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Lower and upper bounds for the absolute free energy by the hypothetical
scanning Monte Carlo method: Application to liquid argon and water

Ronald P. White and Hagai Meirovitcha)

Center for Computational Biology and Bioinformatics and Department of Molecular Genetics &
Biochemistry, University of Pittsburgh School of Medicine, W1058 BST, Pittsburgh, Pennsylvania 15261

~Received 27 July 2004; accepted 16 September 2004!

The hypothetical scanning~HS! method is a general approach for calculating theabsoluteentropy
S and free energyF by analyzing Boltzmann samples obtained by Monte Carlo or molecular
dynamics techniques. With HS applied to a fluid, each configurationi of the sample is reconstructed
by gradually placing the molecules in their positions ati using transition probabilities~TPs!. At each
step of the process the system is divided into two parts, the already treated molecules~the ‘‘past’’!,
which are fixed, and the as yet unspecified~mobile! ‘‘future’’ molecules. Obtaining the TP exactly
requires calculating partition functions over all positions of the future molecules in the presence of
the frozen past, thus it is customary to invoke various approximations to best represent these
quantities. In a recent publication@Proc. Natl. Acad. Sci. USA101, 9235~2004!# we developed a
version of HS calledcompleteHSMC, where each TP is calculated from an MC simulation
involving all of the future molecules~the complete future!; the method was applied very
successfully to Lennard-Jones systems~liquid argon! and a box of TIP3P water molecules. In its
basic implementation the method provides lower and upper bounds forF, where the latter can be
evaluated only for relatively small systems. Here we introduce a new expression for an upper bound,
which can be evaluated for larger systems. We also propose a new exact expression forF and verify
its effectiveness. These free energy functionals lead to significantly improved accuracy~as applied
to the liquid systems above! which is comparable to our thermodynamic integration results. We
formalize and discuss theoretical aspects of HSMC that have not been addressed in previous studies.
Additionally, several functionals are developed and shown to provide the free energy through the
analysis of a single configuration. ©2004 American Institute of Physics.
@DOI: 10.1063/1.1814355#
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I. INTRODUCTION

TheabsoluteentropySand the Helmholtz free energyF
are fundamental quantities in statistical mechanics asS is a
measure of order andF is the correct criterion of stability
The free energy is required, for example, in determining
relative populations of protein structures. However, calcu
tion of these quantities for a complex system such as a p
tide or a protein in water by computer simulation is an e
tremely difficult problem.1–4 S andF are related through the
definition F5E2TS, whereT is the absolute temperatur
and E is the average energy. Calculation ofE using any
simulation technique is fairly straightforward, whereEi is
‘‘written’’ on system configurationi in terms of microscopic
interactions~e.g., Lennard-Jones interactions of argon!. On
the other hand, calculatingS(;2 ln Pi

B) or F requires knowl-
edge of thevalue of the Boltzmann probabilityPi

B . This
sampling probability is not provided directly by the com
monly useddynamicaltechniques, Metropolis Monte Carl
~MC!,5 and molecular dynamics.6,7 In most cases calculatio
of F is based on reversible thermodynamic integration~TI!
techniques which provide the difference in the free ene
DFm,n , between two statesm and n ~e.g., the helical and
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hairpin states of a peptide! and only when the absolute en
tropy of one state is known, that of the other can be obtain
While TI is a robust approach~see Refs. 1–4, 8, 9 and re
erences cited therein!, for proteins, such integration is fea
sible only if the structural variance between the two state
very small; otherwise, the integration path can become p
hibitively lengthy and complex. Therefore, it is important
develop methods that providePi

B at least approximately, en
abling one to calculate the absoluteFm and Fn from two
samples of the statesm andn; in this caseDFm,n5Fm2Fn

can be calculated even forsignificantly differentstates since
the integration process is avoided.

Meirovitch has proposed a unique approach for calcu
ing the absolute entropy, where two related approxim
techniques, the local states method10–14 and the hypothetica
scanning~HS! method15–17have been developed and applie
to magnetic systems, polymers, and peptides. Our long-t
goal is to be able to calculate the absolute free energy
peptide or a surface loop of a protein immersed in expl
water. Therefore, in recent studies, as a first step, the
method has been extended to liquid argon in two differ
approximations, one called grand canonical HS~Ref. 8! and
the other Monte Carlo HS~HSMC!.9 While very good resultsil:
9 © 2004 American Institute of Physics
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were obtained, in some cases better accuracy would
needed. An additional issue is that the methods are im
mented with boundary conditions that are different fro
those used to generate the analyzed sample~typically peri-
odic boundary conditions!. This inconsistency, along with
the way the TPs are calculated in general, makes these m
ods inconvenient to apply to inhomogeneous system, suc
a peptide in water. Therefore, recently we have develo
HSMC further to a method calledcompleteHSMC that does
not have the above inconsistency, and its accuracy incre
indefinitely with increasing MC sampling. The method w
applied18 to argon systems of different size, and to a syst
of 64 TIP3P water molecules,19 and in a related paper it wa
also extended to peptides.20

In this paper complete HSMC is further developed a
its accuracy is enhanced significantly as applied to the s
argon systems and TIP3P water studied in Ref. 18. Whe
in its basic implementation the method leads to a low
bound of the free energy~an upper bound forS!, in this paper
we develop an efficient way to calculate an upper bound
F as well. We also study the efficiency of a new express
for thecorrect Fand demonstrate that the free energy can
obtained from asingle structure, an important feature th
ultimately would make our approach convenient to treat p
tides in explicit water. In the following section we describ
the complete HSMC method as applied to liquids, follow
by the presentation of the results in Sec. III. As only t
‘‘complete’’ variant of HSMC is studied in the present wor
for brevity, it will simply be referred to as HSMC.

II. THEORY AND IMPLEMENTATION

A. Free energy and its fluctuation

We start by defining the free energy and discussing so
of its properties. For simplicity we consider a discrete syst
of configurations,i, with energyEi . The Boltzmann prob-
ability Pi

B is

Pi
B5

exp@2Ei /kBT#

Z
, ~1!

wherekB is the Boltzmann constant,T is the absolute tem
perature, andZ is the partition function. UsingPi

B , the en-
semble average energy^E& is given by

^E&5(
i

Pi
BEi . ~2!

The entropyS and free energyF can also be formally ex-
pressed as ensemble averages,

S5^S&52kB(
i

Pi
B ln Pi

B ~3!

and

F5^F&5(
i

Pi
B@Ei1kBT ln Pi

B#5^E&2TS. ~4!

An extremely important property of this representation oF
~but not other representations! is that its variance vanishes
s2(F)50; indeed, substituting the expression forPi

B in the
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP
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brackets@Eq. ~4!# leads to a constant,2kBT ln Z for any
i.17,21 This means that theexactfree energy can be obtaine
from a singlestructurei if Pi

B is known. Moreover, whileF
is an extensive variable, its zero fluctuation property ho
for any number of atomsN. This important property is no
shared by the entropy and the energy—their fluctuations
crease as;N1/2, and therefore it is difficult to estimate them
accurately for a large system.

In practice, however, evaluation ofPi
B in simulations

will always be approximate. In particular, with the H
method, approximate probabilitiesPi

HS are determined, and
thereby give rise to approximate entropy and free ene
functionals,SA andFA,

SA52kB(
i

Pi
B ln Pi

HS ~5!

and

FA5(
i

Pi
B@Ei1kBT ln Pi

HS#5^E&2TSA, ~6!

where i runs over the entire ensemble. Using Jensen’s
equality,SA can be shown rigorously to be an upper boun16

for the correct entropyS ~see also the Appendix!, thusFA is
a lower bound ofF. Pi

HS is generally a function of a set o
parameters or running conditions, denoted bya ~e.g., see
Refs. 8 and 9!, which effectively determine its accuracy, th
better the approximation the smaller isSA, and the larger is
FA. The dependence of these functionals~and others intro-
duced below! on the chosen approximationa is fundamental,
and at times we will writeSA(a) andFA(a) explicitly.

It is important to note that the quantityFi
HS5@Ei

1kBT ln Pi
HS# in Eq. ~6! is not the same for alli, meaning

that the fluctuation,sA in FA is not zero. This fluctuation
which is defined by

sA5F(
i

Pi
B@FA2Fi

HS#2G1/2

5F(
i

Pi
B@FA2Ei2kBT ln Pi

HS#2G1/2

, ~7!

is however expected to decrease as the approximation
proves, meaning that for very good approximations ofPi

HS,
the free energy can be very accurately determined by a
aging Fi

HS over just a handful of configurations~or even a
single one!. The HSMC method can provide this accurac
and very good values for the free energy have been obta
from a small number of configurations.

B. Upper bounds for the free energy

One can define another approximate free energy fu
tional denotedFB,16

FB5(
i

Pi
HS@Ei1kBT ln Pi

HS#. ~8!

According to the free energy minimum principle,22 FB>F
@Eq. ~4!#. Thus,FB is an upper bound which approaches t
correct free energyF when Pi

HS→Pi
B @Eq. ~1!#. It is neces-

sary to rewrite Eq.~8! such thatFB can be estimated by
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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importance sampling from a~Boltzmann! sample of configu-
rations generated withPi

B ~rather thanPi
HS). Applying the

identities ( i Pi
HS51 and Pi

B/(exp@2Ei /kBT#/Z)5Pi
B/Pi

B51,
one obtains

FB5
( i Pi

B@Pi
HSexp~Ei /kBT!~Ei1kBT ln Pi

HS!#

( i Pi
B@Pi

HSexp~Ei /kBT!#
. ~9!

In practice,FB is estimated as the ratio of simple arithme
averages, which are accumulated for each of the quantitie
the brackets in Eq.~9!. It should be noted, however, that th
statistical reliability of this estimation~unlike the estimation
of FA) decreases sharply with increasing system size,
cause the overlap between the probability distributionsPi

B

andPi
HS decreases exponentially~see discussion in Ref. 13!.

Another way to estimateFB is by using a ‘‘reversed-
Schmidt procedure,’’13,16 which enables one to extract from
the givenunbiasedsample of sizen generated withPi

B an
effectively smallerbiasedsample generated withPi

HS. Thus,
the configurations of the unbiased sample are treated
secutively. If a configurationi was accepted to the biase
sample, the next configurationj would be accepted with a
transition probabilityAi j ,

Ai j 5min$1,exp@~Ej2Ei !/kBT#Pj
HS/Pi

HS%. ~10!

Equation~10! is a generalized MC procedure, which satisfi
the detailed balance condition and is carried out with rand
numbers. The acceptance rateR provides a measure for th
effective sizeof the accepted biased sample,

R5naccept/n, ~11!

wherenaccept is the number of accepted configurations. T
effectiveness of this procedure is again limited by the ov
lap of the distributions,Pi

B andPi
HS, and we will in fact only

report FB results as calculated with Eq.~9!. We will still,
however, apply the reversed-Schmidt procedure to the s
sample of results, and report the acceptance rate,R, which is
a useful gauge of the reliability of theFB value ~calculated
with either method!. Thus, the closer isR to 1 the better is
the overlap betweenPi

B andPi
HS, the closer isFB to F, and

the smaller is the sample size required to estimateFB reli-
ably.

With values for bothFA and FB, their average,FM,
defined by

FM5~FA1FB!/2, ~12!

often becomes a better approximation than either of th
individually. This is provided that their deviations fromF ~in
magnitude! are approximately equal, and that the statisti
error in FB is not too large. Typically, several improvin
approximations forFA, FB, andFM are calculated as a func
tion of a, and their convergence enables one to determine
correct free energy with high accuracy.

C. A Gaussian estimation of FB

We now describe an efficient method to estimate the f
energy upper bound,FB @Eqs.~8! and~9!#, which can effec-
tively overcome the statistical limitations associated with
standard evaluations ofFB described in the preceding se
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP
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tion. It is noted that the applicability of this method is d
pendent on the~form of the! HS implementation. The HSMC
method of the present work is particularly well suited to t
required assumptions, and reasons for this are discusse
Sec. II M and in the Appendix.

We begin by rewriting Eq.~9! as

FB5
( i Pi

B exp@Fi
HS/kBT#@Fi

HS#

( i Pi
B exp@Fi

HS/kBT#
, ~13!

where we have usedFi
HS5@Ei1kBT ln Pi

HS#. Equation~13!
emphasizes anexplicit dependence ofFB on the variable,
Fi

HS, a quantity that is directly related to the average,FA

@Eq. ~6!#, and the fluctuation,sA @Eq. ~7!#. Let us now as-
sume that when configurationsi are sampled from the Bolt
zmann distribution~i.e., with Pi

B), their correspondingFi
HS

values occur with a Gaussian probability. That is, the res
ing Fi

HS values are described by the Gaussian distribution

r~Fi
HS!5r~F8!5

1

A2psA

exp@2~F82FA!2/2~sA!2#,

~14!

which is thus determined solely by the two parameters,FA

~the mean! andsA ~the standard deviation!. Now, rather than
summing over the configurationsi with their weights,Pi

B , as
in Eq. ~13!, we can sum~integrate! over all values ofFi

HS

weighted withr(Fi
HS). The numerator in Eq.~13! becomes

(
i

Pi
B exp@Fi

HS/kBT#@Fi
HS#

'
1

A2psA
E ~exp@F8/kBT#@F8# !

3exp@2~F82FA!2/2~sA!2#dF8

5S ~sA!2

kBT
1FADexpF1

2 S sA

kBTD 2

1
FA

kBTG , ~15!

and the denominator is

(
i

Pi
B exp@Fi

HS/kBT#

'
1

A2psA
E ~exp@F8/kBT# !

3exp@2~F82FA!2/2~sA!2#dF8

5expF1

2 S sA

kBTD 2

1
FA

kBTG . ~16!

The ratio of the results in Eqs.~15! and ~16!, is the new
~Gaussian! estimation ofFB, denotedFG

B ,

FG
B5

~sA!2

kBT
1FA. ~17!

We see thatFG
B depends only onFA and on the fluctua-

tion sA. This is an advantage ofFG
B because these quantitie

are typically easier to estimate thanFB from Eq. ~9! or ~10!.
Provided that the Boltzmann sample ofFi

HS values~for some
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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parameter seta! is approximately Gaussian, thenFG
B'FB.

Our results show that this Gaussian distribution is a v
good approximation as there is excellent agreement ofFG

B

with FB for cases whereFB is well converged.
Similar to Eq.~12! we define the average,

FG
M5~FA1FG

B!/25FA1
1

2

~sA!2

kBT
, ~18!

where again, several approximations forFA, FG
B , and FG

M

can be calculated as a function ofa, and their convergence
leads to highly accurate free energy determination.

D. Exact expression for the free energy

The denominator ofFB in Eqs. ~9! and ~13! defines an
exact expression for the partition function,

1

Z
5

1

Z (
i

Pi
B~Pi

HS/Pi
B!

5(
i

Pi
B~Pi

HSexp@Ei /kBT# !

5(
i

Pi
B exp@Fi

HS/kBT#, ~19!

which is based on( i Pi
B(Pi

HS/Pi
B)51; therefore, Eq.~19!

will hold for any approximationa as long as thePi
HS(a) are

normalized, and anexactexpression for the correct free en
ergy F, denoted byFD, is

FD5kBT lnS 1

ZD5kBT lnF(
i

Pi
B exp~Fi

HS/kBT!G . ~20!

Note that while the~Boltzmann! average of the approxi
mate Fi

HS values gives a bound for the free ener
(( i Pi

BFi
HS5FA), the average of exp@Fi

HS/kBT# leads to the
free energy exactly. In fact, using Eq.~20!, it is easy to verify
that FA defines a lower bound~i.e., FA<F), where we must
have

exp@FA/kBT#5expF(
i

Pi
B~Fi

HS/kBT!G
<(

i
Pi

B exp@Fi
HS/kBT#5exp@F/kBT#, ~21!

in accordance with Jensen’s inequality, which states
f (^x&)<^ f (x)& for a convex functionf (x). ~See also the
Appendix.!

In practice, the efficiency of estimatingF by FD depends
on the fluctuation of this statistical average, which is de
mined by the fluctuation ofFi

HS exponentiated. That is, if the
fluctuations in Fi

HS are small, then the values fo
exp@Fi

HS/kBT# do not vary drastically, and the averages f
FD ~andFB) can be estimated reliably. Still~as forFB), the
direct calculation ofF throughFD will not be as statistically
reliable as the corresponding calculation for the lower bou
estimate,FA. Obviously, asFi

HS→F ~i.e., Pi
HS→Pi

B) all
fluctuations become zero andF can be obtained from a
single configuration. It should be pointed out that Eq.~19!
with Pi

HS51/VN was suggested for a lattice gas long ago
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP
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Salsburget al.23 ~N is the number of particles andV is the
volume.! This choice, however, leads to an extremely ine
cient estimation at room temperature and works only at v
high T where the Boltzmann probability is represented mo
faithfully by 1/VN.

We note additionally that in Eq.~16! 1/Z was calculated
with the Gaussian distribution, which is expected to impro
the convergence over that of Eq.~19!; the free energy calcu
lated from this Gaussian expression for 1/Z is equal toFG

M

@Eq. ~18!#.

E. The correlation between sA and FA

The zero fluctuation property of the correct free ener
can be exploited directly through the extrapolation of a se
of FA values, which are derived from a set of improvin
approximations. Here the fluctuations are expected to
crease systematically as the approximation improves, and
write FA asFA(a) @andsA assA(a)], thus emphasizing the
effect of the general parameter seta, which controls the level
of approximation and therefore the quality of the free ene
estimate. It has been suggested17 to express the correlation
betweenFA(a) andsA(a) by the approximate function

FA~a!5Fextp1C@sA~a!#g, ~22!

whereFextp is the extrapolated value of the free energy, a
C andg are parameters to be optimized by best-fitting resu
for FA(a) and sA(a) for different approximationsa. One
can also calculate the tangent to the function atsA(abest),
which is the lowest value for the fluctuation obtained fro
the best approximation,abest. If Eq. ~22! defines a concave
down function and this trend ofFA(sA) is assumed to hold
for better~uncalculated! approximations ofFA, the intersec-
tion of the tangent with the vertical axis@sA50# defines an
upper bound forF, which is denotedFup. This upper bound,
along with the best value for the lower bound,FA(abest), can
be used to define the averageFM2,

FM25@FA~abest!1Fup#/2. ~23!

F. Statistical mechanics of the liquid models

In this paper we study liquid models for argon and wat
Argon is represented by the standard Lennard-Jones pote
with the parameterse/kB5119.8 K ands53.405 Å; water is
represented by the three-site TIP3P potential.19 We consider
N atoms ~molecules! enclosed in a box of volume,V, at
temperature,T @(NVT) ensemble#. The configurational par-
tition function is given by

ZN5E exp@2E~xN!/kBT#dxN, ~24!

whereE(xN) is the potential energy,xN is the set of Carte-
sian and orientational~for water! coordinates, anddxN is the
corresponding differential~including any necessary Jacobia
factors!. The integration is carried out over the configur
tional space,VN for argon, and (8p2V)N for water. Using the
Boltzmann configurational probability densityr(xN),

r~xN!5exp@2E~xN!/kBT#/ZN , ~25!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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the total entropyS is

S5SIG1Se5SIG2kBE r~xN!ln@~8p2!NVNr~xN!#dxN,

~26!

whereSIG is the entropy of the ideal gas at the same te
perature and density, andSe is the excess entropy. The facto
(8p2)N would be replaced by unity for argon. The corr
sponding excess Helmholtz free energy is

Fe5E r~xN!„E~xN!1kBT ln@~8p2!NVNr~xN!#…dxN

5^E&2TSe, ~27!

where ^E& is the average potential energy. For water
present results forFe; however, to be consistent with th
literature, for argon theconfigurational free energy Ac ~Ref.
24! is provided,

Ac52kBT lnS ZN

N!s3ND , ~28!

wheres is the van der Waals parameter from the Lenna
Jones potential.

G. The ideal HS method

It is helpful to explain the HSMC method developed
this paper by first describing anideal ~or ‘‘perfect’’ ! HS
method, as applied to anNVT argon system with periodic
boundary conditions simulated by MC; the extension for w
ter is straightforward. It should first be pointed out that ea
argon configuration, in principle, could have been genera
by an alternativeexactbuild-up procedure, where argon a
oms are added step-by-step to the initially empty volu
~box! using transition probabilities~TPs!. With the HS
method the given MC sample is assumed to have been
erated by this exact build-up procedure, and thus each
figuration is reconstructed with this procedure, the TPs
calculated, and their product leads tor(xN) and to the abso-
lute entropy; ln r(xN).

In practice, the box is divided intoL35L3L3L cubic
cells with a maximal size that still guarantees that no m
than one center of a spherical argon molecule occupies a
~See Refs. 25–27 for other examples of cell approaches
fluid free energies.! During the analysis of configurationi,
the cells are visited orderly line-by-line, layer-by-layer sta
ing from one corner of the box until all of them have be
treated. The calculation of TPk for the target cellk @which
could be a vacant~2! or a populated cell~1!# is outlined as
follows. At stepk of the process,Nk atoms~i.e., occupied
cells! andk212Nk vacant cells have already been treate
i.e., their TPs have been calculated. TheseNk atoms are now
positioned at their coordinates of configurationi and together
with the already visited vacant cells they define the~frozen!
‘‘past.’’ The L32(k21) as yet unvisited cells~including tar-
get cellk! define the ‘‘future volume.’’ To determine the T
of target cellk two future canonical partition functions ar
calculated,Z2(k) andZ1(k) for vacant and occupied cellk,
respectively, by scanning all of the possible configurations
the remainingN2Nk ~future! atoms in the future volume
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP
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while the past volume is excluded, and forZ2(k), the target
cell k is excluded as well. It is stressed that while the pre
ously treatedNk atoms are fixed, their interactions with th
future atoms are included in the calculation ofZ2(k) and
Z1(k).

The sum Z1(k)1Z2(k) covers all possible future
atomic arrangements at stepk, therefore if cellk is vacant the
TPk is, p(k,2)5Z2(k)/@Z1(k)1Z2(k)#. If on the other
hand, cellk is occupied, then the future partition functio
Z1(k,x8) is calculated where one of the future atoms is fix
at the positionx8, the exact location~inside the target cellk!
at which an atom was exhibited in configurationi. Z1(k,x8)
thus covers a portion of the total configurational volum
spanned byZ1(k). TPk for an occupied cell is the probabil
ity density, Z1(k,x8)/$@Z1(k)1Z2(k)#%. After cell k has
been treated it becomes a past cell, empty or occupied
cording to configurationi. For a periodic system, this mean
that the images of cellk are also becoming part of the fixe
past and will thus affect the TPs of theL32k remaining
future cells. In this HS procedure all theL3 TPs are calcu-
lated exactlyand their product leadsexactly to r(xN) @Eq.
~25!#. However, in practice scanning the entire conform
tional space in order to systematically calculate the ex
future partition functions is unfeasible.~The computational
time grows exponentially with the number of particles co
sidered, and the number of the grid points used to appr
mate the continuum.! Therefore we refer to this procedure a
the ideal HS method.

H. Transition probabilities of the HSMC method

Because the ideal HS method is unfeasible, we have
veloped an HSMC approach, where instead of calculat
exact future partition functions, the future atoms are sim
lated at each step by MC and the TPs are obtained from
number of counts of atoms in the target cell. Initially, a
proximate boundary conditions were used and only par
the future was treated.9 More recently, however,18 the HSMC
method was developed so as to include the entire futur
each HS step~i.e., all the future atoms are simulated by MC!
and the periodic boundary conditions are taken into acco
as well.~It was termed ‘‘complete HSMC’’ in Ref. 18, but is
presently referred to as simply HSMC.! This method~studied
here! is capable, in principle, of yielding theideal HS result
~described above! in the limit of infinite future MC sampling.
For finite sampling, HSMC provides approximationsPi

HS for
the Boltzmann probabilityPi

B , which improve as the sam
pling is increased, thus giving rise to narrowing rigoro
bounds forF and S ~e.g., SA, FA, and FB) as discussed
earlier.

HSMC is conducted as follows. At stepk, the previously
definedNk atoms, as well as their associated images, are h
fixed in their assigned positions~in configurationi!, while all
the remainingN2Nk future atoms are allowed to move. A
MC trajectory is generated for theN2Nk future atoms, and
the TP is determined from atom counts in the target celk.
The simulation is performed under standard periodic ru
with the exception that regions inside previously defin
cells are excluded. Any trial move that would place a futu
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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atom into this previously assigned volume is rejected. A tw
dimensional representation of the main simulation box
given in Fig. 1. It is evident that as this treatment proce
the number of moveable future atoms decreases, and
fully mobile system at the beginning becomes gradua
‘‘frozen down’’ into the exact configurationi.

The transition probabilities are calculated~from the
counts! in the following way. We denote byM tot the total
number of attempted moves in the MC simulation for a
reconstruction stepk. M cell is the number of counts for which
an atom was observed in the target cellk. The probability for
the target cell to be occupied~unoccupied! by an atom is thus
given by

Pocc5
M cell

M tot
and Punocc512Pocc. ~29!

For the case where the target cellk is vacant in configuration
i, the transition probability is TPk5Punocc. For an occupied
target cell, one has to calculate the probability densityrocc

for an atom to be located at the precise location~inside cell
k! at which it is found in configurationi. For this we define a
much smaller volume~inside cellk!, termed a ‘‘cube,’’ which
is centered at the exact atom position~in configurationi!. We
count the visitations of atoms within this cube during the M
simulation and thus estimate the probability density as

rocc5PoccS M cube

M cell
D S 1

Vcube
D5S M cube

M tot
D S 1

Vcube
D , ~30!

FIG. 1. A two-dimensional~2D! illustration of the main simulation box a
the kth step of the HSMC reconstruction. The 2D ‘‘volume’’ is divided in
cells, wherek21 of them have already been considered in previous s
~starting from the upper left corner!. Thesek21 cells comprise the ‘‘past
volume’’ ~the region above the heavy lines! which contains previously
treated fixed atoms that are denoted by full black circles defined by the
der Waals radius. This region is excluded from the moveable future at
~denoted by full gray circles! which are thus simulated in the ‘‘future vol
ume’’ below the heavy lines, while in the presence of the fixed atoms.
future atoms can visit the target cellk ~depicted by dotted lines! and their
counts in this cell lead to the transition probability of an empty cell or
transition probability density of an occupied one. Note that for the case o
occupied target cell, counts are actually accumulated for visitations
smaller region,Vcube ~see text!, located inside the target cell but not show
in the figure.
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP
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whereM cube is the number of cube counts andVcube is the
cube volume. For occupied target cells TPk5rocc. Note,
however, that the probability density is assumed to be u
form over the cube volume. To increase the quality of t
results, we actually scalerocc by an ensemble average
weighting factor~see below!, which serves to measure th
probability density at the atom position more accurately.

The total product of TPk over all L3 cells—a product of
N transition probability densitiesrocc and L32N transition
probabilities for empty cells, gives rise to the estima
rHS(xN) for the Boltzmann probability densityr(xN),

)
k

TPk5N!rHS~xN!'N!
exp@2E~xN!/kBT#

ZN
. ~31!

Notice that the counting procedure~for the TPk) does not
distinguish between labeled atoms, while in the integrat
leading toZN all the labeled arrangements contribute, hen
r(xN) @Eqs. ~25!–~27!# is a labeled probability density, an
N! is required in Eq.~31!.

I. Implementation details and enhancements
of the method

Several enhancements to the HSMC method have b
implemented. One of which is MC preferentia
sampling,28–31 which imposes more frequent trial moves f
atoms which are close to the target cell. In our implemen
tions the trial probability of each atom is proportional
1/r 2, wherer is the atom’s distance measured from the cen
of the target cell. To keep the trial probability from becomin
arbitrarily large at smallr, the weighting becomes flat forr 2

less than;3 Å2. Additionally, it is beneficial to allow the
number of MC steps at each cell (M tot) to decrease~on av-
erage! as the number of future atoms decreases~i.e., with
increasingk!. In particular, we allow themaximum~see be-
low! number of steps to depend linearly on the number
future molecules~until there are fewer than 20, in which cas
it is constant!. Furthermore, the total MC run length for an
particular target cell is also based on its estimated samp
difficulty, which is determined from preliminary cube/ce
counts accumulated during the equilibration period. In ot
words, more steps are given to cells that would be expec
to have low transition probabilities. If, for example, very fe
cube counts~occupied cell! are accumulated during th
equilibration period, then the maximum number of steps
performed in the production run. Otherwise, for cases
higher preliminary counts, the run length is shorter~scaled
down!. There are many ways to carry out this weighting. W
use several empirical settings~discrete categories! through
which the number of steps is reduced from the maxim
number ~by up to a factor of about 5 or 10!. We further
suggest treating occupied and unoccupied cells separatel
the unoccupied cells tend to be far easier to count relia
significantly fewer steps should be allotted to them on av
age. Additional discussion of the above topics is available
Ref. 9.

Another important modification is the ensemble av
aged weighting factor~mentioned above!, which gives more
accurate transition probability densities. This is compu
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Downloaded 04 De
TABLE I. The systems studied and the standard MC and HSMC running conditions.N is the number of
molecules,T is the temperature, andE is the average potential energy. Other parameters are explained i
text.

N Densitya T (K) 2Eb Box length~Å! Cell length~Å! Cube length~Å!

Argon
32 0.846 96.53 6.063~1! 11.4293 2.2859 0.3810c

64 0.846 96.53 5.9844~3! 14.4 2.40 0.3429c

125 0.846 96.53 5.9883~3! 18.0 2.25 0.3750c

Water
64 1.000 298.15 9.987~2! 12.418 2.0697 0.2957,d 0.6899e

aDensity for argon is given as the reduced densityr* 5Ns3/V, whereV is the volume ands is the Lennard-
Jones distance parameter. Density for water is given in g/cm3.

bThe potential energyE for argon is given in reduced units,E* /N5E/eN, wheree is the Lennard-Jones energ
parameter. For water, the potential energy is in kcal/mol. The statistical error~for E! appears in parentheses; fo
example, 5.9844~3!55.984460.0003.

cWe have used a convention such that~cube length!5~cell length!/J, whereJ is an integer (J56, 7, and 6 for
N532, 64, and 125, respectively!; therefore, the cube lengths for the three argon systems are slightly diffe
However, this convention is unnecessary, and all three systems could have been run at any one of the
lengths yielding negligible differences in performance compared to the current results.

dCube length used for the case of ‘‘one-stage sampling,’’ where additionally, counts forrocc also require the
molecular orientation to be in an angular volume of 0.0125p2 ~see text!. These Cartesian and angular valu
were also used in ‘‘two-stage sampling’’ to define the smaller cube.

eLength of the larger cube (cube+) used in two-stage sampling, where the corresponding~larger! angular volume
was 0.1714p2.
e

ep
a

y
a
ag

ty

im
on
.

r

he

tis-
ex-

os-
l-

e of
ple,
,

e
in

of

c-
id-

be
tal
be
of

we

n

t po-
during the HSMC simulation~for an occupied cell! in the
following way. Every time an atom is found in the cub
~defined above!, we calculate the resulting~hypothetical! po-
tential energy for this atom to be repositioned atx8, which is
the exact location~inside the cube! at which an atom was
exhibited in configuration being analyzed; this is done ke
ing all other atoms fixed. We denote this energy
E(x8;xN21) and compare it toE(xN), the actual ‘‘undis-
placed’’ potential energy of the system~as it was found in
the HSMC simulation!, where it is recognized that the onl
difference between these two energies is due to the p
involving the atom to be displaced. The ensemble aver
^exp$2@E(x8;xN21)2E(xN)#/kBT%&cubeis computed over all
cases~during the HSMC simulation! where an atom is found
~anywhere! in the cube. The transition probability densi
@compare with Eq.~30!# is then calculated as

rocc5S M cube

M tot
D S 1

Vcube
D

3^exp$2@E~x8;xN21!2E~xN!#/kBT%&cube. ~32!

Typical values for the ensemble average~in brackets! are on
the order of 1. Nevertheless, these scaled corrections
prove the overall results significantly. A detailed derivati
of the weighting factor is given in the Appendix of Ref. 9

J. The choice of Vcube

Provided that the ensemble averaged weighting facto
used, implementations with different values forVcube will
always yield the correct free energyF in the limit of very
long runs. However, for finite length runs the quality of t
free energy boundFA is affected by the size ofVcube. Gen-
erally, the ensemble averaged weighting factor~which is a
function of cube size! will converge more readily asVcube is
c 2004 to 136.142.92.42. Redistribution subject to AIP
-
s

irs
e

-

is

made smaller, but a cube that is too small will lead to sta
tically unreliable cube counts. Thus, cube sizes at either
treme ~too large or too small! will give rise to higher fluc-
tuations and lower~poorer! values ofFA.

The following points should be considered when cho
ing Vcube. The probability density is most sensitive to repu
sive van der Waals overlaps; therefore,Vcubeshould be small
on a scale of the molecular size. Still, a considerable rang
Vcube values can give acceptable performance. For exam
definingVvdW5(4/3)p(s/2)3 as the molecular size of argon
we have found that values ofVcube/VvdW ranging from
531025 to 131022 work reasonably well. Though we hav
not done a systematic optimization, the results reported
this work were generated usingVcube/VvdW values of about
231023 ~see Table I!. We also used about the same value
Vcube/VvdW for TIP3P water (Vcube, in this context, would
actually be denoted byVCart for water, see Sec. II K below!.
Here, one can adopt the Lennard-Joness value of oxygen or
the first peak in the oxygen-oxygen radial distribution fun
tion as an approximate molecular diameter. Similar cons
erations can be used for other molecules.

K. Modifications for water

The implementation described above for argon can
straightforwardly adapted for water. The only fundamen
difference is that the molecular orientations must also
taken into account. We take the oxygen as the ‘‘center’’
the molecule and thus determinePocc andPunoccas described
earlier. For the transition probability densities, however,
must alter the meaning ofVcube in Eq. ~30!. Thus, we define
Vcube5VCartVang, whereVCart as before is a small Cartesia
cube andVang is a small orientational region~i.e., a small
portion of the total 8p2 molecular angular volume!. These
Cartesian and angular regions are centered on the exac
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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sition and orientation of the actual water molecule in co
figuration i. Thus in the MC simulation, a~future! water
molecule will be located in this ‘‘molecular cube’’ whenev
its oxygen is located within the specified Cartesian cubeVCart

and, simultaneously, the molecular orientation lies in
specified region of angular volumeVang. With these counts
the transition probability densityrocc can be computed usin
Eq. ~30! where the above ‘‘molecular cube’’Vcubeis used. As
for argon, one can show that the ensemble averaged we
ing factor can be used to increase the accuracy of the p
ability density. Thus in practice,rocc is computed according
to Eq. ~32!, where againVcube5VCartVang, and molecules
located in the~molecular! cube are hypothetically repos
tioned atx8, which now means the exact Cartesian posit
andorientation at which the molecule was found in the co
figuration being analyzed. Though the efficiency of t
method does depend on the treatment ofVang, we have
found, as for the case ofVCart, that acceptable performanc
can be obtained over a reasonably wide range of speci
tions.Vang50.0125p2 in this work is approximately 0.2% o
the total molecular angular volume, 8p2 ~see Table I!.

L. Two-stage sampling

One of the key challenges in the implementation of
HSMC method for water is the statistical reliability of th
counts. This is seen by considering that a water molecule~as
treated in most of the common rigid models! has three more
degrees of freedom compared to the simple atomic argon
have found that cube count probabilities~for occupied cells!
are typically two or three orders of magnitude smaller
water than for argon. We will thus focus here on the pro
ability for cube counts, denoted explicitly as

Pcube5S M cube

M tot
D , ~33!

where a ‘‘cube count,’’ for the case of water, means being
the molecular cube~described above! where both Cartesian
and orientational tolerances are satisfied.

In order to overcome statistical problems associated w
very smallPcube values, it can be advantageous to break
counting process into two stages. For example, given th
direct ~one-stage! determination would be allotted a tota
simulation length ofM tot total steps, these resources could
used for two simulations~‘‘stage 1’’ and ‘‘stage 2’’! of
lengths,M tot

(1) andM tot
(2) ~i.e., M tot

(1)1Mtot
(2)5Mtot). In these simu-

lations we introduce a new volume region, cube+. This region
of Cartesian and~for water! angular volume is larger than
and completely contains, the original~smaller! cube.

In the first simulation, stage 1, the HSMC implemen
tion is unaltered except that now counts,M cube+

(1) , are deter-
mined for the larger cube+ and the corresponding probabilit
Pcube+ is calculated,Pcube+5M cube+

(1) /M tot
(1) . In the second simu-

lation, stage 2, a molecule is constrained to the region, cu+

~but is otherwise mobile!. This is done by rejecting any MC
move that would cause its coordinates to fall outside
specified Cartesian or angular volume of cube+. Counts,
M cube

(2) , are now recorded for this molecule to be in t
~smaller! cube. With these counts one can calculate the c
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP
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ditional probability for a molecule to be located in the cu
given that it is in cube+, P(cubeucube+)5M cube

(2) /M tot
(2) .

The quantity of interest,Pcube, @Eq. ~33!# can therefore be
calculated from this two-stage process asPcube5Pcube+

3P(cubeucube+) and the transition probability densityrocc

would thus be approximated by dividing this quantity b
Vcube. In practice the weighting factor is used, androcc is
thus calculated@compare to Eq.~32!# as

rocc5S M cube+
~1!

M tot
~1! D S M cube

~2!

M tot
~2! D S 1

Vcube
D

3^exp$2@E~x8;xN21!2E~xN!#/kBT%&cube, ~34!

where the ensemble average is accumulated~during stage 2!
over all cases where the molecule is found in the~smaller!
cube.

The logic behind this procedure is that when the cu
counting probabilitiesPcube become very small, it can be
more reliable to alternatively measure the two probabilit
Pcube+ and P(cubeucube+), which are far larger thanPcube,
even if they are measured with shorter simulations. We h
applied two-stage sampling~for water! to all occupied cells
~no modifications are made for the empty cells!. In our
implementations, stage 1 and stage 2 are run to the s
number of MC steps (M tot

(1)5Mtot
(2)). The volumes defining the

~smaller! cube are as given in the preceding section.~i.e.,
they are the same as is used in the one-stage impleme
tion.! For cube+, we have taken Cartesian and angular v
umes that are roughly 13 and 14 times larger than their c
responding cube values, respectively.~Better choices are
likely to exist as we have not systematically optimized the
values.! Two-stage sampling has indeed provided a subs
tial increase in efficiency when it is applied to water.~For
example, comparing cases in which (M tot

(1)1Mtot
(2)) is equiva-

lent to M tot for one-stage.! Argon on the other hand, which
~on average! exhibits much higher values forPcube, shows
no significant improvement for the running conditions th
we tried.

M. Stochastic probabilities and the bounds
for S and F

The theory developed in Secs. II A–II E is based on d
terministic probabilities, while those defined by HSMC a
stochastic bearing some noise. In the Appendix we rig
ously prove that all the theoretical conclusions of these s
tions also apply to HSMC, in particular,SA is an upper
bound,FA is a lower bound,FB and FG

B are upper bounds
andFD is exact.

The noise in the HSMC probabilities results from stat
tical noise in the counts for the transition probabilities. It
actually fundamental in its effects on the free energy a
entropy estimates. The shorter the HSMC simulations~small
M tot), the greater the noise in the probabilities, and as sho
in the Appendix, this effect manifests itself in an avera
sense by overestimating the entropy~i.e., SA) and underesti-
mating the free energy~i.e., FA). We note further that the
effect of stochastic probabilities, and subsequent noise in
resultingFi

HS(5@Ei1kBT ln Pi
HS#) values, implies an appro
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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priateness for the Gaussian approximation forFG
B , a condi-

tion that would not necessarily be expected for general
terministic cases.

It should also be noted that it is possible to comp
lower and upper bounds to the free energy by repeated
plication of the HSMC method to a single configuration. Th
is unlike previous HS and LS applications where there wo
be only one value forFi

HS5@Ei1kBT ln Pi
HS#. The deriva-

tions for the ‘‘single configuration’’ analogs ofFA, FB, and
FD are available in the Appendix and results are provided
the following section for some selected argon configuratio
which support the theoretical predictions. We note that wh
this single configuration approach can be applied directly
the free energy~due to its zero fluctuation property!, it can-
not be used to compute the entropy through ensemble a
age forms related to Eq.~3!. However, given that one ca
obtain, for example, a lower free energy boundFA with a
single configuration, an upper bound for the entropy is
fined through the quantity, (^E&2FA)/T, using the average
energy which is commonly available from the simulation
sults.

III. RESULTS AND DISCUSSION

The argon systems are comprised of 32, 64, and
atoms at T596.53 K and reduced density,r* 5Ns3/V
50.846. In all cases the interactions were spherically tr
cated at a distance equal to half the box length, and
long-range energy~tail! corrections were added to th
results.28 The water system consists of 64 TIP3P wa
molecules19 at density 1.000 g/cm3 and temperatureT
5298.15 K. Here molecule-based spherical truncation w
applied ~again, at half the box length! but no long-range
correction was added. The details of the MC and HSM
running conditions are summarized in Table I. Also provid
in this table are the average potential energies for each
tem, which were determined from the Monte Carlo simu
tions described below. For brevity we do not report entro
values directly; however, these energies along with the
energies reported in following tables make the correspond
entropies available.

The sample configurations~which are analyzed in the
HSMC procedure! were generated using the usual Metrop
lis MC simulation method5 in theNVT ensemble under stan
dard periodic boundary conditions. Thus, at each MC step
atom~molecule! is selected at random and a random trans
tional trial move is generated within a small Cartesian cu
around the atom position. For water, the molecule is a
given a small~random! rotation about a randomly chose
axis. Cartesian and rotational step sizes were chosen to
;40%–50% acceptance. Configurations were recorde
long enough intervals to give an uncorrelated sample.
MC simulations of the future molecules during the HS
construction process are very similar to the standard
simulations. The exceptions~which were discussed above!
are: the system is only partially mobile, the moveable fut
atoms~molecules! are excluded from the previously treate
regions, and atoms~molecules! are selected preferentially fo
trial moves based on their proximity to the target cell. Ad
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP
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tionally, the number of MC steps at each cell,M tot , was not
constant but varied with the number of future molecules a
other criteria outlined in Sec. II I. The results~Tables II, IV,
and V and Figs. 2 and 3! are therefore given as a function o
the averagenumber of MC steps per cell, denotedM̄ tot . In
the case of two-stage sampling, we take the number of
steps~for any occupied cell! as the total of the two simula
tions ~stages!, and therefore the reportedM̄ tot includes all
computational investment~all MC steps taken!, thus allow-
ing straightforward comparison with the one-stage pro
dure. @Here, wheneverM̄ tot is the same~for one- and two-
stage!, each simulation in the two-stage procedure is run h

FIG. 2. Free energy bounds as a function of HSMC run length for arg
N532 atoms. The HSMC run length on the horizontal axis is given asM̄ tot ,
the average number of MC steps per cell. Shown are the free energy l
boundFA ~diamonds and solid lines!, the upper boundFB ~open triangles
and dashed lines!, and the Gaussian upper boundFG

B ~solid triangles and
solid lines!. Free energies are given asAc /eN, whereAc is the configura-
tional free energy defined in Eq.~28!, e is the standard Lennard-Jones e
ergy parameter, andN is the number of atoms.

FIG. 3. Free energy bounds as a function of HSMC run length for arg
N5125 atoms. The HSMC run length on the horizontal axis is given
M̄ tot , the average number of MC steps per cell. For details, see the ca
of Fig. 2.
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE II. HSMC results for argon. Free energy values are given asAc /eN, whereAc is the configurational free energy@Eq. ~28!#, e is the standard
Lennard-Jones energy parameter, andN is the number of atoms.FA @Eq. ~6!# is a lower bound of the free energy andsA @Eq. ~7!# is its fluctuation.FB @Eqs.
~8! and~9!# is an upper bound andFG

B @Eq. ~17!# is its corresponding Gaussian approximation.FM @Eq. ~12!# andFG
M @Eq. ~18!# are the averages ofFA with

FB andFG
B , respectively.FD @Eq. ~20!# is the direct estimate for the free energy.R is the acceptance rate for the reversed-Schmidt procedure@Eq. ~11!# and

RG is the corresponding Gaussian result~see text!. M̄ tot is the average number of MC steps per cell.n is the number of configurations analyzed~the sample
size!, where a single HSMC reconstruction was performed on each configuration. Results obtained by thermodynamic integration are denoted
statistical error appears in parenthesis; for example, 4.108~1!54.10860.001.FA andsA are reported here asper moleculequantities; however, Eq.~17! as
written for FG

B requires these quantities to be for the systemas a whole. @This follows, for example, from Eq.~9!, which requires the system’s probability, a
a whole.# Thus the values given here must be multiplied byN before using Eqs.~17! and ~18! for FG

B andFG
M , respectively.

M tot 2FA sA 2FB 2FG
B 2FM 2FG

M 2FD R RG n

N532
360 000 4.143~1! 0.0533~5! 4.040~4! 4.030 ~2! 4.092~4! 4.087 ~2! 4.093 ~3! 0.13 0.13 2205
720 000 4.1260~8! 0.0369~5! 4.073~4! 4.072 ~2! 4.100~4! 4.099 ~1! 4.100 ~3! 0.31 0.30 2001
1 440 000 4.1159~8! 0.0284~5! 4.081~3! 4.084 ~1! 4.098~3! 4.100 ~1! 4.099 ~2! 0.42 0.43 1410
3 600 000 4.1102~5! 0.0171~5! 4.098~2! 4.0986~8! 4.104~2! 4.1044~6! 4.104 ~1! 0.63 0.63 1128
7 200 000 4.1079~4! 0.0117~3! 4.102~1! 4.1024~5! 4.105~1! 4.1051~4! 4.105 ~1! 0.74 0.74 725
14 400 000 4.1076~4! 0.0092~3! 4.104~1! 4.1042~5! 4.106~1! 4.1059~4! 4.1058~5! 0.83 0.80 602
TI 4.105 ~1! 4.105~1! 4.105 ~1! 4.105~1! 4.105 ~1! 4.105 ~1!

N564
720 000 4.132~1! 0.0330~5! 4.064~4! 4.046 ~3! 4.098~4! 4.089 ~2! 4.096 ~3! 0.11 0.06 581
1 440 000 4.117~1! 0.0224~5! 4.079~4! 4.077 ~2! 4.098~4! 4.097 ~1! 4.098 ~3! 0.19 0.21 495
2 880 000 4.1085~8! 0.0167~5! 4.087~3! 4.086 ~2! 4.098~3! 4.097 ~1! 4.097 ~2! 0.38 0.35 459
7 200 000 4.1046~5! 0.0105~5! 4.096~2! 4.096 ~1! 4.100~2! 4.1002~7! 4.100 ~1! 0.53 0.55 371
14 400 000 4.1025~5! 0.0078~3! 4.097~1! 4.0976~6! 4.100~1! 4.1001~5! 4.1000~8! 0.60 0.66 244
28 800 000 4.1019~4! 0.0053~5! 4.099~1! 4.0997~6! 4.100~1! 4.1008~5! 4.1007~8! 0.76 0.77 174
TI 4.100 ~1! 4.100~1! 4.100 ~1! 4.100~1! 4.100 ~1! 4.100 ~1!

N5125
1 000 000 4.139~1! 0.0246~5! 4.08 ~2! 4.045 ~4! 4.11 ~2! 4.092 ~2! 4.10 ~1! 0.08 0.007 362
2 000 000 4.124~1! 0.0175~6! 4.06 ~2! 4.077 ~4! 4.09 ~2! 4.100 ~2! 4.09 ~1! 0.06 0.05 179
4 000 000 4.116~1! 0.0110~9! 4.10 ~1! 4.097 ~3! 4.11 ~1! 4.107 ~2! 4.108 ~7! 0.31 0.23 125
10 000 000 4.1124~6! 0.0083~5! 4.10 ~1! 4.102 ~1! 4.10 ~1! 4.1070~9! 4.105 ~6! 0.36 0.34 170
20 000 000 4.1102~6! 0.0060~5! 4.10 ~1! 4.105 ~1! 4.11 ~1! 4.1074~8! 4.107 ~4! 0.43 0.46 99
TI 4.108 ~1! 4.108~1! 4.108 ~1! 4.108~1! 4.108 ~1! 4.108 ~1!
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as long as the corresponding one-stage simulation.# Typi-
cally, a single HSMC reconstruction is performed on ea
sample configuration, and the overall results are determ
by averaging over a total sample size ofn configurations.
@See also the description following Eq.~A8! in the Appen-
dix.# An exception is the case in Table IV, where the resu
are averages for a single configuration which is reconstru
many times.

Several studies of the free energy of argon24,26,27,32–36

and water37–43 have been published, most of them for sy
tems that differ in size~as well as other modeling details!
from the present ones. Therefore, for an objective evalua
of our results, we also calculated the free energies for
particular systems of argon and water using TI. The Lenna
Jones ~LJ! interactions ~for both argon and water! were
scaled using the shifted scaling potential of Zachariaset al.44

The Coulombic interactions~of water! were also distance
shifted in a similar way; this circumvents possible char
overlap problems, and thus all interactions~LJ and Coulom-
bic! could be ‘‘grown in’’ simultaneously. A more detaile
description of the TI calculations is available in Ref. 8.

A. Results for argon

Results for the three argon systems (N532, 64, and 125!
are provided in Table II. Here the free energy estimatesFA,
FB, FG

B , FM, FG
M , and FD are reported along with result
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP
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obtained by TI, which are considered to be exact. All valu
correspond to the configurational free energy,Ac , defined in
Eq. ~28!. The free energy estimates are given as a function
the average number of MC steps per cell,M̄ tot , which effec-
tively defines the level of approximation~a!; the larger is
M̄ tot the better the approximation. The expected trends
clearly shown for the lower bound,FA @Eq. ~6!#, where the
values steadily increase~improve!, and approach conver
gence asM̄ tot is increased. ForN564, the largestM̄ tot leads
to a result for the free energy which deviates from the
value by less than 0.05%.~The statistical error in the TI
result is ;0.02%.! The worst approximation, based on 4
times smallerM̄ tot still leads to a free energy estimate that
only ;0.8% lower than the TI value. Similar trends inFA are
exhibited forN532 and 125, with the best values deviatin
by only 0.06% and 0.05%, respectively.

Also provided in Table II are values forsA @Eq. ~7!#, the
fluctuation inFA. As expected, the free energy fluctuatio
decrease systematically as the approximation improves~i.e.,
sA tends toward zero asFA approaches the correct value!.
The smallestsA values, 0.0092, 0.0053, and 0.0060, forN
532, 64, and 125, respectively are smaller by a factor
19.1, 19.4, and 12.5 than their energy counterparts, 0.1
0.103, and 0.075. In general, these expected trends in
fluctuations reflect the reliability of the various free ener
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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estimates. Moreover,sA is used directly in the calculation o
FG

B ~andFG
M) and in the free energy extrapolations~discussed

below!.
We now discuss the results for the free energy up

boundFB @Eqs.~8!, ~9!, and~13!#. For the argon systems o
N532 and 64, these results~Table II! are considered to be
excellent. Statistical reliability is evidenced by the highR
values~also in Table II! for the Schmidt acceptance rate@Eq.
~11!# in conjunction with the relatively large number of co
figurations~n! in the samples. Indeed, the upper bound (FB)
consistently decreases~improves! as the approximation im
proves (M̄ tot increases!, giving a smooth trend approachin
the correct free energy. TheFB values for the best approxi
mations are in agreement with the TI results within the s
tistical error. The error values are, however, somewhat hig
than those for the lower boundFA.

It is important to note that for the casesN532 and 64,
FB is in excellent agreement with the new Gaussian up
bound estimate,FG

B @Eq. ~17!#. Differences between the tw
values are smaller than the statistical uncertainties in
cases except for the smallestM̄ tot for each system. This
agreement is also shown in Fig. 2 whereFB, FG

B , andFA are
given as a function of run lengthM̄ tot for N532; the differ-
ence in the trend lines forFB andFG

B is barely visible. These
upper bounds along with the lower boundFA show a clear
tightening as the approximation improves. Agreement ofFB

and its Gaussian estimateFG
B is further enforced by noting

the similarity ofR to the corresponding quantity,RG ~also in
Table II!. RG is the hypothetical Schmidt acceptance ra
which is calculated from a Gaussian sample with averageFA

and sA . The ~hypothetical! samples are created using
Gaussian random number generator and thus are far la
than the actual sample sizes analyzed~n!, therefore the val-
ues can be considered to be exact~actually, more converged
thanR! within the Gaussian approximation. We note fina
that the appropriateness of the Gaussian assumption~in de-
riving FG

B) was verified directly by histogramming theFi
HS

values, and indeed we have found these results to fit we
a Gaussian distribution within the statistical noise.

For the argon system ofN5125, FB is in all cases
higher than the correct free energy. Therefore, in this se
the values are consistent with upper bound estimation. H
ever, the statistical uncertainties are high, and there is
longer a monotone decreasing trend as the approxima
improves. As discussed in the theory section, the determ
tion of FB can become problematic as the system beco
larger, and this, coupled with smaller sample sizes~n!, makes
FB less statistically reliable forN5125 than it is forN
532 and 64.FG

B , on the other hand, is not as affected
these limitations, as the quantitiesFA andsA ~upon which it
depends! are more readily estimated. Indeed, the results
FG

B are very encouraging; they are much better thanFB ~for
N5125), which is clearly shown in Fig. 3.~Note howFG

B

traces a smooth curve through the more jagged trend
FB.) Here again, we also see a consistent tightening of
upper (FG

B) and lower (FA) bounds as the approximatio
improves.

Some of the best estimates for the free energy in Tab
are provided byFM @Eq. ~12!# andFG

M @Eq. ~18!#, which are
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP
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the averages of the lower boundFA with the upper bounds
FB andFG

B respectively. In fact, for each argon system~each
N!, the best three approximations lead to values ofFM and
FG

M that match the TI value within the statistical uncertain
For N532 and 64,FM in all cases provides a better value f
the free energy than the correspondingFA or FB at the same
M̄ tot . This is not always true forN5125 due to the higher
statistical error inFB. However, given the comparatively ro
bust behavior ofFG

B , it follows that FG
M provides the most

accurate free energy values~compared toFA, FB, or FG
B) at

all N and for allM̄ tot .
Also impressive are the results for the direct free ene

estimate,FD @Eq. ~20!#. As for FM andFG
M , the three largest

M̄ tot for eachN all give FD values which agree with the T
results within the estimated uncertainty. And again at a
given M̄ tot , FD is typically closer to the correct free energ
than the corresponding upper and lower bound estimates
is the case forFB, the convergence ofFD requires good
overlap of the probability distributionsPi

HS andPi
B , but to a

lesser extent. TheFD values reach their asymptotic value~as
n is increased! more readily than doesFB, and thus the sta-
tistical errors are lower. These errors are still higher than
FG

M , however.
It is important to point out, that of all the free energ

estimates discussed,FA converges by far the fastest~i.e.,
‘‘converging’’ in the statistical sense, where it approaches
asymptotic lower bound value with increasingn, for any
given M̄ tot). For this reason, it is stressed that one sho
always consider in any investigation, the desired accura
~That is, how close one needs to be to the exact free en
value for that particular scenario.! If, for example, the de-
sired tolerance were to be within 0.5% of the correct fr
energy, it is seen that nearly all of theFA values in Table II
are within this range. This implies that in many scenari
any of theseFA values can be considered to be adequate,
therefore ‘‘correct.’’ Furthermore, theseFA values would not
change by much if the sample sizes were drastically redu
As an extreme example, one could treat a single configu
tion of N564 at M̄ tot57 200 000. Given thesA value, this
configuration would provide the free energy within a sm
range@24.115~20.35%!,24.094~10.15%!# around the cor-
rect value24.100. Or, taking the average of just five co
figurations, this range would narrow by a factor of 2 and th
produce a value forFA in the range@24.109,24.100#. The
other free energy estimates are obviously useful when gre
accuracy is desired, and furthermore they can provide s
porting information ~e.g., helping to bracket the correc
value! when investigating new systems for which the fr
energy is unknown.FG

B is expected to be especially useful
this role, even when the sample sizes are relatively sma

As discussed previously,sA must tend toward zero a
FA approaches the correct value. Thus, using theFA andsA

results in Table II, extrapolated values for the correct fr
energy were determined by fitting to the functional for
given in Eq.~22!. The results are provided in Table III. Dat
sets were formed using combinations of 3, 4, 5,
6 (sA ,FA) points~all for the sameN!; any set which resulted
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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in a fit that gave positive curvature was discarded. The qu
tities determined from a data fit are the extrapolated f
energy,Fextp @Eq. ~22!#, the tangential upper bound,Fup ~dis-
cussed above!, and the averageFM2 @Eq. ~23!#. The results in
Table III are the averages of these quantities over all of
data sets~over all fits!. For all N, theFup are consistent with
upper bound estimation; the values forN532 and 64 are
very close to the exact value.FM2 and Fextp agree with TI
within the estimated uncertainty forN564 and 125~and
nearly so forN532), where for allN, FM2 was somewhat
more precise thanFextp. The precision for all quantities wa
worse forN5125 than for 32 and 64, presumably due to t
smaller number of data sets.

Provided in Table IV are results obtained from repea
HSMC analysis of thesameconfiguration~discussed in Sec
M!; given are~the single configuration analogues of! FA and
its fluctuationsA , FB, andFM. Here, five argon configura
tions (N564) were investigated, where they are identifi
using the letters A–E. The selected configurations have
ergies which are close to the average energy, therefore
all can be considered ‘‘typical.’’ The number of trials pe
formed on each of the configurations is also given in
table denoted as ‘‘Replications,’’ which is analogous to t
sample sizen of Table II. Two approximations were studie
corresponding toM̄ tot5720 000 and 2 880 000.

It is seen in Table IV that for every configuration~and at
both M̄ tot) the FA are consistent with lower bound estim
tion. However, each individual configuration can give rise
its own distinctFA value for a givenM̄ tot . This implies that
certain configurations~such as configuration E! will con-
verge to the correct free energy with less computational
vestment. In other words, results for configuration E can
said to define a better approximation for the sameM̄ tot . It is
important to recognize that these configuration specific v
abilities are still relatively small compared to differences o
served whenM̄ tot is changed. Indeed, the results for the fi
configurations forM̄ tot52 880 000 are far more similar t
each other than they are to any of the results forM̄ tot

5720 000. This is true as well for the fluctuationssA . We
note further that the average ofFA for the five configurations
is equivalent to the standard HSMCFA result for bothM̄ tot .

Similar statements can be made forFB, where again for

TABLE III. Averages of HSMC extrapolation results for argon. Free ene
values are given asAc /eN, whereAc is the configurational free energy@Eq.
~28!#, e is the Lennard-Jones energy parameter, andN is the number of
atoms. The functionFA(sA) is approximated from multiple fits~data sets!
created from various combinations of (sA ,FA) points ~approximations!
taken from Table II, all for the sameN; the results given are averages ov
all of the data sets.Fextp @Eq. ~22!# is the extrapolated free energy,Fup is an
upper bound defined by the tangent of the fit at the best approximation
FM2 is the average ofFup with the correspondingFA value @Eq. ~23!#.
Results obtained by thermodynamic integration are denoted as TI. The
tistical error is defined in the caption of Table II.

N 2Fup 2FM2 2Fextp F(TI) Data sets

32 4.1048~3! 4.1064~1! 4.1063~2! 4.105~1! 29
64 4.0996~3! 4.1010~1! 4.1009~2! 4.100~1! 28

125 4.1036~7! 4.1075~6! 4.1065~10! 4.108~1! 10
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all cases it defines an upper bound, the value of which
vary from one configuration to another. Again, the avera
for the five configurations is similar to the correspondi
result from the standard HSMC estimation. We also note t
in almost every case the results forFM provide the best free
energy value~compared to the correspondingFA andFB). In
fact, for M̄ tot52 880 000, theFM values agree with the T
value for all configurations within the statistical uncertain
and thus show equivalent performance compared to the s
dard HSMCFM estimation.

B. Results for water

HSMC results are presented for water in Table V, whi
contains estimates for both the one- and two-stage samp
procedures~see Sec. L!. The various free energy estimate
~and other quantities! presented are for the most part th
same as for Table II. Here all free energies correspond to
excess free energyFe defined in Eq.~27!. Viewing the one-
and two-stage results separately, the expected trends in
lower bound,FA, are again clearly shown. The values forFA

steadily improve~increase! asM̄ tot is increased and the cor
responding fluctuations decrease. The best value forFA,
25.627 kcal/mol, is 0.5% lower than the TI value~25.599!,
and heresA , 0.024~kcal/mol!, is 7.8 times smaller than th
energy fluctuation, 0.187.

The difference in the performance of the one- and tw
stage approaches is striking. The two-stage variant appea
be about three times more efficient, where for example,
~two-stage! FA value at M̄ tot55 312 000 is higher~better!

nd

ta-

TABLE IV. HSMC results for argon based on single configurations,N
564. Free energy values are given asAc /eN, whereAc is the configura-
tional free energy@Eq. ~28!#, e is the standard Lennard-Jones energy para
eter, andN is the number of atoms.FA is a lower bound of the free energ
@Eq. ~A6!, analogous to Eq.~6!# and sA @defined similar to Eq.~7!# is its
fluctuation.FB @Eq. ~A10!, analogous to Eqs.~8! and~9!# is an upper bound
and FM is the average ofFA and FB. M̄ tot is the average number of MC
steps per cell. The letters A, B, C, D, and E serve to identify a particu
configuration, and ‘‘Replications’’ is the number of times an HSMC res
was determined~i.e., the number of reconstructions! for that configuration.
The corresponding HSMC results for a givenM tot from Table II are denoted
as HSMC. Results obtained by thermodynamic integration are denote
TI. The statistical error is defined in the caption of Table II.

Configuration 2FA sA 2FB 2FM Replications

M tot5720 000
A 4.130~2! 0.0312~7! 4.068~7! 4.099~7! 211
B 4.141~2! 0.0285~7! 4.091~7! 4.116~7! 219
C 4.135~2! 0.0320~7! 4.080~7! 4.108~7! 216
D 4.128~2! 0.0317~7! 4.073~7! 4.100~7! 219
E 4.128~1! 0.0278~5! 4.053~6! 4.091~6! 394

HSMC 4.13~1! 0.0330~5! 4.064~4! 4.098~4!
TI 4.100~1! 4.100~1! 4.100~1!

M tot52 880 000
A 4.106~1! 0.0168~6! 4.088~4! 4.097~4! 184
B 4.110~1! 0.0159~6! 4.092~4! 4.101~4! 201
C 4.112~1! 0.0151~6! 4.097~4! 4.104~4! 172
D 4.111~1! 0.0145~6! 4.092~4! 4.102~4! 192
E 4.106~1! 0.0137~6! 4.091~4! 4.098~4! 182

HSMC 4.1085~8! 0.0167~5! 4.087~3! 4.098~3!
TI 4.100~1! 4.100~1! 4.100~1!
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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TABLE V. HSMC results for 64 TIP3P water molecules. Free energy values are given as the excess free energy,Fe @Eq. ~27!#, in units of kcal/mol.FA @Eq.
~6!# is a lower bound of the free energy andsA @Eq. ~7!# is its fluctuation.FB @Eqs.~8! and ~9!# is an upper bound andFG

B @Eq. ~17!# is its corresponding
Gaussian approximation.FG

M @Eq. ~18!# is the average ofFA andFG
B . FD @Eq. ~20!# is the direct estimate for the free energy.R is the acceptance rate for th

reversed-Schmidt procedure@Eq. ~11!# and RG is the corresponding Gaussian result.M̄ tot is the average number of MC steps per cell.n is the number of
configurations analyzed~the sample size!, where a single HSMC reconstruction was performed on each configuration. Results obtained by thermod
integration are denoted as TI. The statistical error is defined in the caption of Table II. See also the caption of Table II for details regarding the coutation
of FG

B .

M tot 2FA sA 2FB 2FG
B

2FG
M 2FD R RG n

One-stage
5 312 000 5.90~2! 0.102~8! 5.67a 4.8 ~2! 5.34 ~9! 5.70 0.08 ,1027 48
13 280 000 5.76~1! 0.066~5! 5.63 5.29 ~7! 5.53 ~4! 5.66 0.08 ,1026 40
26 560 000 5.703~7! 0.042~5! 5.64 5.51 ~5! 5.61 ~2! 5.66 0.21 0.001 38
TI 5.599~2! 5.599~2! 5.599 ~2! 5.599~2! 5.599 ~2!

Two-stage
5 312 000 5.736~5! 0.064~5! 5.58 5.29 ~7! 5.52 ~4! 5.62 ~4! 0.06 ,1026 147
13 280 000 5.679~4! 0.040~4! 5.61 5.51 ~4! 5.59 ~2! 5.63 ~3! 0.07 0.002 94
26 560 000 5.636~3! 0.027~3! 5.59 ~3! 5.555~18! 5.595~9! 5.607~15! 0.16 0.036 100
53 120 000 5.627~3! 0.024~3! 5.57 ~3! 5.565~16! 5.596~8! 5.595~15! 0.16 0.067 87
TI 5.599~2! 5.599~2! 5.599 ~2! 5.599~2! 5.599 ~2!

aThough the values forFB are reasonably close to the correct free energy, the expected upper bound trends are not exhibited due to lack of conver
thus no statistical errors are given.
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than the one-stage result atM̄ tot513 280 000. Indeed, all o
the FA values for the two-stage approach are significan
higher, given the sameM̄ tot , and correspondingly, thesA are
all lower. As discussed in the Theory section, the cube co
probabilities for water can be very small~compared to argon!
because of the extra orientational allignment which must
observed. The two-stage approach avoids direct meas
ment of these very small probabilities by, instead, invok
much larger conditional probabilities which are measured
ing two ~shorter! simulations. The results in Table V clear
show this to be advantageous.

While the~two-stage! results forFA ~for water! are very
good, better accuracy can be achieved through the utiliza
of the other free energy estimates. The results forFG

B are
particularly helpful. The expected upper bound behavio
observed asFG

B consistently decreases~improves! approach-
ing the correct free energy as the approximation improv
Correspondingly, the results for the average estimateFG

M are
excellent, where the best value gives25.596 kcal/mol~com-
pared to25.599 for TI or25.627 usingFA alone!. The best
three approximations for the two-stage approach all ma
the TI value within the statistical uncertainty. The one-sta
results have also been significantly augmented with
Gaussian estimates, whereFG

M for the best two approxima
tions is far superior to usingFA alone, and the best of thes
approximations also agrees with TI within the error.

The utility of FG
B is apparent when compared to the sta

dard upper boundFB. In the two-stage results, theFB values
successfully provide an upper bound estimate in most ca
however, the uncertainties are high and a monotone decr
ing ~improving! trend is not observed asM̄ tot is increased.
The one-stage results are worse due to poorer approxima
@of r i

HS(xN) compared to two-stage# along with smaller
sample sizesn. In general, far more sampling~larger n!
would be required to improve the results forFB, a condition
which is obviously not necessary for its Gaussian appro
mation (FG

B). The need for more configurations in the es
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP
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mation of the standardFB is further evidenced by the smallR
andRG values for the Schmidt acceptance rate; the lowe
R, the more configurations that are necessary. We note
ther that here, any differences betweenR andRG are actually
more an artifact of the relatively small sample sizes~com-
pared to what would be required! which are applied in the
estimation ofFB. Specifically, if R is to be very small, a
small sample will often result in estimates forR which are
too high because the reversed-Schmidt sampling scheme
not equilibrated. Recalling thatRG comes from drawing a
very large number of~Gaussian! random numbers, it can b
considered to be more correct.

Though related toFB, the direct estimateFD was shown
for argon to converge~to its asymptotic value! more readily,
and the same is true here for water. The results forFD are in
fact quite good, where the best two approximations g
25.607 and25.595 kcal/mol, thus deviating from the T
value ~25.599! by only 0.1%. TheFD values for all of the
two-stage approximations agree well with TI, being sign
cantly closer than the corresponding values for the low
bound,FA, or the upper bound,FG

B . In general, the one-stag
approximations are not good enough to obtain high qua
FD values from small sample sizes. Though the values
closer than the corresponding results forFA, and therefore
can be considered as ‘‘useful information,’’ convergence
difficult to judge and larger sample sizes would be necess

C. Efficiency of HSMC

At this stage of development the HSMC method is s
significantly less efficient than TI. Using the example giv
above, reconstructing a single argon configuration ofN
564 andM̄ tot57 200 000~which would yield the free energy
in a small range@24.115,24.094# around the correct value
24.100! requires 3.6 h CPU; the TI run for this system r
quired;1/3 of this time. The TIP3P model of water, bein
more complex than the argon system, requires more s
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp
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10902 J. Chem. Phys., Vol. 121, No. 22, 8 December 2004 R. P. White and H. Meirovitch
pling and significantly larger computer time for calculatin
the energy at each MC step. The reconstruction of a sin
configuration atM̄ tot513 280 000~which would give the cor-
rect free energy within about 1%! requires 24 h CPU, com
pared to;6 h for the TI run. However, the HSMC program
can still be optimized reducing the computer time sign
cantly. Current work, for example, involves the implemen
tion of ‘‘multistage’’ counting approaches and advanced~im-
portance! sampling techniques, such as force bias MC45

Furthermore, to increase the general applicability of
method, we are currently replacing the future MC simu
tions by MD simulations, an implementation that requir
changing the HSMC build-up procedure.

IV. CONCLUSIONS

The HS method can be applied to fluids in different a
proximations, as shown in Refs. 8 and 9, and in an ex
manner, as has been demonstrated in Ref. 18 and in
paper. With TI an ideal gas is integrated reversibly by gra
ally changing the potential energy parameters to their fi
values. The HSMC method is different: The absolute f
energy is obtained,in principle, by reconstructing a single
configuration, i.e., placing its molecules gradually into th
positions using transition probabilities. Therefore, HSM
constitutes a new research tool independent of TI and rel
methods, which enables one to calculateF by analyzing a
givenMC or MD sample. HSMC is general and can be a
plied to various systems such as, magnetic~lattice! models,
polymers, peptides, and proteins in vacuum and in exp
solvent; hence, the theory developed in this paper is of g
eral applicability as well. Recently, HSMC has been e
tended to peptides,20 a project that is being continued. Ou
goal is to use this method to determine the relative stab
~i.e., the difference in the absolute free energy,DFm,n5Fm

2Fn) of different statesn andm of peptides, surface loops
etc., solvated in explicit water, where the calculations
based on two samples only without the need to resor
procedures which are dependent on complex integra
paths.
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APPENDIX: PROPERTIES OF THE ENTROPY
AND FREE ENERGY FUNCTIONALS BASED
ON STOCHASTIC HSMC PROBABILITIES

In the Theory section we have discussed the proper
~inequalities! of several entropy and free energy functiona
depending on an approximate butdeterministicprobability
distributionPi

HS. Here we prove rigorously that these pro
erties also hold for these functionals defined with the s
chastic probabilities of HSMC. For compactness in notati
we will write Pi , instead ofPi

HS, for the HSMC probabili-
ties. The HS superscript on the corresponding free ene
estimate,Fi

HS(5Ei1kBT ln Pi), will however be maintained
here.
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We first point out that unlike the deterministic case, Tk

calculated at stepk of configurationi is a random variable.
Thus, one can envisage carrying out many trial runs of len
M tot , which give rise to a distribution,r(a;TPk) of the TPk

values, wherer(a;TPk) is unique to the chosen run lengt
and other HSMC running conditions, denoted collectively
a. Clearly, increasingM tot will narrow the width of the dis-
tribution, and we assume that at very largeM tot , the correct
TP would always be obtained. That is, TPk→TPk

B as M tot

→`, where TPk
B is the exact Boltzmann TP for the buildin

stepk of i. In what follows, a discrete system is consider
for simplicity. ~The applicability for continuum system
should be apparent.! Therefore, any TPk is simply given by
TPk5Mk /M tot , with Mk being the number of times the sta
of interest was observed in a trial simulation for stepk.

We now write formally the expectation value of TPk ,
which can be obtainedexactlyfrom nrep trial simulations~j!
of TPk , each of lengthM tot , wherenrep→`,

^TPk&a5E
0

1

~TPk!r~a;TPk!d~TPk!

5 lim
nrep→`

F 1

nrep
(
j 51

nrep

TPkjG . ~A1!

The bracket notation̂ &a ~which will be used often here! is
subscripted witha to emphasize the particularM tot and other
HSMC conditions. It is important to show that^TPk&a is
equal to TPk

B ;

^TPk&a5 lim
nrep→`

F 1

nrep
(
j 51

nrep

TPkjG
5 lim

nrep→`
F 1

nrep
(
j 51

nrep Mkj

M tot
G

5 lim
nrep→`

F( j 51
nrepMkj

nrepM tot
G5TPk

B . ~A2!

The latter form is seen as a single simulation, which tend
infinite length, and therefore must give TPk

B . It is stressed
that the result̂ TPk&a5TPk

B is true for any choice of the
parameters,a ~e.g.,M tot). However, other averages such
^ ln TPk&a do in general depend ona.

As the TPk are random variables, the HSMC approx
mated probability,Pi5PkTPk , is also a random variable
Furthermore, because the TPk are independent~i.e., the out-
come for TPk at k does not depend on the outcome for a
other TPl at l!, the expectation value ofPi is equal to the
Boltzmann probabilityPi

B ;

^Pi&a5K)
k

TPkL
a

5)
k

^TPk&a5)
k

TPk
B5Pi

B . ~A3!

This result is again independent of the parameter seta.
We now aim to show that the average free energy e

mate obtained from repeated HSMC determinations for
same configurationi is a lower bound. The free energy es
mateFi j

HS from any single determination~trial j! is given by

Fi j

HS5Ei1kBT ln Pij
, whereEi is the energy of configuration
 license or copyright, see http://jcp.aip.org/jcp/copyright.jsp



d
tio

e

th
f
n

n

he
ple
n

te
f

us
ns

se
-

as
i-

s-
hat

is
d

ree
s

r

lity

ted

i-
n

10903J. Chem. Phys., Vol. 121, No. 22, 8 December 2004 Bounds for the free energy
i. The expectation value ofFi
HS ~corresponding to repeate

HSMC determinations performed on the same configura
i, and with the running conditionsa! is given by

lim
nrep→`

F 1

nrep
(
j 51

nrep

Fi j

HSG
a

5^Fi
HS&a5Ei1kBT^ ln Pi&a .

~A4!

Jensen’s inequality46 states that ifx is a random variable, and
f (x) is a concave function then̂f (x)&< f (^x&); if f (x) is
convex the inequality is reversed. Applying this to lnPi ,
which is a concave function ofPi , and using^Pi&a5Pi

B

@Eq. ~A3!# we obtain

^ ln Pi&a< ln~^Pi&a!5 ln Pi
B ~A5!

Thus, definingFi
A5Fi

A(a)5^Fi
HS&a we prove

Fi
A5^Fi

HS&a5Ei1kBT^ ln Pi&a<Ei1kBT ln Pi
B5F,

~A6!

where F5Ei1kBT ln Pi
B is the correct free energy. Notic

that this relation holds forany i and not only for the typical
equilibrium configurations for the given ensemble.

We now consider functionals which are defined over
whole ensemble, and thus address stochastic variability o
the Pi . SA for HSMC is now defined as the expectatio
value of the deterministic form forSA in Eq. ~5!, and using
Eq. ~A5!, it is shown to be an upper bound;

SA5K 2kB(
i

Pi
B ln Pi L

a

52kB(
i

Pi
B^ ln Pi&a>2kB(

i
Pi

B ln Pi
B5S. ~A7!

Similarly, FA, defined for HSMC as the average of Eq.~6!, is
a lower bound ofF;

FA5K (
i

Pi
B@Ei1kBT ln Pi #L

a

5(
i

Pi
B~Ei1kBT^ ln Pi&a!5E2TSA<F. ~A8!

SA and FA are averages based on not only the Boltzma
distribution, but also on the distributions,r(a;Pi), for all
the Pi generated with the HSMC method. In practice, t
sampling of these distributions is implicit. That is, a sam
configuration i is drawn from the Boltzmann distributio
~presumably using MC or MD!, and then asinglevalue for
Pi is drawn from r(a;Pi) ~implicitly ! by analyzing this
structure with the HSMC method. This process is repea
and the accumulated~simple! arithmetic averages o
@2kB ln Pi# and @Ei1kBT ln Pi# thus give estimates forSA

and FA, respectively. Asymptotically, these averages m
approachSA and FA exactly, and because the distributio
are well peaked about the averageE and lnP, estimation is
expected to be efficient.

The free energy upper boundFB @Eq. ~8!# is now defined
for the case of HSMC as
Downloaded 04 Dec 2004 to 136.142.92.42. Redistribution subject to AIP
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FB5K (
i

Pi~Ei1kBT ln Pi !L
a

5(
i

^Pi&aEi1kBT(
i

^Pi ln Pi&a

5E1kBT(
i

^Pi ln Pi&a

>E1kBT(
i

Pi
B ln Pi

B5F. ~A9!

In Eq. ~A9! we have used the following relations: becau
^Pi&a5Pi

B , ( i^Pi&aEi is the Boltzmann average of the en
ergy E. Also, Pi ln Pi is a convex function ofPi , therefore
using Jensen’s inequality we have^Pi ln Pi&a>^Pi&a ln^Pi&a

5Pi
B ln Pi

B , which holds for all configurationsi; thus we ob-
tain FB>F. FB, as defined for HSMC in Eq.~A9!, can be
estimated~as in the deterministic case! by sampling with
Pi

B . Equation~A9! can thus be rewritten in the same form
Eq. ~9! @or Eq. ~13!#, where the numerator and the denom
nator are now expectation values~averaged over the stocha
tic Pi). We note further that it is these expectation values t
are approximated with a Gaussian form in Eqs.~15! and
~16!. It is thus more clear that the Gaussian approximation
feasible particularly for HSMC, where ‘‘noise’’ is imparte
in the Fi

HS by the stochastic probabilities.
It is also possible to compute an upper bound to the f

energy by averaging over a single configuration. It follow
from the development related to Eq.~A9! that we can write
Pi

BEi1kBT^Pi ln Pi&a>Pi
BEi1kBTPi

B ln Pi
B for any configura-

tion i. Therefore, usinĝPi&a5Pi
B , we can define the uppe

boundFi
B ,

Fi
B5Ei1

kBT^Pi ln Pi&a

^Pi&a
>Ei1kBT ln Pi

B5F, ~A10!

which can be estimated from repeated HSMC probabi
determinations for the same configurationi.

In Eq. ~19! we have defined an exact expression forZ
that enables a direct estimation of the free energy deno
there asFD @Eq. ~20!#. We show thatFD is also well defined
for HSMC as

FD5kBT lnF K (i
Pi

B~Pi exp@Ei /kBT# !L
a
G , ~A11!

where, usinĝ Pi&a5Pi
B for any a,

K (
i

Pi
B~Pi exp@Ei /kBT# !L

a

5(
i

Pi
B~^Pi&a exp@Ei /kBT# !5(

i
Pi

BS 1

ZD5
1

Z
. ~A12!

Additionally, this identity implies a straightforward determ
nation ofZ ~and thereforeF! for the case of repeated trials o
the same configurationi, which is simply given by

Z5
exp@2bEi #

^Pi&a
. ~A13!
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