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Abstract

While lattice models are used extensively for macromolecules (synthetic polymers proteins, etc.), calculation of the absolute

entropy, S, and the free energy, F, from a given Monte Carlo (MC) trajectory is not straightforward. Recently, we have developed

the hypothetical scanning MC (HSMC) method for calculating S and F of fluids. Here we extend HSMC to self-avoiding walks on a

square lattice and discuss its wide applicability to complex polymer lattice models. HSMC is independent of existing techniques and

thus constitutes an independent research tool; it provides rigorous upper and lower bounds for F, which can be obtained from a very

small sample and even from a single chain conformation.

� 2005 Elsevier B.V. All rights reserved.
Lattice models have been utilized to study a wide

range of phenomena in polymer physics [1–5] as well

as in structural biology, mainly related to protein fold-

ing and stability [6–9]. (Refs. [1–9] constitute a very lim-

ited representation of hundreds of papers published in

the last 15 years.) Because of their simplicity these mod-
els have been invaluable tools for understanding global

properties that do not depend strongly on molecular de-

tails. Such models vary in complexity, ranging from self-

avoiding walks on a square lattice to chain models on

enriched 3D lattices with a large effective coordination

number.

Commonly, these systems are simulated by variants

of Metropolis Monte Carlo (MC) – a dynamical method
that enables one to generate samples of chain configura-

tions i distributed according to their Boltzmann proba-

bility, PB
i , from which equilibrium information can be

extracted [10]. Using MC it is straightforward to calcu-
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late properties that are measured directly from i, such as

the potential energy Ei. On the other hand, the value of

PB
i cannot be obtained in a straightforward manner,

which makes it difficult to calculate the absolute entropy,

S � � ln PB
i directly, i.e., as a byproduct of the simula-

tion (like Ei). There is a strong interest in S as a measure
of order and as an essential ingredient of the free energy,

F = E � TS, where T is the absolute temperature; F con-

stitutes the criterion of stability, which is mandatory in

structure determination of proteins, for example. Fur-

thermore, because MC simulations constitute models

for dynamical processes, one would seek to calculate

changes in F and S during a relaxation process, by

assuming local equilibrium in certain parts along the
MC trajectory; a classic example is simulation of protein

folding [11].

S and F are commonly calculated by thermodynamic

integration (TI) techniques [12–14] that do not operate

on a given MC sample but requires conducting a sepa-

rate set of MC simulations. This is a robust approach

that enables one to calculate differences, DSab and DFab,

between two states a and b of a system; however, if the
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structural variance of such states is large (e.g., helical

and hairpin states of a polypeptide) the integration from

state a to b becomes difficult and in many cases unfeasi-

ble. On the other hand, if one could calculate the abso-

lute Fa and Fb directly from two separate sets of

simulations carried out at states a and b, DFab = Fa � Fb

and the integration can be avoided. Still, the absolute F

can also be obtained with TI provided that a reference

state r is available, where the free energy is known ex-

actly and the integration path between r and a (and b)

is relatively short. However, for non-homogeneous lat-

tice models such integration might not be trivial, and

in models of peptides and proteins, defining reference

states that are close to the state of interest is a standing
problem.

Another type of simulation method has been devel-

oped for polymers, where a chain is constructed step-

by-step with transition probabilities (TPs) ([15–19], see

also an extensive review in [5]). The product of these

TPs leads to PB
i , hence S is known. However, these

build-up procedures are not always the methods of

choice mainly because they lack the dynamical aspects
(and simplicity) of MC, which thus has become the com-

monly used method. Hence, it is important to develop

methods for calculating the absolute entropy from a gi-

ven MC trajectory. Nonetheless, a hybrid of one build-

up procedure, the scanning method [19], with the

dynamical MC approach has led to two approximate

techniques, the local states (LS) [20,21] and hypothetical

scanning (HS) methods [22,23]. These methods enable
one to calculate S and F directly from a given sample

generated by any simulation technique, and they have

been applied successfully to polymers, peptides, pro-

teins, magnetic systems, and lattice gas models [14].

Recently, the HS method has been extended to fluids

and has been further developed by defining TPs that are

calculated by an MC procedure and (unlike the TPs of

HS) take into account all the long-range interactions
[24,25]; this HSMC method has been applied very suc-

cessfully to liquid argon, TIP3P water [25], and polygly-

cine molecules in helical, extended and hairpin states

[26]. HSMC is significantly more accurate than HS, pro-

vides rigorous upper and lower bounds for F, which can

be calculated from a relatively small sample and even

from a single conformation.

The aim of this paper is to extend the scope of HSMC
to lattice polymer models, in particular to random coil

chains. For that we study self-avoiding walks (SAWs)

on a square lattice – a difficult test case due to the strong

excluded volume (EV) interactions occurring in 2D [5] –

and discuss application of HSMC to more complex lat-

tice chain systems. The present results are compared to

results obtained by us using TI, to those obtained some

time ago by the scanning method [27], and to results
based on series expansion (exact enumeration) tech-

niques [28]. In what follows we first describe the scan-
ning method [19], the HS method, and then HSMC

for SAWs.

Assume a single SAW of N steps (bonds), i.e., N + 1

monomers starting from the origin on a square lattice.

All the SAWs i are equally probable with Boltzmann

probability

PB
i ¼ 1=ZSAW; ð1Þ

where the partition function, ZSAW, is the total number

of different SAWs, and the free energy is

F =kBT ¼ �S=kB ¼
X
i

PB
i ln P

B
i ¼ � ln ZSAW ¼ ln PB

j ;

ð2Þ
where kB is the Boltzmann constant and j is any SAW.

The summations (in i) here and in the rest of the paper

are over the ensemble of SAWs. Eq. (2) demonstrates

that F (and S for this particular model) has zero fluctu-

ation, which is a general property of the correct free en-
ergy of any system, while the fluctuation of an

approximate F is expected to be finite [29]. Eq. (2) also

shows that if the Boltzmann probability of any single

SAW (j) is known, F (and S for this particular model)

is known as well, which again is a general property sat-

isfied by any system in equilibrium.

With the scanning method [19] a SAW is grown step-

by-step with TPs; thus, at step k of the process, k � 1
directions (bonds), m (m = 1,4) will have already been

constructed [they are denoted m1, . . .,m(k � 1)]. To deter-

mine the direction mk (out of 4 possible directions, m)
one enumerates all the possible continuations Zm

kðf Þ of

the chain in a limited number of f future steps that start

from m of step k, where Zm
kðf Þ is a partial future partition

function and f is the scanning parameter. Zm
kðf Þ enables

one to define TPs for m,

pðmjmðk�1Þ; . . . ; m1; f Þ ¼ Zm
kðf Þ

X4

m¼1

Zm
kðf Þ

,
. ð3Þ

Using these TPs, the kth step is determined by a random
number and the process continues. The construction

probability P 0
i ðf Þ of SAW i is the product of the TPs

with which the steps have been chosen,

P 0
i ðf Þ ¼

aN
k¼1

pðmkjmðk�1Þ; . . . ; m1; f Þ. ð4Þ

Again, for f � N ; P 0
i ðf Þ is approximate. Due to this

�incomplete� scanning, the chain can get trapped in a

dead end during construction. Also, P 0
i ðf Þ is biased,

i.e., unlike PB
i , it is larger for the compact SAWs than

for the open ones. This bias can be decreased systemat-

ically by increasing f, where for a complete future scan-

ning, i.e., fmax = N � k + 1, the TPs (Eq. (1)) become

exact and no trapping occurs [19]. In practical applica-

tions the bias is removed by an importance sampling pro-
cedure, which leads to an unbiased estimation that is
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exact within the statistical error. The scanning method

can easily be extended to a chain model with finite inter-

actions; in this case the interaction energy Ek
jðmÞðf Þ of the

future chain j that starts from m with itself and with the

rest of the chain is calculated and the corresponding

Boltzmann factor contributes to Zm
kðf Þ, rather than 1,

Zm
kðf Þ ¼

P
jðmÞ exp½�Ek

jðmÞðf Þ=kBT �.
The HS method (as well as LS) is based on the con-

cept that two samples in equilibrium generated by differ-

ent simulation methods are equivalent in the sense that

both lead to the same estimates (within the statistical

error) of average properties, such as the entropy, energy,

and their fluctuations. Relying on this equivalence, one

assumes that a given sample of SAWs constructed by
any exact procedure (e.g., Metropolis MC) has instead

been generated with the scanning method. Thus, for

each of the bonds [mk(i)] of SAW i one calculates the

TPs (Eq. (3)) as if i had been generated with the scan-

ning method. The product of these TPs leads to P 0
i ðf Þ

(Eq. (4)) and to a functional SA, which can be shown

rigorously (using Jensen�s inequality) to be an upper

bound for S [23],

SAðf Þ ¼ �kB
X
i

PB
i ln P

0
i ðf Þ; ð5Þ

where i runs on the complete ensemble of SAWs. The

fluctuation rA(f) of ln P
0
i ðf Þ,

rAðf Þ ¼
X

SAWs i

PB
i ½SAðf Þ þ kB ln P 0

i ðf Þ�
2

( )1=2

; ð6Þ

is expected to be larger than zero, decreasing with

increasing f (i.e., with improving the approximation).

While the TPs defined by HS are deterministic (based

on all the future SAWs of f bonds at step k), for a large

chain they are always approximate, i.e., f� N due to

the exponential growth (with f) of the number of future
SAWs. The HSMC method overcomes this limitation by

seeking to estimate the exact TP at step k (see Eq. (3)),

pðmjmðk�1Þ; . . . ; m1; fmax ¼ N � k þ 1Þ

¼ Zm
kðfmaxÞ

X4

m¼1

Zm
kðfmaxÞ.

,
ð7Þ

Thus, an MC simulation of the entire future part of the

chain (i.e., steps k,k + 1, . . .,N) is carried out in the pres-

ence of the �frozen past� [m1, . . .,m(k � 1)]. The TP of the

actual direction, mk(i) in the reconstructed SAW i is cal-

culated from the number of MC steps, nmðiÞk for which

mk(i) was visited during the simulation of total nMC

MC steps at k,

pHSðmkðiÞjmðk�1Þ; . . . ; m1Þ ¼ nmðiÞk =nMC ð8Þ

and the reconstruction probability of chain i is

PHS
i ¼

aN
k¼1

pHSðmkjmðk�1Þ; . . . ; m1Þ; ð9Þ
where, for simplicity, i has been omitted in the TPs. To

be consistent with [25], the probabilities, PHS
i and pHS,

are superscripted with HS rather than HSMC. It should

be noted that unlike the deterministic P 0
i ðf Þ (Eq. (4)),

PHS
i is defined stochasticly. The fact that the entire future

is considered is important for systems with strong long-
range interactions such as SAWs, proteins, etc. Still, pHS

and hence PHS
i are approximate, but as the MC simula-

tion is increased, their estimation improves, i.e.,

pHS ! pexact and PHS
i ! PB

i , meaning that S can be esti-

mated by reconstructing a single SAW (see Eq. (2)). In

practice, however, PHS
i is approximate leading to an

approximate functional SA (compare with Eq. (5))

SA ¼ �kB
X
i

PB
i ln P

HS
i ¼

X
i

PB
i S

HS
i . ð10Þ

It can be shown (see Appendix of [25]) that like SA

(Eq. (5)), SA (Eq. (10)) defined with stochastic probabil-

ities, PHS
i , is a rigorous upper bound, which is expected

to have non-zero fluctuation rA (Eq. (6)). Also, it should
be pointed out that an HSMC reconstruction for SAWs

with attractions is practically the same, where, however,

the MC acceptance criterion is determined by both, EV

and the attractions [26].

One can define another entropy functional, SB that is

a rigorous lower bound of S. To estimate SB from an

(exact) MC sample, we express it in terms of statistical

averages defined with PB
i ,

SB ¼ �kB
X
i

PHS
i ln PHS

i ¼ �kB

P
iP

B
i ½PHS

i ln PHS
i �P

iP
B
i P

HS
i

. ð11Þ

If the deviations of SA and SB from S (in the absolute val-
ues) are approximately equal, their average SMbecomes a

better approximation than either of them individually,

SM ¼ ½SA þ SB�=2. ð12Þ
The entropy can be expressed exactly by SD (see [25]),

which can also be estimated from a sample generated
with PB

i

SD ¼ �kB ln
X
i

PB
i P

HS
i

¼ �kB ln
X
i

PB
i ½expð�SHS

i =kBÞ�. ð13Þ

While the theory above has been introduced for the

entire ensemble, it also applies to a set of reconstructions

of a single chain conformation (see Appendix of [25]).

Thus, we have calculated the entropy of SAWs consist-
ing of N = 49, 99, 149, 249, 399 and 599 bonds, where

for each chain length the results were obtained by n rep-

licate reconstructions (based on a different sets of ran-

dom numbers) of a straight SAW of N bonds. For

example, in this paper SA is estimated as follows: from

n reconstructions of the same single chain we obtain n

values for ln PHS
t and we take their arithmetic average

�ðkB=nÞ
P

t ln P
HS
t ; an analogous procedure is used
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for SB and SD. The efficiency of HSMC is affected con-

siderably by the MC procedure employed in the recon-

struction process. On a square lattice, �crankshaft�
moves are in most cases rejected due to the strong EV

interactions while corner moves have somewhat higher

acceptance rate [5]. Therefore, for the reconstruction
process we have used an MC procedure based on 50%

corner moves (that provide local conformational

changes) and 50% �pivot� moves that have been shown

to effectively induce global changes [30].

The calculations are based on the sample size n – the

number of reconstructed SAWs and nfuture, which is re-

lated to the number of future MC steps per bond applied

during the reconstruction process as defined below. First
we note that the first bond of the chain is not

reconstructed; its probability is always 1/4. The number

of MC steps, nMC, for bond k is scaled as nMC =

(N � k + 1)nfuture, meaning that the maximal number

of future MC steps is applied for the reconstruction of

the second bond (to which corresponds the largest fu-

ture segment of N � 1 bonds), while the last bond (N)

is allotted the minimal number of MC steps. Because
each simulation at step k always starts from a straight

chain it is important to let the future SAW equilibrate,

otherwise pHS (Eq. (8)) would (on average) be too high;

therefore, 300 MC steps per future bond are used for

equilibration. As discussed earlier, the larger is nfuture
the better (i.e., smaller) is SA (Eq. (10)), the larger is

SB (Eq. (11)) and the smaller is the fluctuation, rA
(Eq. (6)). To demonstrate this effect, the results for each
chain length are presented in Table 1 for nfuture = 500,

5000, and 50000, where the corresponding sample size,

n, is decreased, which results in approximately the same

computer time for each calculation. We present results

obtained with the scanning method [27] and with series

expansion [S/kB = (lncN)/N], where cN � lN[a1N
11/32 +

a2 N�21/32 + b1N
�37/32 + (�1)Nd1N

�3/2 + (�1)N d2N
�2],

a1 = 1.1771(2), a2 = 0.554(2), b1 = �0.19(2), d1 = �0.19(2),
d2 = 0.034(2), and l = 2.6381585(10) (the error of the

last digit appears in parenthesis) [28]. Also, using the

present MC procedure, we have carried out TI simula-

tions starting from an ideal chain (with known entropy

of kB[ln4 + (N � 1)ln3]) and integrating S by a gradual

increase of the EV interaction (e.g., see [31]). These re-

sults are presented in the table as well. We shall consider

the TI and series results as correct.
The table supports the above expectations. Thus, for

all chain lengths, as nfuture is increased from 500 to

50000, the fluctuation decreases, SA decreases and re-

mains an upper bound, and SB increases remaining a

lower bound. On the other hand, for N 6 249, SM the

average of SA and SB is constant for the three nfuture
values and for N = 399 and 599 SM is the same for

nfuture = 5000 and 50000. In all these cases SM is equal,
within the error bars, to the TI and series results, and for

N � 599 also to the scanning results, which demon-
strates that for these cases (i.e., for good enough approx-

imations) the absolute values of SA and SB deviate

equally from the correct results. For each N, SD and

SM are equal within the statistical errors. We suspect

that the scanning result for N = 599 underestimates the

correct value due to the bias (toward the compact
SAWs) introduced by the scanning procedure, which

has not been removed completely by importance sam-

pling. Also, the series expansion and TI results are equal

within the error bars except for N = 599. Overall the

HSMC statistical errors are small (0.002–0.005%); how-

ever, it should be noted that much more computer time

has been invested in the simulations of the longer chains.

An inherent inefficiency of HSMC lies in the need to
carry out N � 1 simulations for an N-bond SAW. Still,

performance can be improved by changing the scaling

function discussed above, which controls the extent of

simulation applied to each bond in the reconstruction

process. However, the most significant factor affecting

efficiency is the simulation method used. Thus, our pre-

liminary simulations based on corner moves alone have

converged extremely slowly, and adding the pivot moves
improved performance dramatically. In three dimen-

sions, where the EV effect is weaker, one can add crank-

shaft moves (and other moves, see [5]) that are expected

to increase efficiency further. Also, a chain with attrac-

tive interactions (a homopolymer or a heteropolymer

consisting of monomers with different interactions) un-

like SAWs would span (at low T) only a limited part

of conformational space; to obtain the corresponding
local F, the future chains should be limited to this re-

gion, which can be achieved only by local MC moves

[26]. Moreover, in this work we have studied straight

chains that are the easiest to reconstruct, where in prac-

tical applications non-straight SAWs will be treated. For

such chains one can envisage situations where the pres-

ent MC procedure will not be ergodic (at least for spe-

cific bonds) due to geometrical constraints imposed by
the frozen past, thus leading to incorrect probabilities

qHS (Eq. (8)). One remedy for this problem would be

to replace for these bonds the present dynamic MC pro-

cedure by a suitable step-by-step construction (growth)

procedure [15–18] (these procedures can provide S, but

unlike HSMC, not from a given trajectory). For SAWs

the most efficient is the scanning method, followed by

TI, where HSMC is the least efficient. For example,
one reconstruction of a 399-bond SAW for nfuture =

50000 requires �4.2 h CPU leading to S = 0.9757 (6).

The value of TI in the table required �100 h CPU.

However, the applicability of HSMC to both random

coil SAWs and peptides that fluctuate locally [26] dem-

onstrates applicability to all ranges of flexibility, versa-

tility that is not shared by other methods. Thus, the

harmonic and quasi-harmonic techniques [32,33] are
limited to handle (at least approximately) local fluctua-

tions (for which HS has failed), LS is very inefficient



Table 1

HSMC results for the entropy of N-bond SAWs obtained from n reconstructions of a straight chain

nfuture SA/kB rA SB/kB SM/kB SD/kB n

N = 49, SSCAN = 1.000904(4)

500 1.00583 (1) 0.01424 (2) 0.99602 (5) 1.00093 (3) 1.00091 (3) 1250000

5000 1.00140 (1) 0.00448 (2) 1.00042 (3) 1.00091 (2) 1.00091 (2) 125000

50000 1.00095 (1) 0.00142 (2) 1.00085 (3) 1.00090 (2) 1.00090 (2) 12500

STI 1.000897 (3) 1.000897 (3) 1.000897 (3) 1.000897 (3)

Sseries 1.000899 (4) 1.000899 (4) 1.000899 (4) 1.000899 (4)

N = 99, SSCAN = 0.987726(5)

500 0.99294 (2) 0.01030 (3) 0.9826 (1) 0.98775 (5) 0.98773 (5) 250000

5000 0.98826 (2) 0.00324 (3) 0.98722 (5) 0.98774 (3) 0.98774 (3) 25000

50000 0.98777 (2) 0.00101 (3) 0.98767 (4) 0.98772 (2) 0.98772 (3) 2500

STI 0.987727 (3) 0.987727 (3) 0.987727 (3) 0.987727 (3)

Sseries 0.987730 (3) 0.987730 (3) 0.987730 (3) 0.987730 (3)

N = 149, SSCAN = 0.982740(3)

500 0.98806 (2) 0.00852 (3) 0.9774 (2) 0.9827 (1) 0.9827 (1) 250000

5000 0.98329 (2) 0.00267 (3) 0.98222 (5) 0.98276 (3) 0.98276 (3) 25000

50000 0.98281 (2) 0.00085 (3) 0.98270 (4) 0.98275 (2) 0.98275 (3) 2500

STI 0.982742 (3) 0.982742 (3) 0.982742 (3) 0.982742 (3)

Sseries 0.982740 (2) 0.982740 (2) 0.982740 (2) 0.982740 (2)

N = 249, SSCAN = 0.97836(2)

500 0.98391 (3) 0.00669 (4) 0.9727 (3) 0.9783 (2) 0.9783 (2) 63000

5000 0.97889 (2) 0.00208 (4) 0.97782 (8) 0.97836 (4) 0.97836 (5) 9100

50000 0.97840 (2) 0.00066 (4) 0.97829 (5) 0.97835 (3) 0.97835 (3) 930

STI 0.978358 (4) 0.978358 (4) 0.978358 (4) 0.978358 (4)

Sseries 0.978360 (1) 0.978360 (1) 0.978360 (1) 0.978360 (1)

N = 399, SSCAN = 0.97567(4)

500 0.98138 (6) 0.00540 (5) 0.9710 (5) 0.9762 (3) 0.9759 (3) 9500

5000 0.97625 (4) 0.00170 (5) 0.9751 (1) 0.97567 (5) 0.97567 (5) 2000

50000 0.97568 (4) 0.00053 (5) 0.97557 (7) 0.97563 (4) 0.97563 (5) 225

STI 0.975655 (8) 0.975655 (8) 0.975655 (8) 0.975655 (8)

Sseries 0.975652(1) 0.975652 (1) 0.975652 (1) 0.975652 (1)

N = 599, SSCAN = 0.97395(5)

500 0.98003 (8) 0.00445 (7) 0.9706 (8) 0.9753 (4) 0.9748 (5) 3000

5000 0.97466 (7) 0.00139 (7) 0.9736 (2) 0.9741 (1) 0.9741 (1) 450

50000 0.97413 (5) 0.00036 (7) 0.9741 (1) 0.97409 (6) 0.97409 (5) 45

STI 0.97404 (1) 0.97404 (1) 0.97404 (1) 0.97404 (1)

Sseries 0.974025(1) 0.974025(1) 0.974025(1) 0.974025(1)

SA (Eq. (10)) and SB (Eq. (11)) are upper and lower bounds, respectively, SM (Eq. (12)) is their average, and SD (Eq. (13)) is an exact entropy

functional. rA (Eq. (6)) is the fluctuation and nfuture is related to the number of MC steps per bond (see text). STI, Sscan, and Sseries were obtained by

thermodynamic integration, the scanning method [27], and a series expansion formula (see text), respectively. The statistical error is defined by

parentheses: 1.00(3) = 1.00 ± 0.03.
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for SAWs, and calculating the absolute S (and F) of local

fluctuations of peptides by TI is a standing problem. The

practical application of HSMC to a wide range of lattice

models (e.g., with attractions or any set of boundary

conditions) is straightforward but requires selecting an

optimal simulation method for each case, as discussed

earlier. An interesting test case is a model of multiple
SAWs enclosed in a �box�, studied previously by the

scanning and HS methods [34], where chains are added

successively to an initially empty box. However, with HS

only the partial future of a reconstructed chain is consid-

ered, whereas HSMC can take into account the entire

future, including that of the reconstructed chain and

the positions and conformations of the as yet unrecon-

structed chains.
In summary, calculation of S is a central (notori-

ously difficult) problem in computer simulation and

HSMC with its unique features constitutes a new tool

for obtaining S independent of other methods. With

HSMC all interactions are considered, and its accu-

racy depends only on the amount of MC sampling.

Furthermore, the accuracy analysis of the results
(SM and SD) is inherent in the method, by verifying

the increase and decrease of the rigorous upper and

lower bounds, SB and SA, and the decrease of rA,
as the approximation improves. Finally, HSMC is of

general applicability and unlike most methods, enables

one to extract the absolute entropy from a given sam-

ple, where only a small number of SAWs (and even a

single chain) need to be reconstructed; this is impor-



R.P. White et al. / Chemical Physics Letters 410 (2005) 430–435 435

ARTICLE IN PRESS
tant for studying relaxation processes, such as protein

folding.
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