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The hypothetical scannin@iS) method is a general approach for calculating dbsoluteentropy

S and free energyF by analyzing Boltzmann samples obtained by Monte Carlo or molecular
dynamics techniques. With HS applied to a fluid, each configuratdéthe sample is reconstructed

by gradually placing the molecules in their positions asing transition probabilitie€T Pg. At each

step of the process the system is divided into two parts, the already treated moltwafgmst”),

which are fixed, and the as yet unspecifietbbile) “future” molecules. Obtaining the TP exactly
requires calculating partition functions over all positions of the future molecules in the presence of
the frozen past, thus it is customary to invoke various approximations to best represent these
guantities. In a recent publicatigfProc. Natl. Acad. Sci. USA01, 9235(2004] we developed a
version of HS calledcompleteHSMC, where each TP is calculated from an MC simulation
involving all of the future moleculegthe complete future); the method was applied very
successfully to Lennard-Jones systefiiguid argon and a box of TIP3P water molecules. In its
basic implementation the method provides lower and upper bounds fehere the latter can be
evaluated only for relatively small systems. Here we introduce a new expression for an upper bound,
which can be evaluated for larger systems. We also propose a new exact expressSiandorerify

its effectiveness. These free energy functionals lead to significantly improved ac¢asaayplied

to the liquid systems aboyevhich is comparable to our thermodynamic integration results. We
formalize and discuss theoretical aspects of HSMC that have not been addressed in previous studies.
Additionally, several functionals are developed and shown to provide the free energy through the
analysis of a single configuration. @004 American Institute of Physics.

[DOI: 10.1063/1.1814355

I. INTRODUCTION hairpin states of a peptiflend only when the absolute en-
tropy of one state is known, that of the other can be obtained.
While Tl is a robust approactsee Refs. 1-4, 8, 9 and ref-
erences cited thereinfor proteins, such integration is fea-

The free energy is required, for example, in determining thesible only if the structural variance between the two states is
relative populations of protein structures. However, calculaY€"y Small; otherwise, the integration path can become pro-

tion of these quantities for a complex system such as a per5‘|_ibitively lengthy and complex. Therefore, it is important to
tide or a protein in water by computer simulation is an ex-develop methods that provide® at least approximately, en-
tremely difficult problem’:™* SandF are related through the abling one to calculate the absolufg, and F, from two
definiton F=E—-TS, whereT is the absolute temperature samples of the states andn; in this caseAF ., ,=F,—F

and E is the average energy. Calculation Bfusing any can be calculated even feignificantly differenstates since
simulation technique is fairly straightforward, wheg is  the integration process is avoided.

“written” on system configuration in terms of microscopic Meirovitch has proposed a unique approach for calculat-
interactions(e.g., Lennard-Jones inBteractions of argadn 4 the absolute entropy, where two related approximate
the other hand, calculatiry~ —In Py) or F requires knowl- techniques, the local states metffbd®and the hypothetical
edge of thevalue of the Boltzmann probability?;”. This scanningHS) method® 7 have been developed and applied

sampling probability is not provided directly by the com- . .
monly useddynamicaltechniques, Metropolis Monte Carlo to magnetic systems, polymers, and peptides. Our long-term

(MC),5 and molecular dynamids’ In most cases calculation goal_ls to be able to calculate the at_)sqlute free e_nergy pf_ a
of F is based on reversible thermodynamic integratioh peptide or a surface loop of a protein immersed in explicit
techniques which provide the difference in the free energywater. Therefore, in recent studies, as a first step, the HS
AF . ., between two statem andn (e.g., the helical and method has been extended to liquid argon in two different

approximations, one called grand canonical Ref. 8§ and

9 .

dAuthor to whom correspondence should be addressed. Electronic mai}".he other Monte Carlo HEHSMC).” While very good results
hagaim@pitt.edu

The absoluteentropyS and the Helmholtz free enerdy
are fundamental quantities in statistical mechanic§ &sa
measure of order anB is the correct criterion of stability.
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were obtained, in some cases better accuracy would bgrackets[Eq. (4)] leads to a constant-kgT InZ for any
needed. An additional issue is that the methods are implg-1721This means that thexactfree energy can be obtained

mented with boundary conditions that are different from
those used to generate the analyzed sarttyfgcally peri-
odic boundary conditions This inconsistency, along with

from asinglestructurei if P2 is known. Moreover, whilé
is an extensive variable, its zero fluctuation property holds
for any number of atom8$l. This important property is not

the way the TPs are calculated in general, makes these met§hared by the entropy and the energy—their fluctuations in-

ods inconvenient to apply to inhomogeneous system, such agease as- N2, and therefore it is difficult to estimate them
a peptide in water. Therefore, recently we have developegccurately for a large system.

HSMC further to a method callecbmpleteHSMC that does

In practice, however, evaluation &* in simulations

not have the above inconsistency, and its accuracy increas@gll always be approximate. In particular, with the HS

indefinitely with increasing MC sampling. The method was

method, approximate probabilitiea’> are determined, and

applied® to argon systems of different size, and to a systemhereby give rise to approximate entropy and free energy

of 64 TIP3P water moleculé$,and in a related paper it was
also extended to peptidé$.

In this paper complete HSMC is further developed and
its accuracy is enhanced significantly as applied to the same

argon systems and TIP3P water studied in Ref. 18. Where

functionals,S* and FA,

SP=— kBEi PBInpHS (5)

in its basic implementation the method leads to a lower

bound of the free energyn upper bound fo®), in this paper
we develop an efficient way to calculate an upper bound fo

F as well. We also study the efficiency of a new expression
for the correct Fand demonstrate that the free energy can be'

obtained from asingle structure, an important feature that

ultimately would make our approach convenient to treat pep
tides in explicit water. In the following section we describe
the complete HSMC method as applied to liquids, followed
by the presentation of the results in Sec. Ill. As only the
“complete” variant of HSMC is studied in the present work,

for brevity, it will simply be referred to as HSMC.

Il. THEORY AND IMPLEMENTATION
A. Free energy and its fluctuation

We start by defining the free energy and discussing som

of its properties. For simplicity we consider a discrete system

of configurations,i, with energyE;. The Boltzmann prob-

ability PP is

_exd —E /kgT]
Z

wherekg is the Boltzmann constant, is the absolute tem-

perature, and is the partition function. UsingPiB, the en-
semble average energ) is given by

B
i

.Y

<E>=Ei PEE, . ()

The entropyS and free energy can also be formally ex-
pressed as ensemble averages,

S=<S)=—k52i PEIn PP )
and

F=(F>=Ei PEE;+kgTINPE]1=(E)-TS (4)
An extremely important property of this representatiori-of

(but not other representationis that its variance vanishes,
o?(F)=0; indeed, substituting the expression R’ﬁ‘ in the

FA=2 PPLE +ksTINPIS|=(E)- TS, ©®)

r
herei runs over the entire ensemble. Using Jensen’s in-
equality,S* can be shown rigorously to be an upper botind
for the correct entropy (see also the Appendixthus FAis

a lower bound ofF. PiHS is generally a function of a set of
parameters or running conditions, denoted dye.g., see
Refs. 8 and § which effectively determine its accuracy, the
better the approximation the smallerS8, and the larger is
FA. The dependence of these functionésd others intro-
duced belowon the chosen approximatianis fundamental,
and at times we will writeS"(a) and FA(«) explicitly.

It is important to note that the quantitf ™>=[E;
+kgTInP™] in Eq. (6) is not the same for ali, meaning
that the fluctuationg, in FA is not zero. This fluctuation,
which is defined by
1/2
op=

> PPLFA-F?

1/2

)

> PEIFA—E—kgTInPS)?
I

is however expected to decrease as the approximation im-
proves, meaning that for very good approximation?ﬁf,

the free energy can be very accurately determined by aver-
aging FI*® over just a handful of configuration®r even a
single ong. The HSMC method can provide this accuracy,
and very good values for the free energy have been obtained
from a small number of configurations.

B. Upper bounds for the free energy

One can define another approximate free energy func-
tional denoted=8,1°

FB=>) PP E +kgT InP!S].

®

According to the free energy minimum principfe FB=F
[Eq. (4)]. Thus,FB is an upper bound which approaches the
correct free energf when PM'S— P [Eq. (1)]. It is neces-
sary to rewrite Eq.(8) such thatF® can be estimated by
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importance sampling from @oltzmanr sample of configu- tion. It is noted that the applicability of this method is de-
rations generated witlP? (rather thanP!'). Applying the  pendent on th¢form of the HS implementation. The HSMC
identities =;PM'S=1 and PP/(ex—E /kgTl/2)=PP/P?=1,  method of the present work is particularly well suited to the
one obtains required assumptions, and reasons for this are discussed in
Br HS Hs Sec. IIM and in the Appendix.
_ZiPi[Pexp(Ei/kgT)(Ei+ kgT In Pi™) ] ) We begin by rewriting Eq(9) as
=iPPLP exp(E; /ksT)] '

=iPP exd kg TI[F/*™]

In practice,F® is estimated as the ratio of simple arithmetic = S pB FFS/ T
averages, which are accumulated for each of the quantities in P exid FksT]
the brackets in Eq(9). It should be noted, however, that the where we have useB!™=[E;+kgT In P/'S]. Equation(13)
statistical reliability of this estimatiofunlike the estimation emphasizes aexplicit dependence oF® on the variable,
of F*) decreases sharply with increasing system size, berHS, a quantity that is directly related to the averagé,
cause the overlap between the probability distributi®ffs [Eq. (6)], and the fluctuationg, [Eq. (7)]. Let us now as-
andP'® decreases exponentiallyee discussion in Ref. 13 sume that when configurationsare sampled from the Bolt-

Another way to estimaté® is by using a “reversed- zmann distribution(i.e., with P?), their correspondingr}*s
Schmidt procedure;®*® which enables one to extract from values occur with a Gaussian probability. That is, the result-
the givenunbiasedsample of sizen generated withP{® an  ing F'S values are described by the Gaussian distribution,
effectively smallethiasedsample generated wiﬂH}*S. Thus,

FB

B

(13

the configurations of the unbiased sample are treated con- Hs\ 1 e A2 2
secutively. If a configuration was accepted to the biased PR =p(F)= PRra, exfl— (F'=F5)%2aa)"],
sample, the next configuratignwould be accepted with a (14)

transition probabilityA;; , L :
ton p Y which is thus determined solely by the two parameters,

Ajj=min{1,exd (E;— E;)/kgTIP}*/P*S}. (100  (the meamando, (the standard deviationNow, rather than

Equation(10) is a generalized MC procedure, which satisfies>Umming over the configurationsvith their weightspy’, as

. HS
the detailed balance condition and is carried out with randon{? Ed- (13, we can sumlintegratg over all values off;
numbers. The acceptance r&erovides a measure for the weighted withp(F;™). The numerator in Eq13) becomes

effective sizef the accepted biased sample,
> PPexd F{' ke TI[F{*]

R=Naccepf N 1Y i
wheren,ecepiiS the number of accepted configurations. The 1
effectiveness of this procedure is again limited by the over- =~ f (exdF'IkgTI[F']
lap of the distributionsP? andPS, and we will in fact only V2moa

report FB results as calculated with E¢9). We will still, X ex — (F' — FA)22(o ) 2]dF’
however, apply the reversed-Schmidt procedure to the same

sample of results, and report the acceptance Ratehich is [on? 1 oa\? FA
a useful gauge of the reliability of thie® value (calculated | kgT TR ex 2\ kgT " ksT)’ @9
with either methodl Thus, the closer iR to 1 the better is . .
the overlap betweeR? and P/*S, the closer is® to F, and and the denominator is
the smaller is the sample size required to estinftereli-
ably. > PPexF¥kgT]
With values for bothF” and FB, their averagefF™, '
defined by 1 ,
FM=(FA+FB)/2, (12 N maAJ (ex F'/keT1)
often becomes a better approximation than either of them xexf — (F'—F*22(ox)2]dF’
individually. This is provided that their deviations frof(in
magnitude are approximately equal, and that the statistical 1( oA )2+ FA 16
error in FB is not too large. Typically, several improving B 2 kB_T kB_T ' (16

approximations foF”, FB, andF™ are calculated as a func-
tion of @, and their convergence enables one to determine th
correct free energy with high accuracy.

he ratio of the results in Eqg15) and (16), is the new
Gaussiah estimation ofF®, denotedFg,

FB_(UA)Z

= +FA, 1
C. A Gaussian estimation of F58 G kT a7

We now describe an efficient method to estimate the free We see thaFE depends only off* and on the fluctua-
energy upper bound;® [Egs.(8) and(9)], which can effec- tion o”. This is an advantage Gfg because these quantities
tively overcome the statistical limitations associated with theare typically easier to estimate th&d from Eq.(9) or (10).
standard evaluations %% described in the preceding sec- Provided that the Boltzmann samplel%ﬁ’S values(for some
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parameter set) is approximate]y Gaussian, th@g% EB. Salsburget al?® (N is the number of particles and is the
Our results show that this Gaussian distribution is a veryolume) This choice, however, leads to an extremely ineffi-
good approximation as there is excellent agreemerﬁg)f cient estimation at room temperature and works Only at very

with FB for cases wher&® is well converged. high T where the Boltzmann probability is represented more
Similar to Eq.(12) we define the average, faithfully by 1™,
5 We note additionally that in Eq16) 1/Z was calculated
FM= (FA+FB)2=FA+ } (on) (18) with the Gaussian distribution, which is expected to improve
¢ ¢ 2 kgT '’ the convergence over that of EQ.9); the free energy calcu-

. . . M
where again, several approximations ff, F&, and an lated from this Gaussian expression foZ is equal toF g

can be calculated as a function ef and their convergence (Eq. (18)].
leads to highly accurate free energy determination.

D. Exact expression for the free energy E. The correlation between o4 and F*
The denominator oF B in Egs.(9) and (13) defines an The zero fluctuation property of the correct free energy
exact expression for the partition function, can be exploited directly through the extrapolation of a series
of FA values, which are derived from a set of improving
lziz PE(PHS/PB) approximations. Here the fluctuations are expected to de-
z z5 ' crease systematically as the approximation improves, and we
write FA asF”(a) [ando, asoa(«@)], thus emphasizing the
=> PE(P"SexdE;/kgT]) effect of the general parameter setwhich controls the level
! of approximation and therefore the quality of the free energy
estimate. It has been suggestetb express the correlation
=, PPexdFMkgT], (199  betweenF”(a) ando () by the approximate function
I
FA(a)=F®®+C[oa(a)]", (22)

which is based or2;PE(PH'S/PP)=1; therefore, Eq(19)
will hold for any approximationx as long as th@!'S(«) are whereF®® is the extrapolated value of the free energy, and

normalized, and aexactexpression for the correct free en- C andyare parameters to be optimized by best-fitting results
ergy F, denoted byFP, is for FA(a) and oa(a) for different approximationsr. One

can also calculate the tangent to the functiorrafapes),

s PBexpFSksT)[.  (20) which is the Iovyest _value for the quctuatipn obtained from

i the best approximationy,.. If EQ. (22) defines a concave-
down function and this trend d&¥”(o ) is assumed to hold
for better(uncalculateylapproximations of”, the intersec-
tion of the tangent with the vertical axjgr,=0] defines an
upper bound folF, which is denotedF“P. This upper bound,
along with the best value for the lower bourfefy( apes), can
be used to define the averag&?,

FM2=[FA(apes) + FP]/2. (23

o_ 1
F kBTInZ kgT In

Note that while thgBoltzmann average of the approxi-
mate F/'S values gives a bound for the free energy
(2;PBF'S=F"), the average of eXp/'“/kT] leads to the
free energy exactly. In fact, using EQO), it is easy to verify
thatF” defines a lower bound.e., FA<F), where we must
have

ex;{FA/kBT]zexp[E PiB(FiHS/kBT)}
! F. Statistical mechanics of the liquid models

< 2 PiB eXF[F:—lS/kBT] —exdFlkgT], (21 In t_his paper we study liquid models for argon and water._
i Argon is represented by the standard Lennard-Jones potential

: . . : . ith the parameters/kg=119.8 K ando=3.405 A; water is
in accordance with Jensen’s inequality, which states thal" B . ' :
F((X))=(F(x)) for a convex functg)nf(g). (See also the represented by the three-site TIP3P poteritialle consider

Appendix) N atoms (molecule$ enclosed in a box of volumey, at

In practice, the efficiency of estimatifgby F° depends temperatureT [(NVT) ensemblé The configurational par-

on the fluctuation of this statistical average, which is deter—tItlon function is given by

mined by the fluctuation dof 'S exponentiated. That is, if the
fluctuations in F'S are small, then the values for
exdFH'S/ksT] do not vary drastically, and the averages for
FP (andFB) can be estimated reliably. Stilas forF®), the

Zsz exd — E(xN)/kgT]dxN, (24)

whereE(xM) is the potential energy" is the set of Carte-
. . . . N .
direct calculation of throughFP will not be as statistically sian and orientationdfor watej coordinates, andx” is the

reliable as the corresponding calculation for the lower bounf;g{g;pO_Ir_'g':?n?e'ﬁ?;?igﬂldggcéi?:;% aggt n:\fee}sfr?ery;oﬁ??:?:_
estimate,FA. Obviously, asF™—F (i.e., P>~ PB) all ' 9 g

H N 2 N H
fluctuations become zero and can be obtained from a tional spaceV/™ for argon, and (&°V) ™ for water. Using the

. . g - N
single configuration. It should be pointed out that EP) Boltzmann configurational probability densipx™),
with P*S=1/V/N was suggested for a lattice gas long ago by  p(xN)=exg —E(x")/kgT]/Zy, (25)
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the total entropySis while the past volume is excluded, and for (k), the target
cell k is excluded as well. It is stressed that while the previ-
S=Sg+S.= s,G—ka pOXMIN[(87%)NVNp(xN) JdxN, ously treated\, atoms are fixed, their interactions with the
future atoms are included in the calculation 2f (k) and
where S is the entropy of the ideal gas at the same tem-  The sum zZ*(k)+Z (k) covers all possible future
perature and density, arg is the excess entropy. The factor atomic arrangements at steptherefore if celk is vacant the
(87N would be replaced by unity for argon. The corre- TR is, p(k,—)=Z"(K)/[Z"(k)+Z(k)]. If on the other

sponding excess Helmholtz free energy is hand, cellk is occupied, then the future partition function,
Z"(k,x") is calculated where one of the future atoms is fixed
Fe=f p(XNM(EXN)+kgT In[(87H)NVNp(xN) ])dxN at the positiorx’, the exact locatiorinside the target cek)
at which an atom was exhibited in configuratioZ * (k,x")
=(E)-TS,, (27)  thus covers a portion of the total configurational volume

spanned by " (k). TP, for an occupied cell is the probabil-
ity density, Z*(k,x")/{[Z"(k)+Z~(k)]}. After cell k has
been treated it becomes a past cell, empty or occupied ac-
cording to configuration. For a periodic system, this means
that the images of cek are also becoming part of the fixed
Zn past and will thus affect the TPs of tHe’—k remaining
Ac=—kgTIn Nig )’ (28)  future cells. In this HS procedure all thé TPs are calcu-
7 lated exactlyand their product leadsxactlyto p(xN) [Eq.
whereo is the van der Waals parameter from the Lennard{25)]. However, in practice scanning the entire conforma-

where (E) is the average potential energy. For water we
present results foF.; however, to be consistent with the
literature, for argon theonfigurational free energy ARef.

24) is provided,

Jones potential. tional space in order to systematically calculate the exact
future partition functions is unfeasibl€The computational
G. The ideal HS method time grows exponentially with the number of particles con-

sidered, and the number of the grid points used to approxi-
this paper by first describing aideal (or “perfect”) HS mate the continuumTherefore we refer to this procedure as

method, as applied to aNVT argon system with periodic the ideal HS method.
boundary conditions simulated by MC; the extension for wa-
ter is straightforward. It should first be pointed out that eacr"_|
argon configuration, in principle, could have been generated"
by an alternativeexactbuild-up procedure, where argon at- Because the ideal HS method is unfeasible, we have de-
oms are added step-by-step to the initially empty volumeveloped an HSMC approach, where instead of calculating
(box) using transition probabilitiegTP9. With the HS  exact future partition functions, the future atoms are simu-
method the given MC sample is assumed to have been gefated at each step by MC and the TPs are obtained from the
erated by this exact build-up procedure, and thus each comumber of counts of atoms in the target cell. Initially, ap-
figuration is reconstructed with this procedure, the TPs ar@roximate boundary conditions were used and only part of
calculated, and their product leadsatx) and to the abso- the future was treatetiMore recently, howevel the HSMC
lute entropy~In p(x"). method was developed so as to include the entire future at
In practice, the box is divided inth®=L XL XL cubic  each HS stefi.e., all the future atoms are simulated by MC
cells with a maximal size that still guarantees that no moreand the periodic boundary conditions are taken into account
than one center of a spherical argon molecule occupies a celis well.(It was termed “complete HSMC” in Ref. 18, but is
(See Refs. 25—-27 for other examples of cell approaches fgrresently referred to as simply HSMThis method studied
fluid free energie$.During the analysis of configuration ~ here is capable, in principle, of yielding theeal HS result
the cells are visited orderly line-by-line, layer-by-layer start-(described abovyen the limit of infinite future MC sampling.
ing from one corner of the box until all of them have beenFor finite sampling, HSMC provides approximatidR&® for
treated. The calculation of THor the target celk [which  the Boltzmann probabilit)PiB, which improve as the sam-
could be a vacant—) or a populated cell+)] is outlined as  pling is increased, thus giving rise to narrowing rigorous
follows. At stepk of the processN, atoms(i.e., occupied bounds forF and S (e.g., S*, FA, and F®) as discussed
cells andk—1— N vacant cells have already been treated earlier.
i.e., their TPs have been calculated. ThEgeatoms are now HSMC is conducted as follows. At stépthe previously
positioned at their coordinates of configuraticand together definedN, atoms, as well as their associated images, are held
with the already visited vacant cells they define (frezen  fixed in their assigned positiorig configurationi), while all
“past.” The L®— (k—1) as yet unvisited celléncluding tar-  the remainingN— N, future atoms are allowed to move. An
get cellk) define the “future volume.” To determine the TP MC trajectory is generated for thé— N, future atoms, and
of target cellk two future canonical partition functions are the TP is determined from atom counts in the target kell
calculatedZ~ (k) andZ* (k) for vacant and occupied céll  The simulation is performed under standard periodic rules,
respectively, by scanning all of the possible configurations ofvith the exception that regions inside previously defined
the remainingN— N, (future) atoms in the future volume, cells are excluded. Any trial move that would place a future

It is helpful to explain the HSMC method developed in

Transition probabilities of the HSMC method
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where M e IS the number of cube counts aMy, . is the
cube volume. For occupied target cells Fp,... Note,
however, that the probability density is assumed to be uni-
form over the cube volume. To increase the quality of the
results, we actually scalp,.. by an ensemble averaged
weighting factor(see beloy, which serves to measure the
probability density at the atom position more accurately.
The total product of TRover all L3 cells—a product of
N transition probability densitiep,.. and L3—N transition
probabilities for empty cells, gives rise to the estimate
p"S(xN) for the Boltzmann probability density(x"),

| exd —E(xV)/kgT]
! 7 .

l'k[ TP.=N!pHS(xN)~N (32)

) Notice that the counting proceduféor the TR) does not
distinguish between labeled atoms, while in the integration
FIG. 1. A two-dimensional2D) illustration of the main simulation box at |eading toZN all the labeled arrangements Contribute’ hence

the kth step of the HSMC reconstruction. The 2D “volume” is divided into N _ - - .
cells, wherek—1 of them have already been considered in previous stepso(x ) [Eas.(25~(27)] is a labeled probability density, and

(starting from the upper left cormerThesek— 1 cells comprise the “past N! IS required in Eq(31).

volume” (the region above the heavy lineshich contains previously

treated fixed atoms that are denoted by full black circles defined by the van

der Waals radius. This region is excluded from the moveable future atomg |mplementation details and enhancements
(denoted by full gray circleswhich are thus simulated in the “future vol- of the method

ume” below the heavy lines, while in the presence of the fixed atoms. The

future atoms can visit the target céll(depicted by dotted lingsand their Several enhancements to the HSMC method have been

counFs_ in this ceI_I_Iead tolthe transition ‘probablllty of an empty cell or theimplemented. One of which is MC preferential
transition probability density of an occupied one. Note that for the case of an >8_31

occupied target cell, counts are actually accumulated for visitations to ‘,§ampling,. which imposes more frequent triall moves for
smaller regionV.e (See text, located inside the target cell but not shown atoms which are close to the target cell. In our implementa-

in the figure. tions the trial probability of each atom is proportional to
1/r?, wherer is the atom’s distance measured from the center
of the target cell. To keep the trial probability from becoming

atom into this previously assigned volume is rejected. A two-2Pitrarily large at smal, the weighting becomes flat fof
3 A% Additionally, it is beneficial to allow the

dimensional representation of the main simulation box iS€SS ;han? ol g
given in Fig. 1. It is evident that as this treatment proceed&UMmpPer of MC steps at each ceM) to decreaséon av-

the number of moveable future atoms decreases, and tf@9¢ as the number of future atoms decreates, with

fully mobile system at the beginning becomes gradua\'|yincreasingk). In particular, we aIIovy thanaximum(see be-
“frozen down” into the exact configuration low) number of steps to depend linearly on the number of

The transition probabilities are calculateéfom the future moleculesuntil there are fewer than 20, in which case
counts in the following way. We denote by, the total it is constant Furthermore, the total MC run length for any
number of attempted moves in the MC simulation for anyparticular target cell is also based on its estimated sampling
reconstruction stef. M . is the number of counts for which difficulty, which is determined from preliminary cube/cell
an atom was observed in the target ¢elThe probability for counts accumulated during the equilibration period. In other

the target cell to be occupigdnoccupiedby an atom is thus words, more steps are given to cells that would be expected
to have low transition probabilities. If, for example, very few

iven b
d Y cube counts(occupied cell are accumulated during the
M cell equilibration period, then the maximum number of steps is
Pocc= Mo, and Pynoee= 1= Poce- (29 performed in the production run. Otherwise, for cases of

higher preliminary counts, the run length is shortecaled
For the case where the target dels vacant in configuration down). There are many ways to carry out this weighting. We
i, the transition probability is TR=P .. FOr an occupied use several empirical settingdiscrete categori¢shrough
target cell, one has to calculate the probability dengify. ~ which the number of steps is reduced from the maximum
for an atom to be located at the precise locatimside cell number(by up to a factor of about 5 or 10We further
K) at which it is found in configuration For this we define a suggest treating occupied and unoccupied cells separately. As
much smaller voluménside cellk), termed a “cube,” which  the unoccupied cells tend to be far easier to count reliably,
is centered at the exact atom positi@mconfiguration). We  significantly fewer steps should be allotted to them on aver-
count the visitations of atoms within this cube during the MCage. Additional discussion of the above topics is available in
simulation and thus estimate the probability density as Ref. 9.

Another important modification is the ensemble aver-
o -p =<Mcube>( 1 e):(Mcube)
oce 4 M cell chb Mtot

1 e) (30) aged weighting factomentioned above which gives more
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE I. The systems studied and the standard MC and HSMC running condifiiis.the number of
molecules,T is the temperature, arid is the average potential energy. Other parameters are explained in the
text.

N Density T (K) —EP Box length(A)  Cell length(A)  Cube lengthA)
Argon
32 0.846 96.53 6.063) 11.4293 2.2859 0.3810
64 0.846 96.53 5.9843) 14.4 2.40 0.342%9
125 0.846 96.53 5.9883) 18.0 2.25 0.3750
Water
64 1.000 298.15 9.9872) 12.418 2.0697 0.29570.689%

®Density for argon is given as the reduced denpity=No>/V, whereV is the volume andr is the Lennard-
Jones distance parameter. Density for water is given in 3/cm

bThe potential energf for argon is given in reduced units*/N=E/eN, wheree is the Lennard-Jones energy
parameter. For water, the potential energy is in kcal/mol. The statistical(srdf) appears in parentheses; for
example, 5.98443)=5.9844+0.0003.

“We have used a convention such thaibe length=(cell length/J, whereJ is an integer =6, 7, and 6 for
N=32, 64, and 125, respectivejytherefore, the cube lengths for the three argon systems are slightly different.
However, this convention is unnecessary, and all three systems could have been run at any one of these cube
lengths yielding negligible differences in performance compared to the current results.

dCube length used for the case of “one-stage sampling,” where additionally, coungsfaalso require the
molecular orientation to be in an angular volume of 0.042%see text These Cartesian and angular values
were also used in “two-stage sampling” to define the smaller cube.

®Length of the larger cube (cubeused in two-stage sampling, where the correspondargen angular volume

was 0.17142.

during the HSMC simulatior{for an occupied cellin the  made smaller, but a cube that is too small will lead to statis-
following way. Every time an atom is found in the cube tically unreliable cube counts. Thus, cube sizes at either ex-
(defined abovg we calculate the resultindnypothetical po-  treme (too large or too smallwill give rise to higher fluc-
tential energy for this atom to be repositioneditwhich is  tuations and lowetpoore) values ofFA.

the exact locatior(inside the cubeat which an atom was The following points should be considered when choos-
exhibited in configuration being analyzed; this is done keeping V.we- The probability density is most sensitive to repul-
ing all other atoms fixed. We denote this energy assive van der Waals overlaps; therefowg,,. should be small
E(x";xN"1) and compare it tE(xN), the actual “undis- on a scale of the molecular size. Still, a considerable range of
placed” potential energy of the systefas it was found in  V,,.values can give acceptable performance. For example,
the HSMC simulation where it is recognized that the only definingV,qy=(4/3)7(o/2)® as the molecular size of argon,
difference between these two energies is due to the painse have found that values o¥ . ,e/Vqw ranging from
involving the atom to be displaced. The ensemble averagbx 10 ° to 1x 10~ 2 work reasonably well. Though we have
(exp{—[EX";xN" 1) —E(xM)/kg T} cuneiS computed over all  not done a systematic optimization, the results reported in
casedduring the HSMC simulationwhere an atom is found this work were generated using. e/ Vygw vValues of about
(anywhere in the cube. The transition probability density 2x 10 3 (see Table)l We also used about the same value of

[compare with Eq(30)] is then calculated as Veube! Vvaw for TIP3P water ¥ ywe, in this context, would
actually be denoted by, for water, see Sec. Il K below
_(Meubel [ 1 Here, one can adopt the L d- lue of
Pocc= , pt the Lennard-Joneslue of oxygen or
Miot /\ Veub the first peak in the oxygen-oxygen radial distribution func-

X (exp{—[E(X XN "D —EOM) /K THewve: (32 tion as an approximate molecular diameter. Similar consid-

) . erations can be used for other molecules.
Typical values for the ensemble averdgebrackets are on

the order of 1. Nevertheless, these scaled corrections im-
prove the overall results significantly. A detailed derivationk modifications for water

of the weighting factor is given in the Appendix of Ref. 9. . i i
The implementation described above for argon can be

straightforwardly adapted for water. The only fundamental
difference is that the molecular orientations must also be
taken into account. We take the oxygen as the “center” of
Provided that the ensemble averaged weighting factor ithe molecule and thus determiRg.. andP ,,q.cas described
used, implementations with different values g, will earlier. For the transition probability densities, however, we
always yield the correct free enerdgyin the limit of very = must alter the meaning &f ;e in Eq. (30). Thus, we define
long runs. However, for finite length runs the quality of the Vype=VeaVang: WhereVe,, as before is a small Cartesian
free energy bound” is affected by the size 0 .. Gen-  cube andV,,q is a small orientational regiofi.e., a small
erally, the ensemble averaged weighting fadishich is a  portion of the total 8% molecular angular volume These
function of cube sizewill converge more readily a¥.,.is  Cartesian and angular regions are centered on the exact po-

J. The choice of Ve
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sition and orientation of the actual water molecule in con-ditional probability for a molecule to be located in the cube
figuration i. Thus in the MC simulation, dfuture) water given that it is in cube P(cubdcub&)=MQZ) /M2,
molecule will be located in this “molecular cube” whenever The quantity of interestP, ., [Eq. (33)] can therefore be
its oxygen is located within the specified Cartesian cdbg;  calculated from this two-stage process BS$ = Pcube
and, simultaneously, the molecular orientation lies in thex P(cubecubé) and the transition probability densityc.
specified region of angular volumé,,,. With these counts, would thus be approximated by dividing this quantity by
the transition probability density,.. can be computed using V... In practice the weighting factor is used, apg. is
Eq. (30) where the above “molecular cub&/,,.is used. As  thus calculatedcompare to Eq(32)] as

for argon, one can show that the ensemble averaged weight-

ing factor can be used to increase the accuracy of the prob- _ Mét)bé ng)be ( 1 E)

ability density. Thus in practicen,.. is computed according Pocc™ MY M@ )\ Veu

to Eqg. (32), where againVqy,e=VcaVang: @and molecules

located in the(moleculaj cube are hypothetically reposi- X(exp{—[E(xX' N H —E(XM) 1/KeT}euver  (34)

tioned atx’, which now means the exact Cartesian positionyhere the ensemble average is accumulédeding stage 2
and orientation at which the molecule was found in the con-gyer gl cases where the molecule is found in tamalle)

figuration being analyzed. Though the efficiency of thegpe.
method does depend on the treatment\fy, we have The logic behind this procedure is that when the cube
found, as for the case &f.,;, that acceptable performance counting probabilitiesP,,. become very small, it can be

can be obtained over a reasonably wide range of specificgnore reliable to alternatively measure the two probabilities
tions. V4= 0.01257“ in this work is approximately 0.2% of Pube and P(cubécubg), which are far larger thai®

cubes
the total molecular angular volumes8 (see Table)l even if they are measured with shorter simulations. We have
applied two-stage samplindor watep to all occupied cells
L. Two-stage sampling (no modifications are made for the empty cellin our

implementations, stage 1 and stage 2 are run to the same

One of the key challenges in the implementation of the,, , 1ot of MC stepsl\(lgzzM%)). The volumes defining the

HSMC method for water is the statistical reliability of the (smalle) cube are as given in the preceding sectire
countz .Th's 'S sefer;] by con5|der|_ngdthat a|v:te[]mole(<aﬂe they are the same as is used in the one-stage implementa-
':jreate in fn:ostdo the commtzjn rlgrll m_oq)el S thrée More ion ) For cubé, we have taken Cartesian and angular vol-
egrees of freedom compared (o t € simpie ator_nlc argon; Wemes that are roughly 13 and 14 times larger than their cor-
have found that cube count probabilitiéer occupied cells responding cube values, respectiveletter choices are

are typ;]cally]/c two or three O'rI?er:S 0'; magrrl]itude smr?ller f?)rlikely to exist as we have not systematically optimized these
Wg:_er :{ an for argon. We will thus Ic_>c.u|s ere on the prob-51yes) Two-stage sampling has indeed provided a substan-
ability for cube counts, denoted explicitly as tial increase in efficiency when it is applied to watéfor
[ Mgbe example, comparing cases in whickl&+M) is equiva-
Peube= Mo )’ (33 lent to M, for one-stage.Argon on the other hand, which

(on averagg exhibits much higher values fdP e, Shows

where a “cube count,” for the case of water, means being inyg significant improvement for the running conditions that
the molecular cubédescribed abovyewhere both Cartesian e tried.

and orientational tolerances are satisfied.

In order to overcome statistical problems associated with
very smallP . values, it can be advantageous to break theVl. Stochastic probabilities and the bounds
counting process into two stages. For example, given that or Sand F

direct (one-stage determination would be allotted a total The theory developed in Secs. Il A—II E is based on de-

simulation length oM, total steps, these resources could beygministic probabilities, while those defined by HSMC are
used for two simulations"stage 1" and “stage 2) of  gychastic bearing some noise. In the Appendix we rigor-

() @) (i @) (2)— i . .
lengths, M i andM g (i.e., Mg +Mgi=Miq). In these simu- oysly prove that all the theoretical conclusions of these sec-
lations we introduce a new volume region, CubEnis region  tions also apply to HSMC, in particula6” is an upper

of Cartesian andfor wateb angqlqr volume is larger than, bound,F” is a lower boundF® and F(B3 are upper bounds,
and completely contains, the origin@malley cube. andFP is exact.

In the first simulation, stage 1, the HSlMC implementa-  The nojse in the HSMC probabilities results from statis-
tion is unaltered except that now countd(}),, are deter- tical noise in the counts for the transition probabilities. It is
mined for the larger cubeand the corresponding probability actually fundamental in its effects on the free energy and
Peube is calculatedP e=M{") /ME) In the second simu-  entropy estimates. The shorter the HSMC simulaticnsall
lation, stage 2, a molecule is constrained to the region,’cubévl,y), the greater the noise in the probabilities, and as shown
(but is otherwise mobile This is done by rejecting any MC in the Appendix, this effect manifests itself in an average
move that would cause its coordinates to fall outside thesense by overestimating the entrofpe., S*) and underesti-
specified Cartesian or angular volume of cub€ounts, mating the free energyi.e., FA). We note further that the
M) are now recorded for this molecule to be in theeffect of stochastic probabilities, and subsequent noise in the
(smalley cube. With these counts one can calculate the conresultingF"S(=[E;+kgT In P%]) values, implies an appro-
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priateness for the Gaussian approximation Ff@r, a condi-
tion that would not necessarily be expected for general de-
terministic cases.

It should also be noted that it is possible to compute
lower and upper bounds to the free energy by repeated ap-
plication of the HSMC method to a single configuration. This
is unlike previous HS and LS applications where there would
be only one value foF{">=[E;+kgT In P™®]. The deriva-
tions for the “single configuration” analogs ¢", FB, and
FP are available in the Appendix and results are provided in
the following section for some selected argon configurations,
which support the theoretical predictions. We note that while
this single configuration approach can be applied directly for
the free energydue to its zero fluctuation propejtyit can-
not be used to compute the entropy through ensemble aver-
age forms related to Ed3). However, given that one can
obtain, for example, a lower free energy bouRfl with a

A J/eN

Bounds for the free energy
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FIG. 2. Free energy bounds as a function of HSMC run length for argon,

single configuration, an upper bound for the entropy is deN=232 atoms. The HSMC run length on the horizontal axis is giveM gs,

fined through the quantity(E)—F*)/T, using the average the average number of MC steps per cell. Shown are the free energy lower
. . . . . A . . . B R

energy which is commonly available from the simulation re_boundF (diamonds and solid lingsthe upper boundr® (open triangles

sults.

and dashed lingsand the Gaussian upper bouﬁ@ (solid triangles and

solid lineg. Free energies are given As/eN, whereA. is the configura-
tional free energy defined in E(R9), € is the standard Lennard-Jones en-
ergy parameter, and is the number of atoms.

Ill. RESULTS AND DISCUSSION

The argon systems are comprised of 32, 64, and 125
atoms atT=96.53K and reduced densityy* =No>/V

tionally, the number of MC steps at each cél,,;, was not

=0.846. In all cases the interactions were spherically trunconstant but varied with the number of future molecules and
cated at a distance equal to half the box length, and thether criteria outlined in Sec. Ill. The resultgables II, 1V,
long-range energy(tail) corrections were added to the andV and Figs. 2 and)&re therefore given as a function of
results®® The water system consists of 64 TIP3P waterthe averagenumber of MC steps per cell, denotéthy,. In

moleculed® at density 1.000 g/cthand temperatureT

the case of two-stage sampling, we take the number of MC

=298.15K. Here molecule-based spherical truncation wasteps(for any occupied cellas the total of the two simula-

applied (again, at half the box lengthbut no long-range

tions (stageg and therefore the reported,; includes all

correction was added. The details of the MC and HSMCcomputational investmer¢all MC steps takep thus allow-
running conditions are summarized in Table 1. Also provideding straightforward comparison with the one-stage proce-
in this table are the average potential energies for each sysure.[Here, wheneveM,, is the samefor one- and two-
tem, which were determined from the Monte Carlo simula-stage, each simulation in the two-stage procedure is run half

tions described below. For brevity we do not report entropy
values directly; however, these energies along with the free
energies reported in following tables make the corresponding
entropies available.

The sample configurationgvhich are analyzed in the
HSMC procedurgewere generated using the usual Metropo-
lis MC simulation methodin the NV T ensemble under stan-
dard periodic boundary conditions. Thus, at each MC step an
atom(moleculg is selected at random and a random transla-
tional trial move is generated within a small Cartesian cube
around the atom position. For water, the molecule is also
given a small(randon) rotation about a randomly chosen
axis. Cartesian and rotational step sizes were chosen to give
~40%-50% acceptance. Configurations were recorded at
long enough intervals to give an uncorrelated sample. The
MC simulations of the future molecules during the HS re-
construction process are very similar to the standard MC
simulations. The exceptionavhich were discussed abgve
are: the system is only partially mobile, the moveable future
atoms(molecule$ are excluded from the previously treated

A /eN

-4.04

-4.07 1

-4.10 4

4134

-4.16

0

50 100 150
Run Length (MC Steps per Cell /10%)
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FIG. 3. Free energy bounds as a function of HSMC run length for argon,
N=125 atoms. The HSMC run length on the horizontal axis is given as

re_gions, and ato”(m0|ecgle$ are S_eleCted preferentially for_ M., the average number of MC steps per cell. For details, see the caption
trial moves based on their proximity to the target cell. Addi-of Fig. 2.
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TABLE Il. HSMC results for argon. Free energy values are giverAgkeN, where A, is the configurational free enerd¥q. (28)], € is the standard
Lennard-Jones energy parameter, ahig the number of atom#* [Eq. (6)] is a lower bound of the free energy ang [Eq. (7)] is its fluctuation.F® [Egs.

(8 and(9)] is an upper bound ané [Eq. (17)] is its corresponding Gaussian approximatib. [Eq. (12)] andF¥ [Eq. (18)] are the averages & with

FB andFE, respectivelyFP [Eq. (20)] is the direct estimate for the free eneris the acceptance rate for the reversed-Schmidt proc¢eigré11)] and

Rg is the corresponding Gaussian reqske text M is the average number of MC steps per celis the number of configurations analyzétle sample

size), where a single HSMC reconstruction was performed on each configuration. Results obtained by thermodynamic integration are denoted as TI. The
statistical error appears in parenthesis; for example, 41168.108+0.001.FA and o, are reported here g=er moleculequantities; however, Eq17) as

written for FE requires these quantities to be for the systsma whole[This follows, for example, from Eq9), which requires the system'’s probability, as

a whole] Thus the values given here must be multipliedNbpefore using Eqs(17) and (18) for FS andFY , respectively.

Y —FA oA -FB -F8 —FM -F¢ —FP R Rg n

N=32
360 000 4.143(2) 0.05335) 4.0404) 4.030 (2) 4.0924) 4.087 (2) 4093(3) 013 0.13 2205
720 000 4.126(8) 0.03695) 4.0734) 4.072 (2) 4.1004) 4.099 (1) 4100(3) 031 0.30 2001
1440 000 4.115@) 0.02845) 4.0813) 4.084 (1) 4.0983) 4.100 (1) 4.099(2) 042 043 1410
3600000 4.110() 0.01715) 4.0982) 4.09868) 4.1042) 4.10446) 4.104(1) 063 0.63 1128
7 200 000 4.107@h 0.011713) 4.1021) 4.10245) 4.1051) 4.10514) 4.105(1) 074 074 725
14 400 000 4.107@ 0.00923) 4.1041) 4.10425) 4.1041) 4.10594) 410585 0.83 0.80 602
il 4.105 (1) 4.1051) 4.105 (1) 4.1051) 4.105 (1) 4.105 (1)

N=64
720 000 4.132(1) 0.03305) 4.0644) 4.046 (3) 4.0984) 4.089 (2) 4096(3) 011 0.06 581
1440 000 4.117(1) 0.02245) 4.0794) 4.077 (2) 4.0984) 4.097 (1) 4.098(3) 019 021 495
2880 000 4.108B) 0.01675) 4.0873) 4.086 (2) 4.0983) 4.097 (1) 4097 (2 038 035 459
7200 000 4.1046) 0.01055) 4.0962) 4.096 (1) 4.1002) 4.10027) 4100(1) 053 055 371
14 400 000 4.1025) 0.00783) 4.0972) 4.09766) 4.10q1) 4.10015) 4.10008) 0.60 0.66 244
28 800 000 4.1019) 0.00535) 4.0991) 4.09976) 4.1001) 4.10085) 4.10078) 0.76 0.77 174
il 4.100 (2) 4.1001) 4.100 (1) 4.1001) 4.100 (1) 4.100 (1)

N=125
1000 000 4.1391) 0.02485) 4.08 (2) 4.045 (4) 411 (2) 4.092 (2) 410 (1) 0.8 0.007 362
2000 000 4.124(1) 0.01756) 4.06 (2) 4.077 (4) 4.09 (2) 4.100 (2) 409 (1) 006 005 179
4000 000 4.116(1) 0.011G9) 4.10 (1) 4.097 (3) 411 (1) 4.107 (2) 4108(7) 031 023 125
10 000 000 4.1126) 0.00835) 4.10 (1) 4.102 (1) 4.10 () 4.107Q9) 4105(6) 036 0.34 170
20000 000 4.1108) 0.006G5) 4.10 (1) 4.105 (1) 411 (1) 4.10748) 4107 (4 0.43 0.46 99
il 4.108 (1) 4.1081) 4.108 (1) 4.1081) 4.108 (1) 4.108 (1)
as long as the corresponding one-stage simuldtidypi-  obtained by TI, which are considered to be exact. All values

cally, a single HSMC reconstruction is performed on each correspond to the configurational free eneryy, defined in
sample configuration, and the overall results are determinefq. (28). The free energy estimates are given as a function of
by averaging over a total sample size rofconfigurations.  the average number of MC steps per chll,,, which effec-
[See also the description following EGA8) in the Appen- tively defines the level of approximatiofw); the larger is

dix.] An exception is_ the case_in Ta_ble IV,. wh_ere the resultsy, ot the better the approximation. The expected trends are
are averages for a single configuration which is reconstructeg|ear|y shown for the lower bound? [Eq. (6)], where the

many times. values steadily increasémprove), and approach conver-
H Iw§,27,32—36 — ! phukel
Severgl_‘lsétudles of the fre.e energy of a gence adVl is increased. FON =64, the largesM leads
and watet’~*3 have been published, most of them for sys- . .
to a result for the free energy which deviates from the TI

tems that differ in sizeas well as other quel_lng dEta”S. value by less than 0.05%The statistical error in the TI
from the present ones. Therefore, for an objective evaluatlopesult is ~0.0296) The worst approximation, based on 40
of our results, we also calculated the free energies for our e ) PP T .
particular systems of argon and water using TI. The LennardiMes SmalleM still leads to a free energy estimate that is
Jones(LJ) interactions (for both argon and watgrwere only ~0.8% lower than the Tl value. Similar trendsFft are

scaled using the shifted scaling potential of Zachagize * exhibited forN=232 and 125, with the best values deviating
The Coulombic interactiongof wate) were also distance- DY only 0.06% and 0.05%, respectively.

shifted in a similar way; this circumvents possible charge ~ AlSO prQV'dfd in Table II are values farx [Eq. (7)], the
overlap problems, and thus all interactiqihs and Coulom- ~ fluctuation inF™. As expected, the free energy fluctuations
bic) could be “grown in” simultaneously. A more detailed decrease systematically as the approximation impréves

description of the Tl calculations is available in Ref. 8. o tends toward zero a8 approaches the correct vajue
The smallestr, values, 0.0092, 0.0053, and 0.0060, for

=32, 64, and 125, respectively are smaller by a factor of
Results for the three argon systemis<32, 64, and 126 19.1, 19.4, and 12.5 than their energy counterparts, 0.175,

are provided in Table II. Here the free energy estim@®s  0.103, and 0.075. In general, these expected trends in the

FB, F2, FM, F¥, andFP are reported along with results fluctuations reflect the reliability of the various free energy

A. Results for argon
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estimates. Moreovetr, is used directly in the calculation of the averages of the lower boutd* with the upper bounds
Fg (andFy) and in the free energy extrapolatiofiscussed  FB and F& respectively. In fact, for each argon systésach
below). N), the best three approximations lead to value$ ¥fand
We now discuss the results for the free energy uppefF that match the TI value within the statistical uncertainty.
boundF® [Egs.(8), (9), and(13)]. For the argon systems of ForN=32 and 64F™ in all cases provides a better value for
N=232 and 64, these resul{$able Il) are considered to be the free energy than the Correspondﬁ*@or EB at the same
excellent. SFatisticaI reliability is eyidenced by the hiBh .. This is not always true foN=125 due to the higher
values(also in Table ) for the Schmidt acceptance rdfq.  giagistical error irFB. However, given the comparatively ro-
(_11)] in conjunction with the relatively large number of con- p <t behavior oF8, it follows thatFY provides the most
f|gur€_;lt|ons(n) in the sa_mples. Indeed, the upper bO.UE&_X accurate free energy valuésompared td~*, FB, or F(B;) at
consistently decreasésnproves as the approximation im- all N and for aIII\th.
proves My increasej giving a smooth trend approaching Also impressive are the results for the direct free energy

B i-
the correct free energy. THe" values for the best approxi estimate FP [Eq. (20)]. As for FM andF , the three largest
mations are in agreement with the Tl results within the sta— _ b , ,
tot for eachN all give F~ values which agree with the Tl

tistical error. The error values are, however, somewhat highe'}/I o X : )
than those for the lower bourfef. results within the estimated uncertainty. And again at any
It is important to note that for the casbs=32 and 64, given My, FP is typically closer to the correct free energy
FB is in excellent agreement with the new Gaussian uppethan the corresponding upper and lower bound estimates. As
bound estimatef2 [Eq. (17)]. Differences between the two iS the case foiF®, the convergence of° requires good
values are smaller than the statistical uncertainties in afpverlap of the probability distribution8{'> andPf, but to a
cases except for the smallebt,, for each system. This lesser extent. ThE® values reach their asymptotic val(es
agreement is also shown in Fig. 2 whéig, F(BB, andFA are  nis increasefimore readily than doeg®, and thus the sta-
given as a function of run lengtil ,, for N=32; the differ-  tistical errors are lower. These errors are still higher than for
ence in the trend lines fd¥® andF2 is barely visible. These F¢ . however.
upper bounds along with the lower bouRd show a clear It is important to point out, that of all the free energy
tightening as the approximation improves. AgreemerE®f  estimates discusse®” converges by far the fastesie.,
and its Gaussian estima[% is further enforced by noting “converging” in the statistical sense, where it approaches its
the similarity ofR to the corresponding quantitiRs (also in  asymptotic lower bound value with increasimg for any
Table Il). Rg is the hypothetical Schmidt acceptance rate,given M,,). For this reason, it is stressed that one should
which is calculated from a Gaussian sample with avefftye always consider in any investigation, the desired accuracy.
and o,. The (hypothetical samples are created using a (That is, how close one needs to be to the exact free energy
Gaussian random number generator and thus are far larggalue for that particular scenarjolf, for example, the de-
than the actual sample sizes analyzey] therefore the val-  sjred tolerance were to be within 0.5% of the correct free
ues can be considered to be exguttually, more converged energy, it is seen that nearly all of tifé* values in Table I
thanR) within the Gaussian approximation. We note finally are within this range. This implies that in many scenarios,
the}t theBappropr|at§r1ess _of the Gau_sslan assgmptlodes- any of thesé=* values can be considered to be adequate, and
riving F¢) was verified directly by histogramming t@ therefore “correct.” Furthermore, the$&® values would not
values, and indeed we have found these results to fit well 15046 by much if the sample sizes were drastically reduced.
a Gaussian distribution within the statlsélc_al noise. As an extreme example, one could treat a single configura-
For the argon system oN=125, F® is in all cases . -~ — . .
higher than the correct free energy. Therefore, in this sensg,on OFN=64 atM=7200000. Given ther, value, this
configuration would provide the free energy within a small

the values are consistent with upper bound estimation. How-

— — 0H — 0, -
ever, the statistical uncertainties are high, and there is n{)ange[ 4.115-0.35%9,—4.094+0.15%) around the cor

longer a monotone decreasing trend as the approximatiorﬁaCt value—4.100. Or, taking the average of just five con-

improves. As discussed in the theory section, the determindidurations, this rangiv_vould narrow by a factor of 2 and thus
tion of F® can become problematic as the system becomeRroduce a value foF™ in the range[ —4.109;-4.100. The
larger, and this, coupled with smaller sample sizésmakes other free energy estimates are obviously useful When greater
FB less statistically reliable foN=125 than it is forN ~ &ccuracy is desired, and furthermore they can provide sup-
=32 and 64.FZ, on the other hand, is not as affected by POrting information (e.g., helping to bracket the correct
these limitations, as the quantitif4 ando, (upon which it~ valu® when investigating new systems for which the free
dependsare more readily estimated. Indeed, the results foenergy is unknownk¢ is expected to be especially useful in
Fg are very encouraging; they are much better tR&n(for this role, even when the sample sizes are relatively small.
N=125), which is clearly shown in Fig. 3Note hong As discussed previouslyr, must tend toward zero as
traces a smooth curve through the more jagged trends iR” approaches the correct value. Thus, usingRfie@nd o,
FB.) Here again, we also see a consistent tightening of theesults in Table II, extrapolated values for the correct free
upper QZE) and lower F”) bounds as the approximation energy were determined by fitting to the functional form
improves. given in Eqg.(22). The results are provided in Table Ill. Data
Some of the best estimates for the free energy in Table Itets were formed using combinations of 3, 4, 5, or
are provided by [Eq. (12)] andFY¥ [Eq. (18)], which are 6 (o4,F”) points(all for the saméN); any set which resulted
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TABLE lIl. Averages of HSMC extrapolation results for argon. Free energy TABLE IV. HSMC results for argon based on single configuratioNs,
values are given a&./eN, whereA, is the configurational free energq. =64. Free energy values are given/A&g eN, whereA, is the configura-
(28)], € is the Lennard-Jones energy parameter, Bin the number of  tional free energyEq. (28)], € is the standard Lennard-Jones energy param-
atoms. The functioF*(o ) is approximated from multiple fitédata sets eter, andN is the number of atom$:* is a lower bound of the free energy
created from various combinations ofr{,F”) points (approximationys [Eqg. (A6), analogous to Eq(6)] and o, [defined similar to Eq(7)] is its
taken from Table Il, all for the samis; the results given are averages over fluctuation.F& [Eq. (A10), analogous to Eq$8) and(9)] is an upper bound

all of the data setd=®"[Eq. (22)] is the extrapolated free enerdy:’isan  andF™ is the average oF* and FB. M, is the average number of MC
upper bound defined by the tangent of the fit at the best approximation, angteps per cell. The letters A, B, C, D, and E serve to identify a particular
FM? is the average of " with the corresponding=" value [Eq. (23)]. configuration, and “Replications” is the number of times an HSMC result
Results obtained by thermodynamic integration are denoted as Tl. The stgvas determinedi.e., the number of reconstruction®r that configuration.
tistical error is defined in the caption of Table II. The corresponding HSMC results for a giviety, from Table Il are denoted

as HSMC. Results obtained by thermodynamic integration are denoted as

N —Fw —FM2 —Fo® F(T1) Data sets | The statistical error is defined in the caption of Table II.

32 4.1048(33) 4.1064(1) 4.1063(2) 4.105(1) 29 ] - A B =Y L

64 4.0996(3 4.1010(1) 4.1009(2) 4.100(1) o8 Configuration F aa F F Replications
125 4.10367) 4.1075(6) 4.1065(10) 4.108(1) 10 Mo=720 000

4.130(2) 0.0312(7) 4.068(7) 4.099(7) 211
4.141(2) 0.0285(7) 4.091(7) 4.116(7) 219
4.135(2) 0.0320(7) 4.080(7) 4.108(7) 216

L » _ 4.128(2) 0.0317(7) 4.073(7) 4.100(7) 219
in a fit that gave positive curvature was discarded. The quan- 4.128(1) 0.0278(5) 4.053(6) 4.091(6) 394

tities determined from a data fit are the extrapolated free Hsmc 4.13(1)  0.0330(5) 4.064(4) 4.098(4)
energy,F®®[Eq. (22)], the tangential upper bounB/P (dis- Tl 4.100(1) 4.100(1) 4.100(1)
cussed aboyeand the averagéM? [Eq.(23)]. The results in
Table Il are the averages of these quantities over all of the
data setgover all fitg. For all N, the FP are consistent with
upper bound estimation; the values fd=32 and 64 are
very close to the exact valuEM? and F& agree with TI 2106 001306 409114 40960 e
within the estimated uncertainty fdwzw(?zdf and 125(and HSMC 410858 0.0167(5 4.087(3) 4.098(3)
nearly so forN=32), where for allN, F*' was somewhat Tl 4.100(1) 4.100(1) 4.100(1)
more precise thaf . The precision for all quantities was
worse forN=125 than for 32 and 64, presumably due to the
smaller number of data sets. ) ) )
Provided in Table IV are results obtained from repeatecf!! cases it defines an upper bound, the value of which can
HSMC analysis of thsameconfiguration(discussed in Sec. Vary from one configuration to another. Again, the average
M): given are(the single configuration analogues & and for the five configurations is S|m|I_ar tq the corresponding
its fluctuationos, F&, andFM. Here, five argon configura- _result from the standard HSMC estlmatlon. We also note that
tions (N=64) were investigated, where they are identifiedin almost every case the results fol! prow_de the best free
using the letters A—E. The selected configurations have erfnergy valugcompared to the correspondifig andF®). In
ergies which are close to the average energy, therefore thégct, for M,=2880000, the=" values agree with the Tl
all can be considered “typicaL” The number of trials per- value for all Configurations within the statistical Uncertainty,
formed on each of the configurations is also given in theand thus show equivalent performance compared to the stan-
table denoted as “Replications,” which is analogous to thedard HSMCFM estimation.
sample sizen of Table II. Two approximations were studied
corresponding tM ;=720 000 and 2 880 000. B. Results for water
It is seen in Table IV that for every configurati¢and at

mooOw>

M =2 880 000
4.106(1) 0.0168(6) 4.088(4) 4.097(4) 184
4.110(1) 0.0159(6) 4.092(4) 4.101(4) 201
4.112(1) 0.0151(6) 4.097(4) 4.104(4) 172
4.111(1) 0.0145(6) 4.092(4) 4.102(4) 192

moOwm>

A ) ) . HSMC results are presented for water in Table V, which
both M) the F” are consistent with lower bound estima- ;,nains estimates for both the one- and two-stage sampling
tion. However, each individual configuration can give rise toprocedures(see Sec. | The various free energy estimates
its own distinctF* value for a givenM ;. This implies that (and other quantitiospresented are for the most part the
certain configurationgsuch as configuration )Ewill con-  same as for Table I1. Here all free energies correspond to the
verge to the correct free energy with less computational inaycess free energy, defined in Eq(27). Viewing the one-
vestment. In other words, results for configuration E can beyng two-stage results separately, the expected trends in the
said to define a better approximation for the savhg:. Itis  |ower boundF*, are again clearly shown. The values Fst
important to recognize that these configuration specific Va“steadily improve(increasg as M, is increased and the cor-
abilities are still relatively small compared to differences Ob'responding fluctuations decrease. The best valueFfyr
served wherM, is changed. Indeed, the results for the five —5,627 kcal/mol, is 0.5% lower than the Tl val¢e5.599,
configurations forM ;=2 880000 are far more similar to and hereo,, 0.024(kcal/mol), is 7.8 times smaller than the
each other than they are to any of the results Kb,  energy fluctuation, 0.187.
=720000. This is true as well for the fluctuationg . We The difference in the performance of the one- and two-
note further that the average Bf* for the five configurations stage approaches is striking. The two-stage variant appears to
is equivalent to the standard HSME result for bothM,,,.  be about three times more efficient, where for example, the
Similar statements can be made Ft, where again for  (two-stageé F” value atM,=5312000 is higherbette)
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TABLE V. HSMC results for 64 TIP3P water molecules. Free energy values are given as the excess freéegfErgy27)], in units of kcal/mol.FA [Eq.

(6)] is a lower bound of the free energy ang [Eq. (7)] is its fluctuation.F® [Egs.(8) and(9)] is an upper bound anﬂg [Eq. (17)] is its corresponding
Gaussian approximatiofty [Eq. (18)] is the average of* andFE. FP [Eq. (20)] is the direct estimate for the free ener&is the acceptance rate for the
reversed-Schmidt procedufEq. (11)] and Rg is the corresponding Gaussian resilty, is the average number of MC steps per celis the number of
configurations analyzetthe sample size where a single HSMC reconstruction was performed on each configuration. Results obtained by thermodynamic
integration are denoted as TI. The statistical error is defined in the caption of Table Il. See also the caption of Table Il for details regardingtét®mcomp

of FE.

Mot —FA oa —-FB -F2 —FY —FP R Rs n
One-stage
5312000 5.90(2) 0.1028) 5.67 48 (2 5.34 (9 5.70 0.08 <1077 48
13280 000 5.76(1) 0.0665) 5.63 5.29 (7) 5.53 (4) 5.66 0.08 <10°® 40
26 560 000 5.703) 0.0425) 5.64 5.51 (5 5.61 (2) 5.66 0.21 0.001 38
TI 5.5992) 5.5992) 5.599 (2) 5.5992) 5.599 (2)
Two-stage
5312000 5.736) 0.0645) 5.58 5.29 (7) 5.52 (4) 5.62 (4) 0.06 <10°°® 147
13280 000 5.67@) 0.0404) 5.61 5.51 (4) 5.59 (2) 5.63 (3 0.07 0.002 94
26 560 000 5.63@) 0.02713) 5.59 (3) 5.55518) 5.5959) 5.60715) 0.16 0.036 100
53120 000 5.62B) 0.0243) 5.57 (3) 5.56516) 5.5968) 5.59515) 0.16 0.067 87
Tl 5.5992) 5.5992) 5.599 (2) 5.5992) 5.599 (2)

@Though the values foE® are reasonably close to the correct free energy, the expected upper bound trends are not exhibited due to lack of convergence and
thus no statistical errors are given.

than the one-stage result st ;=13 280 000. Indeed, all of mation of the standarB® is further evidenced by the smal
the F* values for the two-stage approach are significantlyand Rg values for the Schmidt acceptance rate; the lower is
higher, given the sami;, and correspondingly, the, are R, the more configurations that are necessary. We note fur-
all lower. As discussed in the Theory section, the cube courtther that here, any differences betwdéeandRg are actually
probabilities for water can be very smétbompared to arggn  more an artifact of the relatively small sample sizesm-
because of the extra orientational allignment which must bgared to what would be requirgevhich are applied in the
observed. The two-stage approach avoids direct measurestimation of FB. Specifically, if R is to be very small, a
ment of these very small probabilities by, instead, invokingsmall sample will often result in estimates fBrwhich are
much larger conditional probabilities which are measured ustoo high because the reversed-Schmidt sampling scheme has
ing two (shortej simulations. The results in Table V clearly not equilibrated. Recalling thaR; comes from drawing a
show this to be advantageous. very large number ofGaussiahrandom numbers, it can be
While the (two-stage results forF” (for watep are very  considered to be more correct.
good, better accuracy can be achieved through the utilization Though related t&®, the direct estimaté® was shown
of the other free energy estimates. The results Ff@rare for argon to convergéo its asymptotic valuemore readily,
particularly helpful. The expected upper bound behavior isand the same is true here for water. The result$forare in
observed a& g consistently decreaséinproves approach-  fact quite good, where the best two approximations give
ing the correct free energy as the approximation improves—5.607 and—5.595 kcal/mol, thus deviating from the TI
Correspondingly, the results for the average estirfidfeare  value (—5.599 by only 0.1%. TheFP® values for all of the
excellent, where the best value give$.596 kcal/molcom-  two-stage approximations agree well with Tl, being signifi-
pared to—5.599 for Tl or—5.627 using=" alone. The best cantly closer than the corresponding values for the lower
three approximations for the two-stage approach all matchound,F”, or the upper boundsg. In general, the one-stage
the TI value within the statistical uncertainty. The one-stageapproximations are not good enough to obtain high quality
results have also been significantly augmented with th&® values from small sample sizes. Though the values are
Gaussian estimates, wheff¢! for the best two approxima- closer than the corresponding results Fot, and therefore
tions is far superior to using” alone, and the best of these can be considered as “useful information,” convergence is
approximations also agrees with Tl within the error. difficult to judge and larger sample sizes would be necessary.
The utility of FE is apparent when compared to the stan-
dard upper boun&8. In the two-stage results, th€® values .
successfully provide an upper bound estimate in most caseg; Efficiency of HSMC
however, the uncertainties are high and a monotone decreas- At this stage of development the HSMC method is still
ing (improving) trend is not observed ad is increased. significantly less efficient than TI. Using the example given
The one-stage results are worse due to poorer approximatigbove, reconstructing a single argon configuration Nof
[of p'S(xN) compared to two-stagealong with smaller =64 andM =7 200 000(which would yield the free energy
sample sizem. In general, far more samplingarger n) in a small rangd —4.115,-4.094] around the correct value
would be required to improve the results %, a condition ~ —4.100 requires 3.6 h CPU; the TI run for this system re-
which is obviously not necessary for its Gaussian approxiquired ~1/3 of this time. The TIP3P model of water, being
mation (Fg). The need for more configurations in the esti- more complex than the argon system, requires more sam-
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pling and significantly larger computer time for calculating We first point out that unlike the deterministic case, TP
the energy at each MC step. The reconstruction of a singlealculated at stef of configurationi is a random variable.
configuration aM ;=13 280 00Qwhich would give the cor- Thus, one can envisage carrying out many trial runs of length
rect free energy within about 1pfequires 24 h CPU, com- My, Which give rise to a distributiom(«; TP,) of the TR,
pared to~6 h for the TI run. However, the HSMC program values, wherep(a; TPy) is unique to the chosen run length
can still be optimized reducing the computer time signifi-and other HSMC running conditions, denoted collectively by
cantly. Current work, for example, involves the implementa-a. Clearly, increasingv,; will narrow the width of the dis-
tion of “multistage” counting approaches and advan¢ea-  tribution, and we assume that at very lafdg,, the correct
portancé sampling techniques, such as force bias fiC. TP would always be obtained. That is, FPTPE as Mg
Furthermore, to increase the general applicability of the—o, where TF is the exact Boltzmann TP for the building
method, we are currently replacing the future MC simula-stepk of i. In what follows, a discrete system is considered
tions by MD simulations, an implementation that requiresfor simplicity. (The applicability for continuum systems

changing the HSMC build-up procedure. should be apparentTherefore, any TRis simply given by
TP=M /My, with M being the number of times the state
IV. CONCLUSIONS of interest was observed in a trial simulation for skep

We now write formally the expectation value of TP
The HS method can be applied to fluids in different ap-which can be obtainedxactlyfrom n, trial simulations(j)
proximations, as shown in Refs. 8 and 9, and in an exacsf TP,, each of lengthiVl,;, wheren,q,;—,
manner, as has been demonstrated in Ref. 18 and in this N
paper. With Tl an ideal gas is integrated reversibly by gradu- <-|—pk>a:f (TP)p(a; TP)A(TP,)
ally changing the potential energy parameters to their final 0
values. The HSMC method is different: The absolute free

nre
energy is obtainedin principle, by reconstructing a single = lim LEPTPK } (A1)
configuration, i.e., placing its molecules gradually into their (A Niepj=1

positions using transition probabilities. Therefore, HSMC

constitutes a new research tool independent of Tl and relate-EIhe brgcket n'otatloma (Wh'.Ch will be qsed often hejyas
methods, which enables one to calcul&téy analyzing a subscripted withw to emphasize the particuldd,,; and other

givenMC or MD sample. HSMC is general and can be ap_HSMC conditions. It is important to show th&TPR,), is

plied to various systems such as, magnéattice) models, equal to TI%;

polymers, peptides, and proteins in vacuum and in explicit [ 1 Mrep

solvent; hence, the theory developed in this paper is of gen- (TPy),= lim n_Z TPkJ.

eral applicability as well. Recently, HSMC has been ex- Nrep—oeL " repI=1

tendgd to peptid.e@,a project that is .being continued. Ogr [ 1 e My

goal is to use this method to determine the relative stability = lim | — !

(i.e., the difference in the absolute free enely¥, ,=F, Nep—oeL Mrepi=1 Mot

—F,) of different statesr and m of peptides, surface loops, < Mrep

etc., solvated in explicit water, where the calculations are — EjlekJ R A2

based on two samples only without the need to resort to _n 'Tm NrepM tot ke (A2)
rep -

procedures which are dependent on complex integration
paths. The latter form is seen as a single simulation, which tends to

infinite length, and therefore must give EI'PIt is stressed
that the resul{TP,),=TFE is true for any choice of the
parametersg (e.g.,M ). However, other averages such as
This work was supported by NIH Grant No. RO1 (InTR), doin general depend oa.
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APPENDIX: PROPERTIES OF THE ENTROPY Furthermore, because the kTR(e independer(i.e., the out-
AND FREE ENERGY FUNCTIONALS BASED come for TR at k does not depend on the outcome for any
ON STOCHASTIC HSMC PROBABILITIES other TR at I), the expectation value d?; is equal to the

, _ _ Boltzmann probabilityP? ;
In the Theory section we have discussed the properties

(inequalitie$ of several entropy and free energy functionals _ _ _ B
depending on an approximate bdgterministicprobability <P‘>“_<1_k[ TP"> _l_k[ <Tpk>“_1_k[ TRe=PP. (A3)
distribution PiHS. Here we prove rigorously that these prop- “
erties also hold for these functionals defined with the sto-This result is again independent of the parameterset
chastic probabilities of HSMC. For compactness in notation, ~We now aim to show that the average free energy esti-
we will write P;, instead ofP™S, for the HSMC probabili- Mate obtained from repeated HSMC determinations for the
ties. The HS superscript on the corresponding free energ§@me configurationis a lower bound. The free energy esti-
estimate F*S(=E; + kg T In P)), will however be maintained matth_‘S from any single determinatioftrial j) is given by
here. Ffj‘s= Ei+kgT In P, whereE; is the energy of configuration
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i. The expectation value d?iHS (corresponding to repeated 5
HSMC determinations performed on the same configuration F~= EI Pi(Ei+kgTInP;)
i, and with the running conditions) is given by

a

lim {iﬁp Fi’ﬂ =(FI',=E+kgT(INP}),. :Z <Pi>aEi+kBTzi (PiInPi),

Nrep— Mrepj=1

(A4) —E+kgT (P;InP)),

Jensen’s inequalify states that ik is a random variable, and
f(x) is a concave function the(f(x))<f((x)); if f(x) is

convex the inequality is reversed. Applying this toPin >E+kBTEi PP InPP=F. (A9)
which is a concave function oP;, and using(P;),= P}
[Eqg. (A3)] we obtain In Eqg. (A9) we have used the following relations: because
(P)o= PiB, (P;)E; is the Boltzmann average of the en-
(InP),=<In((P;),)=InPE (A5)  ergyE. Also, P;InP; is a convex function oP;, therefore

using Jensen’s inequality we hay®; In P,),=(P;),In{P;),
=PPIn PP, which holds for all configurations thus we ob-
FA=(FFS) —E +KkeT(INP;),<E,+ksT INPE=F, tain FB=F. FE_‘, as defined for HSMC in Ec(A9),_ can be
(A6) eth|mated(_as in the deterministic F:a)sdqy sampling with
Py . Equation(A9) can thus be rewritten in the same form as
where F=E;+kgTIn PP is the correct free energy. Notice Eq. (9) [or Eq.(13)], where the numerator and the denomi-
that this relation holds foany i and not only for the typical nator are now expectation valu@sseraged over the stochas-
equilibrium configurations for the given ensemble. tic P;). We note further that it is these expectation values that
We now consider functionals which are defined over theare approximated with a Gaussian form in E¢E5) and
whole ensemble, and thus address stochastic variability of a{lL6). It is thus more clear that the Gaussian approximation is
the P;. S* for HSMC is now defined as the expectation feasible particularly for HSMC, where “noise” is imparted
value of the deterministic form fo8" in Eq. (5), and using in the FI*® by the stochastic probabilities.

Thus, definingF=F2(«) =(FS),, we prove

Eq. (A5), it is shown to be an upper bound; It is also possible to compute an upper bound to the free
energy by averaging over a single configuration. It follows

P={ —k E PBInP. from the development related to E@A9) that we can write

B4 11T . PPE; + kg T(P; In P,),=PPE,+ks TP In PE for any configura-

tion i. Therefore, usingP;),= PP, we can define the upper
— kS PXINP).=—ksS, PPINPP=S (A7) boundFr,
' ' ksT(P;InP;),
(Pi)a

which can be estimated from repeated HSMC probability

B— .
Similarly, F*, defined for HSMC as the average of E6)., is Fi=E+

a lower bound ofF;

=E;+kgTInPE=F, (A10)

A 5 determinations for the same configuration
F :<E. PilEi+kgTIn Pi]> In Eq. (19) we have defined an exact expression Zor
@ that enables a direct estimation of the free energy denoted
there asP [Eq. (20)]. We show thafFP is also well defined
=2 PR(E+keT(INP))=E-TS'<F.  (AB)  for HSMC as

S* and F* are averages based on not only the Boltzmann FP=kgTIn
distribution, but also on the distributiong(«;P;), for all
the P; generated with the HSMC method. In practice, the , _ 5B
sampling of these distributions is implicit. That is, a sampIeWhere’ usingPi) =Py for any a,
configurationi is drawn from the Boltzmann distribution B
(presumably using MC or MD and then asingle value for <§|: Pr(PiexflE /kBT])>
P; is drawn from p(«a;P;) (implicitly) by analyzing this
structure with the HSMC method. This process is repeated,
and the accumulatedsimple arithmetic averages of =2 PP((P).exE  kgT]) =2 P?<2)=2- (A12)
[—kgInP,] and[E;+kgT InP,] thus give estimates fo8" ' '
and FA, respectively. Asymptotically, these averages mustAdditionally, this identity implies a straightforward determi-
approachS"* and F” exactly, and because the distributions nation ofZ (and thereforé) for the case of repeated trials on
are well peaked about the averagend InP, estimation is the same configuration which is simply given by
expected to be efficient.

The free energy upper bout [Eq. (8)] is now defined 7= exf — BEi] (A13)
for the case of HSMC as (Pi)a

<2 PE(P, exp[Ei/kBT]>> } (AL1)

a
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