.976 25�4� 0.001 70�5� 0.9751�1� 0.975 09�8� 0.975 67�5� 0.975 67�5� 0.975 67�5� 2000

50 000 0.975 68�4� 0.000 53�5� 0.975 57�7� 0.975 57�5� 0.975 63�4� 0.975 63�4� 0.975 63�5� 225
SHS 0.981 41�5� 0.003 35�5� 0.9743�5� 0.9769�3� 0.9779�3� 0.9792�2� 0.9782�2� 5500
STI 0.975 655�8� 0.975 655�8� 0.975 655�8� 0.975 655�8� 0.975 655�8� 0.975 655�8�

Sseries 0.975 652�1� 0.975 652�1� 0.975 652�1� 0.975 652�1� 0.975 652�1� 0.975 652�1�

N=599 Sscan=0.973 95�5�
500 0.980 03�8� 0.004 45�7� 0.9706�8� 0.9682�4� 0.9753�4� 0.9741�2� 0.9748�5� 3000
5000 0.974 66�7� 0.001 39�7� 0.9736�2� 0.9735�1� 0.9741�1� 0.974 08�9� 0.9741�1� 450

50 000 0.974 13�5� 0.000 36�7� 0.9741�1� 0.974 05�6� 0.974 09�6� 0.974 09�5� 0.974 09�5� 45
STI 0.974 04�1� 0.974 04�1� 0.974 04�1� 0.974 04�1� 0.974 04�1� 0.974 04�1�

Sseries 0.974 025�1� 0.974 025�1� 0.974 025�1� 0.974 025�1� 0.974 025�1� 0.974 025�1�
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cess, k−1 directions �bonds�, � will have already been con-
structed �these bond directions at each step are denoted by
�1 ,… ,�k−1, where �=1,4�. To determine the direction �k�out
of three possible directions �� one enumerates all the pos-
sible continuations Zk

��f� of the chain in a limited number of
f future steps �typically less than the remaining bonds� that
start from � of step k, where Zk

��f� is a partial future partition
function and f is the scanning parameter. Zk

��f� enables one
to define TPs for �,

p�����k−1�,…,�1, f� = Zk
��f�/�

�=1

4

Zk
��f� , �4�

where because immediate reversal is forbidden, the summa-
tion is only over the three allowed directions. Using these
TPs, the kth step is determined by a random number and the
process continues. The construction probability Pi

0�f� of
SAW i is the product of the TPs with which the steps have
been chosen,

Pi
0�f� = 	

k=1

N

p��k���k−1�,…,�1, f� . �5�

For f �N the scanning is incomplete and Pi
0�f� is approxi-

mate. Due to this “incomplete” scanning, the chain can get
trapped in a dead end during construction, meaning that the
number n of completed constructions is smaller than the
number nstart of those started.

In other words, Pi
0�f� is normalized over a subgroup of

the random walks that includes all the SAWs and part of the
self-intersecting walks. Also, Pi

0�f� is biased, i.e., unlike Pi
B,

it is larger for the compact SAWs than for the open ones.
This bias can be decreased systematically by increasing f ,
where for a complete future scanning, i.e., fmax=N−k+1, the
TPs �Eq. �4�� become exact and no trapping occurs.16 In
practical applications the bias is removed by an importance

sampling procedure, which leads to an unbiased estimation S̄
that is exact within the statistical error,

S̄/kB = ln
1

nstart
�
t=1

n
1

Pt
0�f�

. �6�

The scanning method can easily be extended to a chain
model with finite interactions; in this case the interaction
energy Ej���

k �f� of the future chain j that starts from � with
itself and with the rest of the chain is calculated and the
corresponding Boltzmann factor contributes to Zk

��f�, rather
than 1,

Zk
��f� = �

j���
exp�− Ej���

k �f�/kBT� . �7�

D. The hypothetical scanning „HS… method

The HS method �as well as the local states method� is
based on the concept that two samples in equilibrium gener-
ated by different simulation methods are equivalent in the

sense that they both lead to the same estimates �within the

Downloaded 08 Dec 2005 to 130.49.212.22. Redistribution subject to
statistical errors� of average properties, such as the entropy,
energy, and their fluctuations. Relying on this equivalence,
one assumes that a given sample of SAWs constructed by
any exact procedure �e.g., Metropolis MC �Ref. 10� has in-
stead been generated with the scanning method. Thus, for
each of the bonds ��k�i�� of SAW i one calculates the TP �Eq.
�4�� as if i had been generated with the scanning method �we
call this process the reconstruction of i, essentially an analy-
sis procedure for obtaining TPs�. The product of these TPs
leads to Pi

0�f� �Eq. �5�� and to a functional SA, which can be
shown rigorously �using Jensen’s inequality� to be an upper
bound for S,19

SA = − kB�
i

Pi
B ln Pi

0�f� , �8�

where i runs on the complete ensemble of SAWs and SA is a
function of f . Because the sample is generated with an exact
simulation procedure, SA is a statistical average defined with
the Boltzmann probability, which is normalized over the en-
semble of SAWs. Each SAW i is associated with the variable
ln Pi

0�f�, where Pi
0�f� is normalized over a larger ensemble

that also consists of self-intersecting walks. The fluctuation
�A of ln Pi

0�f�,

�A = 
 �
SAWs i

Pi
B�SA + kB ln Pi

0�f��2�1/2
, �9�

is expected to be larger than zero, decreasing with increasing
f �i.e., with improving the approximation�, which means that
SA and �A are positively correlated. This correlation has been
found to exist for good enough approximations.22

One can define another approximate entropy functional
denoted by SB,19

SB = − kB �
SAWs i

Pi�f� ln Pi
0�f� , �10�

where Pi�f�= Pi
0�f� /�Pi

0�f�. If Pi
0�f� was replaced in Eq. �10�

by Pi�f�, according to the free-energy minimum principle,23

SB would become a lower bound for S; but for SAWs it can
only be shown rigorously19 that SB�SA. However, when re-
liably estimated for a good enough approximation, SB has
been found in most cases19,24 to underestimate S, as is also
shown in the present calculations. In practice, lower bound
behavior can be verified if SB increases as the approximation
improves; one can then assume that this trend would con-
tinue for better approximations meaning that SB would con-
verge to S. SB can be estimated from a sample of size n by
importance sampling,

S̄B = − �kB/n���
t=1

n

Pi�t�
0 �f� ln Pi�t�

0 �f�
/�
t=1

n

Pi�t�
0 �f� , �11�

where i�t� is SAW i obtained at time t of the correct Boltz-
mann simulation and the bar above SB denotes estimation.
However, the statistical reliability of this estimation �unlike
the estimation of SA� decreases sharply with increasing chain
length, because the overlap between the probability distribu-

B
tions Pi and Pi�f� decreases exponentially.
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If SB is a lower bound for S and the deviations of SA and
SB from S �in the absolute values� are approximately equal,
their average SM becomes a better approximation than either
of them individually,

SM = �SA + SB�/2. �12�

Typically, several approximations for SA ,SB, and SM are cal-
culated as a function of f , and their convergence enables one
to determine the correct entropy with high accuracy. While
application of HS to SAWs has been found to be quite effi-
cient, for structured molecules such as an � helix of a pep-
tide HS has failed because it is impossible to carry out the
future scanning within the limited conformational space de-
fined by the local fluctuations of this structure, hence to de-
fine appropriate TPs. As discussed below, this problem does
not exist with HSMC.

E. The HSMC method

While the TPs defined by HS are deterministic �based on
the entire conformational space defined by f at step k of the
reconstruction process�, for a large chain they are always
approximate, i.e., f �N due to the exponential growth �with
f� of the number of future SAWs. The HSMC method over-
comes this limitation by seeking to estimate the exact TP
defined by Eq. �4� with fmax=N−k+1, i.e., the whole future
is scanned at step k. This is achieved by replacing the exact
enumeration of f future steps at k by a MC simulation of the
entire future segment of the chain �i.e., steps k ,k+1,… ,N�
in the presence of the “frozen past” ��1 ,… ,�k−1�. The TP
denoted by pMC of the actual direction �k�i� in the recon-
structed SAW i is calculated from the number of MC steps
nk

��i� for which �k�i� was visited during the simulation of total
nMC steps at step k,

pMC��k�i����k−1�,…,�1� = nk
��i�/nMC, �13�

and the reconstruction probability of chain i is

Pi
MC = 	

k=1

N

pMC��k�i����k−1�,…,�1� , �14�

where, for simplicity, i has been omitted in the TPs. In Eqs.
�13� and �14� and in the rest of this paper, for brevity, we
denote by MC physical quantities calculated by HSMC; no-
tice, however, that in previous publications these properties
were denoted by HS, which in this paper is reserved to de-
note the results obtained with the HS method. Unlike the
deterministic Pi

0�f� �Eq. �5��, Pi
MC is defined stochastically.

The fact that the entire future is considered is important for
systems with strong long-range interactions such as SAWs,
proteins, etc; also, unlike Pi

0�f� that is defined over the en-
semble of SAWs and part of the ensemble of self-intersecting
walks, Pi

MC is defined only over the ensemble of SAWs. As
discussed below, this property of Pi

MC distinguishes HSMC
from HS in many respects. Still, pMC hence Pi

MC are approxi-
mate �due to finite simulation lengths�, but one can show that
as the MC simulation is increased, pMC→pexact and Pi

MC

→Pi
B, meaning that S can be estimated by reconstructing a

single SAW. In practice, however, Pi
MC is approximate, lead-
ing to an upper bound for S �compare with Eq. �8��,
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SA = − kB�
i

Pi
B ln Pi

MC = �
i

Pi
BSi

MC, �15�

where Si
MC=−kB ln Pi

MC. It can be shown �see Appendix of
Ref. 4� that like SA �Eq. �8��, SA �Eq. �15�� defined with
stochastic probabilities Pi

MC is a rigorous upper bound, which
is expected to have nonzero fluctuation �A �Eq. �9��.

One can define the entropy functional SB �Eq. �10�� and
thus SM �Eq. �12�� also for HSMC, where SB becomes a
rigorous lower bound of S due to the fact that Pi

MC is defined
only over the ensemble of SAWs. We express SB as

SB = − kB�
i

Pi
MC ln Pi

MC = − kB

�iPi
B�Pi

MC ln Pi
MC�

�iPi
BPi

MC

=
�iPi

B exp�− Si
MC/kB��Si

MC�
�iPi

B exp�− Si
MC/kB�

, �16�

where it is estimated by Eq. �11�. Equation �16� emphasizes
an explicit dependence of SB on the variable Si

MC

=−kB ln Pi
MC, that is directly related to the average SA �Eq.

�15�� and its fluctuation �A �defined in the same manner as in
Eq. �9��. Because of the stochastic nature of Si

MC it is plau-
sible to assume that when configurations �i� are sampled
from the Boltzmann distribution �i.e., with Pi

B�, their corre-
sponding Si

MC values occur with a Gaussian probability cen-
tered around SA with standard deviation �A. Indeed, such
Gaussian behavior has been observed in models for liquid
argon and TIP3P water, which has led �see details in Ref. 4�
to a Gaussian approximation SG

B for SB,

SG
B = −

��A�2

kB
+ SA, �17�

and to the corresponding SG
M �see Eq. �12��,

SG
M = �SA + SG

B�/2 = SA −
1

2

��A�2

kB
. �18�

The fact that SG
B depends only on SA and �A is an advantage

because these quantities are typically easier to estimate than
SB �directly� from Eqs. �10�, �11�, or �16�, meaning that SG

B is
expected to be statistically more reliable than SB. Previous
results have shown that this Gaussian distribution is a very
good approximation as there is excellent agreement of FG

B

with FB for cases where FB is well converged �when finite
interactions are defined F replaces S�. Again, several ap-
proximations for SA , SG

B , and SG
M can be calculated, and their

convergence leads to highly accurate free-energy determina-
tion. It should be pointed out that formally one can calculate
SG

B also for Si
HS defined by Pi

0�f� of the HS method. However,
Si

HS �unlike Si
MC� is not stochastic and thus deviates from a

Gaussian distribution, where this deviation increases as the
approximation worsens, i.e., with increasing chain length N.

The entropy can be expressed exactly by SD �see Ref. 4�,
which can also be estimated from a sample generated with
Pi

B. One obtains

SD = − kB ln �
i

Pi
BPi

MC

= − kB ln�� Pi
B�exp�− Si

MC/kB��
 . �19�

i
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In practice, the efficiency of estimating S by SD depends
on the fluctuation of this statistical average, which is deter-
mined by the fluctuation of Si

MC exponentiated. That is, if the
fluctuations in Si

MC are small, then the values for
exp�−Si

MC/kB� do not vary drastically, and the averages for
SD �and SB� can be estimated reliably from a relatively small
sample. Still �as for SB�, the direct calculation of S through
SD will not be as statistically reliable as estimating SA. Ob-
viously, as Si

MC→S �i.e., Pi
MC→Pi

B� all fluctuations become
zero and S can be obtained from a single configuration. We
note additionally that to improve convergence, SD �like SB�
can be approximated by the Gaussian distribution �for the
Si

MC values in Eq. �19��; applying this approximation leads to
SG

M defined in Eq. �18�.
As for SG

B , one can formally calculate SD also for Pi
0�f�

defined by HS. However, because Pi
0�f� is not defined only

on the ensemble of SAWs, SD�HS� �unlike SD�MC�� will not
converge to the correct S even for a very large sample. Con-
vergence could occur for Pi�f�= Pi

0�f� /�Pi
0�f� which is nor-

malized over the SAWs alone �i.e., �Pi
0�f��1�; however,

calculation of �Pi
0�f� by HS is impossible. This suggests that

SD calculated by HS for a large chain will always be an
upper bound for S.

While the theory above has been introduced for the en-
tire ensemble of SAWs, it also applies to a set of reconstruc-
tions of a single chain conformation �see Appendix, Ref. 4�.
That is, the required averages can be obtained from a set of n
independent reconstructions of the same chain, where each
reconstruction contributes an estimation for Si

MC. For SA, for
example, these estimations are arithmetically averaged; for
SD the arithmetic average of exp�−Si

MC/kB� is used, etc.

F. Calculation of the entropy by series
expansion

For comparison we also present the results obtained with
a formula based on series-expansion �exact enumeration�
data.21 The entropy Sseries is obtained from the total number
of SAWs cN,

Sseries/kB = ln cN � ln�	N�a1N11/32 + a2N−21/32 + b1N−37/32

+ �− 1�Nd1N−3/2 + �− 1�Nd2N−2�� , �20�

where a1=1.1771�2�, a2=0.554�2�, b1=−0.19�2�, d1

=−0.19�2�, d2=0.034�2�, and 	=2.638 158 5�10� �the error
of the last digits appears in parenthesis�.

G. Calculation of the entropy by thermodynamic
integration

In order to calculate the partition function of a SAW
via TI,25 the system must be linked with a calculable refer-
ence state, which in this case is the ideal chain. Samples of
chains are generated where monomers are allowed to overlap
each other. To effect this, a unitless energy function E is
defined where

E = �
j


 j . �21�


 j is the ”overlap value” at lattice site j, and the summation

is carried out over all sites. The overlap value is defined as
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follows. A lattice site that is occupied by only a single mono-
mer �or is unoccupied� contributes nothing to the energy
�
 j =0�. A doubly occupied site �i.e., a single overlap� con-
tributes 
 j =1; a triply occupied site �a double overlap� con-
tributes 
 j =2, and so on. The value of E is thus always an
integer. For a SAW, E must be zero.

The above-defined energy function is used to describe a
general chain which can exist at any arbitrary finite tempera-
ture. The partition function for the general chain ensemble is
given by

Z = �
id

exp�− Ei/T� , �22�

where the sum is carried out over all ideal chain configura-
tions i �the total configuration space�, and where we have
introduced a unitless temperature T. We note that at high
�infinite� T, the Boltzmann factor exp�−Ei /T� is unity and the
partition function approaches that of the ideal chain reference
state �i.e., Zid=4�3N−1, where immediate reversal is forbid-
den�. At low T�T=0�, only zero energy configurations will
contribute to the summation and the partition function be-
comes that of the SAW, ZSAW.

The difference ln ZSAW−ln Zid can be evaluated by inte-
gration over T or over 1 /T, using the derivative relations,

d ln Z

dT
= � 1

Z
��

id

Ei

T2exp�− Ei/T� = � E

T2� , �23�

and

d ln Z

d�1/T�
= � 1

Z
��

id
− Ei exp�− Ei/T� = − �E� . �24�

The corresponding integrals are, respectively,

ln�ZSAW

Zid

 = �

�

0 d ln Z

dT
dT and

�25�

ln�ZSAW

Zid

 = �

0

� d ln Z

d�1/T�
d�1/T� .

We have chosen to use both of these relations where we
conduct the integration in two stages as

ln�ZSAW

Zid

 = �

0

1/T* d ln Z

d�1/T�
d�1/T� + �

T*

0 d ln Z

dT
dT , �26�

where T* is an intermediate temperature. The left-hand term
thus quantifies the change in ln Z for going from an ideal
chain to the general chain at T*, and the right-hand term is
the change from this point to the SAW.

In our implementation, the generalized chain was simu-
lated at a total of 199 temperatures. The relevant result in
these simulations is the average energy �E�; these values are
used for derivative points �Eqs. �23� and �24�� in the numeri-
cal evaluation of Eq. �26�. In the first stage/series �corre-
sponding to the left-hand term in Eq. �26��, 100 simulation
temperatures were spaced evenly in 1/T, ranging from 1/T
=0 �the ideal chain� to 1 /T* where T*=0.757 575 75 �1/T*

=1.32�. In the second stage �for the right-hand term in Eq.

�26��, 100 simulation temperatures were spaced evenly in T,
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ranging from T* to T=0 �the SAW�. With the finite limits in
Eq. �26�, a simple trapezium integration was adequate. It
should also be noted that the number of simulation points
employed in this work was actually well more than was nec-
essary. We note further that the results are insensitive to the
choice of T* as long as there are enough points. One could
drastically reduce the number of simulation points �thereby
increasing the efficiency� by careful �optimized� choice of T*

and/or by implementing less simple-minded quadrature tech-
niques; however, the present performance is sufficient for our
purposes. Details about the MC simulations appear below in
Sec. III A.

III. RESULTS AND DISCUSSION

We have calculated the entropy of SAWs consisting of
N=29, 49, 99, 149, 249, 399, and 599 bonds. The results of
Table I were obtained by reconstructing a single chain con-
formation �see Appendix, Ref. 4�, i.e., by n replicate recon-
structions �based on different sets of random numbers� of a
straight SAW of N bonds, while the results in Table II were
obtained by reconstructing a sample of SAWs.

A. MC simulations and the HSMC reconstruction
procedure

The efficiency of HSMC is affected considerably by the
MC procedure employed in the reconstruction process. On a
square lattice, “crankshaft” moves are in most cases rejected
due to the strong excluded volume interactions while corner
moves have somewhat higher acceptance rate.8 Therefore,
for the reconstruction process we have used a MC procedure
based on 50% corner moves �that provide local conforma-
tional changes� and 50% “pivot” moves that have been
shown to effectively induce global changes.26 This procedure
has been employed not only in the reconstruction process,
but also for generating samples of SAWs �to be reconstructed
by HSMC and HS� and for the TI simulations.

The HSMC calculations are based on the sample size n,
the number of reconstructed SAWs and nfuture, which is re-
lated to the number of future MC steps per bond applied
during the reconstruction process as defined below. First we
note that the first bond of the chain is not reconstructed; its
probability is always 1/4. The number of MC steps nMC for
bond k is scaled as nMC= �N−k+1�nfuture, meaning that the
maximal number of future MC steps is applied for the recon-
struction of the second bond �to which corresponds the larg-
est future segment of N−1 bonds�, while the last bond �N� is
allotted the minimal number of MC steps. Because each
simulation at step k always starts from the structure of the
reconstructed chain it is important to let the future SAW
equilibrate, otherwise pMC �Eq. �13�� would �on average� be
too high; therefore, 300 MC steps per future bond are used
for equilibration. As discussed earlier, the larger is nfuture the
better �i.e., smaller� is SA �Eq. �15��, the larger is SB �Eq.
�16�� �and SG

B , Eq. �17�� and the smaller is the fluctuation �A

�Eq. �9��. To demonstrate this effect, the results for each
chain length are presented in the tables for nfuture=500, 5000,
and 50 000, where the corresponding sample size n is de-

creased, which results in approximately the same computer
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time for each calculation. Notice that for a single chain
�Table I�, n is the number of reconstructions applied to the
same straight chain, while for a sample of chains �Table II�,
n is the number of different configurations reconstructed, one
reconstruction is performed for each configuration.

For the TI process the chains were simulated as de-
scribed above, by the 50/50 ratio of pivot and corner moves,
where in this case the entire chain is moveable �except of the
first bond�. The total simulation length was the same at each
temperature, however, it varied depending on chain size.
6�107 MC moves were carried out at each temperature for
N=29, where run lengths of 108 ,108 ,6�107 ,5�107 ,3.2
�107, and 2.4�107 steps were used for N=49, 99, 149, 249,
399, and 599, respectively. All of these runs were replicated
nine times �i.e., nine independent simulations were per-
formed�, thus yielding nine independent integration results
�trials� for each chain size. Our final reported result is the
average of these trials, with the standard deviation of the
mean being used as the uncertainty estimate.

B. Results by TI, series expansion, and the scanning
method

To a large extent, we judge the performance of HSMC
by comparing its results to those obtained by other tech-
niques, such as the scanning method �Eq. �6�, Ref. 20�, series
expansion �Eq. �20��, TI �Eq. �26��, and HS �using f =8�;
therefore, we start by discussing the results of these methods
which appear in both tables.

We first would like to point out the surprising accuracy
for large N obtained by the series-expansion formula �Eq.
�20�� that is based on extrapolating exact enumeration data
for relatively short chains. Thus, the results for STI and Sseries

are equal within the error bars for all N, with comparable
errors for N=49, 99, and 149. However, for N=29 the error
in Sseries is significantly larger than that of STI and for N
�149 error�STI�-error�Sseries� increases constantly with N.
For N=29 the DMC and TI values are equal within compa-
rable errors.

The results obtained with the scanning method long
ago20 �based on a relatively small scanning parameter f =6�
are also very good. They are equal to the TI and series results
for all N accept for N=599, where Sscan is smaller due to a
bias �for generating compact chains� that was not removed
completely by the importance sampling procedure �Eq. �6��.
For N
249 the statistical errors of Sscan are significantly
larger than those of STI. In what follows, for comparison we
shall consider the TI and series results to be exact.

C. Entropy by reconstructing straight chains

The results obtained by n replicate reconstructions of a
straight chain appear in Table I. Part of the data has already
been provided in Ref. 6; however, the HS results and those
for SG

B ,SG
M, and for the chain length N=29 are new.

The table supports the expectations of the HSMC theory
presented in Sec. II. Thus, for all chain lengths, as nfuture is
increased from 500 to 50 000, the fluctuation decreases, SA

decreases and remains an upper bound, and SB and SG
B in-
B
crease remaining lower bounds. For nfuture=500 the SG re-
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TABLE II. HSMC results for the entropy per bond obtained from a sample of chain configurations. For details, see the caption of Table I.

nfuture SA /kB �A /kB SB /kB SG
B /kB SM /kB SG

M /kB SD /kB n

N=29 SDMC=1.016 147�5�
500 1.023 66�2� 0.023 19�2� 1.008 66�5� 1.008 07�3� 1.016 16�3� 1.015 87�2� 1.016 09�3� 1 250 000
5000 1.016 89�2� 0.007 24�2� 1.015 37�3� 1.015 37�2� 1.016 13�2� 1.016 13�2� 1.016 13�2� 125 000

50 000 1.016 21�2� 0.002 37�2� 1.016 04�3� 1.016 05�2� 1.016 13�2� 1.016 13�2� 1.016 13�2� 12 500
STI 1.016 145�3� 1.016 145�3� 1.016 145�3� 1.016 145�3� 1.016 145�3� 1.016 145�3�

Sseries 1.016 15�1� 1.016 15�1� 1.016 15�1� 1.016 15�1� 1.016 15�1� 1.016 15�1�

N=49 Sscan=1.000 904�4�
500 1.009 59�2� 0.019 23�2� 0.992 15�7� 0.991 46�4� 1.000 87�4� 1.000 53�3� 1.000 78�4� 1 248 547
5000 1.001 72�2� 0.006 00�2� 0.999 96�5� 0.999 95�2� 1.000 84�3� 1.000 84�2� 1.000 84�3� 124 763

50 000 1.000 94�2� 0.001 89�2� 1.000 77�4� 1.000 77�2� 1.000 86�2� 1.000 86�2� 1.000 86�3� 12 467
SHS 1.001 49�1� 0.004 34�1� 1.000 26�2� 1.000 57�1� 1.000 88�2� 1.001 03�1� 1.000 94�1� 250 000
STI 1.000 897�3� 1.000 897�3� 1.000 897�3� 1.000 897�3� 1.000 897�3� 1.000 897�3�

Sseries 1.000 899�5� 1.000 899�4� 1.000 899�4� 1.000 899�4� 1.000 899�4� 1.000 899�4�

N=99 Sscan=0.987 726�5�
500 0.998 40�3� 0.015 39�3� 0.9762�2� 0.9750�1� 0.9873�1� 0.98668�5� 0.9873�1� 249 621
5000 0.988 83�3� 0.004 78�3� 0.9866�1� 0.986 57�4� 0.987 70�5� 0.987 70�3� 0.987 70�5� 24 907

50 000 0.987 86�3� 0.001 53�3� 0.987 63�5� 0.987 63�3� 0.987 75�3� 0.987 75�3� 0.987 75�3� 2476
SHS 0.989 94�1� 0.005 07�1� 0.9856�2� 0.9874�1� 0.9878�1� 0.988 7�1� 0.988 17�5� 250 000
STI 0.987 727�3� 0.987 727�3� 0.987 727�3� 0.987 727�3� 0.987 727�3� 0.987 727�3�

Sseries 0.987 730�3� 0.987 730�3� 0.987 730�3� 0.987 730�3� 0.987 730�3� 0.987 730�3�

N=149 Sscan=0.982 740�3�
500 0.994 60�3� 0.013 47�5� 0.9688�5� 0.9676�2� 0.9817�3� 0.9811�1� 0.9818�3� 249 628
5000 0.983 98�3� 0.004 28�5� 0.9813�1� 0.981 26�7� 0.982 63�5� 0.982 62�4� 0.982 64�5� 24 860

50 000 0.982 93�3� 0.001 43�5� 0.982 62�5� 0.982 62�4� 0.982 77�3� 0.982 77�3� 0.982 77�4� 2470
STI 0.982 742�3� 0.982 742�3� 0.982 742�3� 0.982 742�3� 0.982 742�3� 0.982 742�3�

Sseries 0.982 740�2� 0.982 740�2� 0.982 740�2� 0.982 740�2� 0.982 740�2� 0.982 740�2�

N=249 Sscan=0.978 36�2�
500 0.991 88�5� 0.011 49�7� 0.961�2� 0.9590�4� 0.976�1� 0.9755�2� 0.976�1� 50 451
5000 0.979 77�4� 0.003 74�7� 0.9760�2� 0.9763�1� 0.9779�1� 0.978 03�8� 0.9780�1� 7261

50 000 0.978 51�4� 0.001 29�7� 0.9781�1� 0.978 09�6� 0.978 30�5� 0.978 30�5� 0.978 30�5� 938
SHS 0.983 06�1� 0.004 01�1� 0.9745�5� 0.9791�3�* 0.9788�3� 0.9811�2� 0.9799�1� 176 000
STI 0.978 358�4� 0.978 358�4� 0.978 358�4� 0.978 358�4� 0.978 358�4� 0.978 358�4�

Sseries 0.978 360�1� 0.978 360�1� 0.978 360�1� 0.978 360�1� 0.978 360�1� 0.978 360�1�

N=399 Sscan=0.975 67�4�
500 0.9908�1� 0.0099�1� 0.955�3� 0.9517�8� 0.973�2� 0.9712�4� 0.971�2� 6670
5000 0.977 29�8� 0.0032�1� 0.9727�5� 0.9733�3� 0.9750�3� 0.9753�2� 0.9752�3� 1577

50 000 0.9759�1� 0.0012�1� 0.9754�2� 0.9754�1� 0.9757�1� 0.9757�1� 0.9757�1� 115
SHS 0.981 41�5� 0.003 35�5� 0.9743�5� 0.9769�3� 0.9779�3� 0.9792�2� 0.9782�2� 5500
STI 0.975 655�8� 0.975 655�8� 0.975 655�8� 0.975 655�8� 0.975 655�8� 0.975 655�8�

Sseries 0.975 652�1� 0.975 652�1� 0.975 652�1� 0.975 652�1� 0.975 652�1� 0.975 652�1�

N=599 Sscan=0.973 95�5�
500 0.9904�2� 0.0087�2� 0.957�5� 0.945�2� 0.974�3� 0.968�1� 0.969�3� 2540
5000 0.9760�2� 0.0030�2� 0.970�2� 0.971�1� 0.973�1� 0.9733�4� 0.973�1� 316

50 000 0.9743�1� 0.0010�2� 0.9738�5� 0.9737�3� 0.9741�3� 0.9740�2� 0.9741�3� 60
STI 0.974 04�1� 0.974 04�1� 0.974 04�1� 0.974 04�1� 0.974 04�1� 0.974 04�1�

Sseries 0.974 025�1� 0.974 025�1� 0.974 025�1� 0.974 025�1� 0.974 025�1� 0.974 025�1�
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sults are slightly inferior �i.e., lower� than those of SB. How-
ever, for nfuture=5000 and 50 000, SG

B and SB are equal within
error bars that are, however, two to three times smaller for SG

B

than for SB; therefore, the corresponding results for SG
M are

equal to those of SM but with slightly smaller errors.
In all cases SM and SG

M are equal �within the error bars�
to SD, to the TI and series results, and for N�599 also to the
scanning results. However, the error bars of TI are the small-
est. The fact that for each N the SM �and SG

M� results for
nfuture=5000 and 50 000 �and in some cases for nfuture=500�
are equal �and they are also equal to the TI values� demon-
strates that the absolute values of SA and SB�SG

B� deviate
equally from the correct results. Overall the HSMC statistical
errors are small �0.002%–0.005%�; however, much more
computer time has been invested in the simulations of the
longer chains.

We also obtained results with HS where the entropy was
calculated from a generated sample of chains �see next sec-
tion� with a limited but systematic scanning of f =8. Our
main interest has been only to check how much are these
results larger than those obtained by HSMC �based on the
stochastic MC scanning of the entire future�; therefore, the
HS results were calculated only for several chain lengths of
N=49, 99, 249, and 399. Indeed, the SA�HS� values �Eq. �8��
are always larger than the exact ones, where the deviation
increases with N; thus, for N=49 the HS value is relatively
accurate, comparable to that of HSMC�nfuture=5000�, while
for N=399 SA�HS� worsens becoming close to SA�HSMC�
for nfuture=500. Correspondingly, �A�HS� is always larger
than �A�HSMC� obtained for nfuture=5000 �except for N
=49�. A similar trend is observed for SB�HS� which is always
a lower bound but smaller than SB�HSMC� obtained for
nfuture=5000.

The results for SM�HS� are very close to the correct ones
for N=49 and 99, but overestimate the correct values as
chain length increases, where for N=399 the error is of
�0.2%. As discussed earlier, SG

B�HS� is not well defined and
indeed it constitutes a lower bound only for N=49 and 99
�where its values are larger than the corresponding
SB�HSMC� values�, becoming larger than the exact value for
larger N. The related average SG

M is always larger than the
exact value with the largest deviation of 0.36% occurring for
N=399. As expected �see the last paragraph of Sec. II E�
SD�HS� is always an upper bound, which is slightly smaller
than the corresponding SG

M. These results demonstrate that
the performance of HS is inferior to that of HSMC.

D. Entropy by reconstructing a sample of chains

In practice, however, one would apply HSMC to samples
of chains of different conformations, therefore a second set
of results has been obtained from thermodynamic samples of
SAWs. To generate such samples we have carried out long
MC runs �based on the pivot and corner moves described
previously� starting from a straight chain, equilibrating for
300 MC steps per bond, where every 2300 MC steps per
bond the current conformation �i� was selected for recon-
struction as described earlier. �This same prescription was

also used to generate samples for the HS method.�
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Calculation of the entropy from a sample of chains is
more difficult than for a straight chain. Because the frozen
past of the chain is not straight, part of the conformational
space of the future SAWs might become unreachable with
our dynamic pivot/corner MC procedure; this might affect, in
particular, the movement of the treated bond k hence the
corresponding transition probability. Because the reconstruc-
tion starts from configuration i, in an extreme case bond k�i�
will be unable to move to another direction leading to pMC

=1; in another case it will change direction but may never
return to its original direction in chain i leading to pMC=0.
Such TPs will affect significantly the probability Pi

MC �Eqs.
�13� and �14�� of the chain. Notice, however, that these cases
do not demonstrate a drawback of the HSMC method but
reflect the strong excluded volume interaction of SAWs on a
square lattice and the inability inherent in our MC procedure
to search the entire conformational space �i.e., the procedure
is nonergodic�. As discussed below, these problems can be
alleviated by generating the future SAWs with more efficient
MC techniques. Such problems have not been encountered in
application of HSMC to fluid systems �argon and water� and
peptides. Obviously, this problem will be weakened signifi-
cantly for SAWs on a simple cubic lattice, for example,
where the excluded volume interactions are less severe than
on a square lattice.

To alleviate these problems we have taken several mea-
sures. First, before carrying out the future sampling at step k
the program checks the nearest neighbor sites of monomer k
�located at the end of bond k−1�; if all four of them are
already occupied by chain monomers �i.e., step k has only
one choice� the future sampling is avoided, the TP�k� is de-
fined as 1, and the next step �k+1� is treated. When pMC

=0 or 1 occurs, pMC is calculated by the �systematic� HS
method, i.e., by an exact enumeration of the future SAWs of
f =8 bonds and this value is considered in the calculation of
Pi

MC. Still, the reconstruction probability of some chains
might be affected significantly by similar problems �i.e., pMC

values that are incorrectly very small or close to 1�. Because
the Boltzmann probability of all chains is the same, one can
ignore the contribution of such chains to the average entropy.
In practice, a SAW i with −kB ln Pi

MC beyond four standard
deviations of the average is not considered in the averaging
of the entropy.

Comparing the results in Tables I and II demonstrates the
increase in sampling difficulty and decrease in accuracy in-
volved in reconstructing a sample of chains. Thus, while SA

�sample� in Table II �as expected� is an upper bound that
decreases as nfuture increases, it is always larger �i.e., worse�
than the corresponding SA �straight� in Table I; for nfuture

=50 000 the deviations are small for N�149 but increase for
larger N. A similar trend is observed for �A �sample� that
always decreases �as expected� with increasing nfuture but it is
larger than the corresponding �A �straight�. Notice that for
nfuture=50 000 SA �sample� and �A �sample� are always better
�i.e., smaller� than SA�HS� and �A�HS�, which again reflects
the superior accuracy of HSMC. SB and SG

B always increase
with nfuture and for nfuture=5000 and 50 000 they are in most
cases equal with slightly lower errors for SG

B . Again, these

values are always smaller �i.e., worse� than those in Table I,
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where the deviations are small for N�149 and increase for
larger N. For N�99 the �six� results for SM ,SG

M, and SD for
nfuture=5000 and 50 000 are all equal �within the error bars�,
whereas for larger N these functionals have slightly better
values at 50 000 than at 5000. For N�249 the best results
for SM ,SG

M, and SD �i.e., for nfuture=50 000� are equal to those
of Table I, while for N=399 and 599 the results for the
straight chains are more accurate with errors that are �six
times smaller.

The conclusion from the above comparison is that for
any model studied it is more efficient to carry out a relatively
large number of reconstructions �replicates� of a small num-
ber of “good” chain configurations than to reconstruct a ther-
modynamic sample of chains.

E. Discussion

The results of the two tables show that for a given
amount of computer time it is preferable to increase nfuture

using relatively small values of sample size n; this leads to
improved �smaller� SA, larger SB, hence better estimates SM

and SD �in particular, for large N�. This effect is significant,
in particular, for a sample of chains, where, for N=49, for
example, SA�nfuture=50 000� is equal in both tables, while for
nfuture=5000 and 500 the results in Table II are always worse
�larger� than the corresponding results of Table I. Thus, the
best �lowest� SA will be obtained in the extreme case, where
only a single �good� chain is reconstructed with the maximal
nfuture for a given amount of computer time. However, this
would come with a price that the information provided by
the other functionals would be lost because SA=SB=SM =SD.

An inherent inefficiency of HSMC lies in the need to
carry out N−1 simulations for an N-bond SAW. Still, the
performance of HSMC for a sample of SAWs can be im-
proved by changing the scaling function discussed in Sec.
II C, which controls the extent of simulation applied to each
bond in the reconstruction process. However, the most sig-
nificant factor affecting efficiency is the simulation method
used for the chain reconstruction. Thus, our preliminary
simulations based on corner moves alone have converged
extremely slowly, and adding the pivot moves improved per-
formance dramatically. In three dimensions, where the ex-
cluded volume effect is weaker, one can add crankshaft
moves �and other moves, see Ref. 8� that are expected to
increase efficiency further. To improve accuracy one can in-
crease the scanning parameter used in the HS parts of the
processes from f =8 to12 �and even to 14�.

The pivot moves are very important for an open chain,
but they become unsuitable for a SAW enclosed in a small
volume or for a highly compact SAW with attractive inter-
actions at low temperature, where only local MC moves are
applicable. Notice, however, that simulating these restricted
models �on a square or a simple cubic lattice� with dynamic
MC procedures based on local moves is generally noner-
godic and extremely inefficient, meaning that the corre-
sponding HSMC reconstructions will be inefficient as well.
On the other hand, restricted SAW models are better handled
by step-by-step construction procedures.14–17 The scanning

method, for example, is ergodic and due to its “feelers” one
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can generate chains in restricted environments quite effi-
ciently. Thus, the idea would be to implement within the
framework of HSMC a suitable growth procedure, which
will lead to exact results, unlike HS. Notice that growth pro-
cedures provide the entropy by themselves from their gener-
ated sample of chains; however, a suitable HSMC/growth
procedure would enable estimating the entropy from a given
trajectory.

An interesting test case is a model of multiple SAWs
enclosed in a “box,” studied previously by the scanning and
HS methods,24 where chains are added successively to an
initially empty box. However, with HS only the partial fu-
ture of a reconstructed chain is considered, whereas HSMC
can take into account the entire future, including that of the
reconstructed chain and the positions and conformations of
the as yet unreconstructed chains. If the system is not ex-
tremely dense local dynamic MC moves would suffice. In
the extreme case where all sites are populated �density=1�
one can apply simulation methods as those implemented by
Pakula and Reiter.27 It should be emphasized that HSMC can
handle volumes with any shape and boundary conditions,
where defining a suitable reference state for TI is not trivial.

Chain models with finite interactions have been defined
on enriched lattices �i.e., with a large coordination number,
such as the bond fluctuating model� and have been simulated
by dynamic MC procedures. All of these models can be
treated by HSMC. Such models have been used to study
protein folding trajectories, for example, where transitions
between different conformational regions �microstates� oc-
cur, but their relative populations can be obtained only
crudely from the trajectory. However, these populations can
be calculated with high accuracy by applying HSMC locally
to these microstates, in the same way it has been applied to
the helical, extended, and hairpin microstates of polyglycine
molecules.5 It should be noticed that the entropy of mi-
crostates �i.e., local fluctuations� can also be obtained ap-
proximately by the harmonic and quasiharmonic techniques12

or the local states method,13 while a similar calculation by TI
is a standing problem. Returning to the present model of
SAWs, it appears that the most efficient is the scanning
method �where a run for generating SAWs of N=599 pro-
vides results for all intermediate N�, followed by TI, where
HSMC is the least efficient. For example, the tabulated TI
value for a 399-bond SAW required �100 h CPU, while for
HSMC �nfuture=50 000�, generating the 225 chains in Table I
took 945 h CPU. It is stressed, however, that these levels of
precision will often not be necessary in novel investigations
on related polymer systems. A single reconstruction of a 399-
bond SAW for nfuture=50 000 requires far less computational
investment ��4.2 h CPU�, and already gives a result of S
=0.9757�6�.

In summary, calculation of S is a central problem in
computer simulation, and HSMC with its unique features
constitutes a new tool for obtaining S independent of other
methods. With HSMC all interactions are considered, and its
accuracy depends only on the amount of MC sampling. Fur-
thermore, a “self-checking” accuracy analysis is inherent in
the method, based on verifying the increase and decrease of

B B A
the rigorous upper and lower bounds, S ,SG, and S , and the
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decrease of �A, as the approximation improves. Finally, un-
like other methods, HSMC is of general applicability, cover-
ing liquids �argon and water�, microstates of polypeptide
molecules, and in this work also random coil polymers.
HSMC can be applied to any type boundary conditions,
which is very difficult to handle by TI, and unlike most
methods, enables one to extract the absolute entropy from a
given sample, where only a small number of SAWs �and
even a single chain� need to be reconstructed; this is impor-
tant for studying relaxation processes, such as protein fold-
ing.
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