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ABSTRACT Protein–protein docking is a chal-
lenging computational problem in functional
genomics, particularly when one or both proteins
undergo conformational change(s) upon binding.
The major challenge is to define scoring function
soft enough to tolerate these changes and specific
enough to distinguish between near-native and
“misdocked” conformations. Using a linear pro-
gramming technique, we derived protein docking
potentials (PDPs) that comply with this require-
ment. We considered a set of 63 nonredundant
complexes to this aim, and generated 400,000 puta-
tive docked complexes (decoys) based on shape
complementarity criterion for each complex. The
PDPs were required to yield for the native (cor-
rectly docked) structure a potential energy lower
than those of all the nonnative (misdocked) struc-
tures. The energy constraints applied to all com-
plexes led to ca. 25 million inequalities, the simul-
taneous solution of which yielded an optimal set of
PDPs that discriminated the correctly docked (up
to 4.0 Å root-mean-square deviation from known
complex structure) structure among the 85 top-
ranking (0.02%) decoys in 59/63 examined bound–
bound cases. The high performance of the poten-
tials was further verified in jackknife tests and by
ranking putative docked conformation submitted
to CAPRI. In addition to their utility in identifying
correctly folded complexes, the PDPs reveal bio-
logically meaningful features that distinguish
docking potentials from folding potentials.
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INTRODUCTION

Interest in protein–protein interactions has rapidly
grown in the past few years given that protein–protein
interactions provide an underlying framework through
which cellular activities are executed and controlled. Al-
though methods such as X-ray crystallography, nuclear
magnetic resonance spectroscopy, and cryo-electron micros-
copy provide valuable information on docking mechanisms
and conformations, many complexes are too transient to
lend themselves to experimental characterization. Compu-
tational methods have recently gained importance as

possible means of efficiently providing information on
protein–protein interactions.

Several algorithms have been developed to date for
protein docking.1–11 The usual approach is to exploit the
geometric fit (or shape complementarity) of the complex-
forming proteins, with or without considering their chemi-
cal affinities. Docking algorithms that reconstruct known
complexes using the structures of the proteins in the
bound form (bound docking problem) generally show rea-
sonable levels of success. However, when the structures in
the unbound form are used as input (unbound docking
problem), the same algorithms may perform poorly. This is
mainly attributed to the inability of the algorithms to take
account of the conformational changes that (may) accom-
pany complex formation.12 Additional biological data are
usually resorted to in order to single out the native or
native-like conformation(s) among putative docked confor-
mations.13

In the absence of prior data, a complete search of the
space of rigid docking geometries at sufficiently fine inter-
vals may necessitate scanning up to 109 different positions
and orientations in search of the optimal binding,1 which
makes it difficult, if not impossible, to consider the addi-
tional degrees of freedom imparted by protein flexibility.
Many groups instead use a two-stage strategy: a rigid-
body docking followed by a refinement stage. The first
stage screens all possible geometries and retains a reason-
ably small set that potentially includes the native (or
native-like) conformation(s).6 Because of computing time
limitation, approximate but fast algorithms with tractable
functions and parameters are adopted at this stage. The
refinement stage reexamines the retained structures, to
rank-order them using more sophisticated physicochemi-
cal criteria or scoring functions, and energy optimization
schema.8,14,15

The criteria for evaluating the putative docked conforma-
tions are crucial to the success of the algorithms. Various
scoring strategies have been adopted in previous work.
The docking algorithms DOT,4 ClusPro,2 and ZDOCK6 use
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atom-based potentials whereas BiGGER,1 FTDock,16 and
RosettaDock11combine atomic potentials with coarse-
grained residue-level potentials. Atom-based potentials
may, however, be too sensitive to the precise position of the
interacting atoms, and may not be flexible enough to
tolerate rearrangements induced upon binding, hence
their limited detection (or low coverage) of native-like
geometries. So far, coarse-grained residue level potentials
have not shown good ability to distinguish between near-
native and nonnative complex geometries. There is a need
for constructing relatively soft potentials, with coarser-
grained representations, while maintaining sufficient speci-
ficity.

Designing coarse-grained optimal protein docking poten-
tials (PDPs) is a challenging task for the following reasons.
The learning set of X-ray resolved transient protein com-
plex structures available in the Protein Data Bank (PDB)17

is relatively small,12 and on average only 22 amino acids
from each protein participate in the interfacial interac-
tions.18 Thus, not only limited structures are available,
but each structure also provides limited data to derive
statistically reliable information. Additionally, some types
of complexes are overrepresented in the PDB. A typical
example is the set of complexes containing proteases.
Knowledge-based potentials for docking usually perform
well, as a consequence, on protease complexes, but to a
lesser degree on other complexes.16 The limited (incom-
plete) and biased structural data on protein–protein com-
plexes poses serious problems on the applicability/accu-
racy of the inverse Boltzmann principle to derive effective
PDPs. In view of this problem, PDPs have been derived
from datasets that contain multimeric protein inter-
faces11,19,20 and even from the examination of protein
interiors.1,16 However, transient complex interfaces differ
from those of multimers and protein interiors as pointed
out by Lo Conte et al.18

In the present study, we present an effective methodol-
ogy based on a linear programming (LP) technique, which
utilizes as a learning dataset transient protein complexes
and associated misdocked decoys. The approach enables us
to include in our training set false positives (FPs) in
addition to the true positives (TPs), thus alleviating the
statistical problem of limited data. Additionally, the present
PDPs take account of side-chain–side-chain, side-chain–
backbone, and backbone–backbone interaction, thus pro-
viding a more realistic description of interresidue interac-
tions. The utility of the new set of PDPs is illustrated by
performing a jackknife test on the learning set, and by
ranking independent test set of putative docked conforma-
tion submitted to CAPRI.

METHODS
LP Approach for Constructing PDPs

We consider the set of nonredundant complexes com-
piled by Lo Conte et al.18 (Table I, first column), apart from
the largest complexes (one of monomers has 400 or more
residues) and those containing large hetero-groups at the
interface (e.g., FKBP12 immunophilin-calcineurin). This
set contains 63 representative members for various types
of transient complexes such as enzyme-inhibitor and anti-

gen-antibody. For each complex, we generated 400,000
putative docked conformations, a few of which conform to
the native (or native-like) conformation(s), and the remain-
der are “misdocked.” In the derivation of the PDPs, the
basic requirement is to obtain for each native complex a
free energy lower than that of any misdocked complex for
the same pair of proteins. Each misdocked complex (decoy)
thus defines a constraint (in the form of an inequality) and
the objective is to determine a set of interresidue poten-
tials that satisfy these constraints.

The advantages of LP approach over statistical ap-
proaches are twofold: (a) statistical approaches learn from
known native states on other native states, i.e., the
(inverse) Boltzmann statistics is applied to a set of known
protein complexes. In the LP approach, however, we learn
from a set of native states as well as large sets of nonnative
states (FPs) about how a native state should, and should
not, look. Therefore, we have more varied data to optimize
the empirical potentials. (b) The LP approach is not
sensitive to over- or underrepresentation or to sequence/
structure homologies in the training set.

LP techniques have been previously used in deriving
protein folding potentials21–25 after the pioneering work of
Maiorov and Crippen.26 The terminology adopted here
follows that of our previous studies.21,22

The PDP construction problem is set as follows. Let X be
the coordinate vector that represents a protein conforma-
tion, (X̂a, X̂b) the coordinates of the native complex (com-
posed of monomers a and b), and �X̂a, Xb

i �i�1
N the set of N

decoys generated by alternative rotations and translations
of monomer b. The potential energy U(X̂a, X̂b) of the native
complex is required to be lower than that of any misdocked
conformation, as expressed by the set of N inequalities

�U�X̂a, Xb
i � � U�X̂a, X̂b� � �i�i�1

N (1)

where �i is a nonnegative constant, set to 0.1 in our
calculations.

Protein Models

An intermediate level of complexity is adopted here for
modeling the structures, in which each amino acid is
represented by three interaction sites: the side-chain cen-
troid (S), the amide nitrogen (N), and the carbonyl oxygen
(O) on the backbone (B). This representation presents the
advantage of accounting for the hydrogen-bond formation
propensities of backbone atoms, as well as specificity of
side-chains. Six types of interactions are involved between
these three types of atoms: S-S, S-O, S-N, O-N, N-N, and
O-O, the former three being residue-specific. This results
in a set of 210 (S-S) � 20 (S-0 � S-N) � 1 (O-N � N-N �
O-O) � 253 parameters.

Parameter Optimization

The total energy is expressed as a linear combination of
a parameter set �pl�l�1

L

U�Xa:Xb, P� � �
l�1

L

Sl�Xa:Xb�pl (2)
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TABLE I. Ranking of the Best Native-Like Conformation Among the 400,000 Decoys Generated
for Each Complex (Bound Docking Results)

Complex

Results obtained from different ranking criteria
No. of decoys
with RMSD

� 4.0 Å

Shape PDP MJ

Ranka RMSDb Ranka RMSDb Ranka RMSDb

Protease-inhibitor
2PTC 2 2.23 1 3.39 1 2.23 108
1AVW* 1 1.75 1 2.62 3 2.76 29
1MCT 1 2.16 1 1.09 1 1.56 344
3TPI 3 1.31 1 2.94 24 1.36 16
1TGS 1 1.06 1 1.28 1 1.06 104
1CHO 1 2.77 1 1.85 1 2.79 528
1ACB 10 2.83 1 2.83 8 2.83 47
1CBW 6 1.19 1 3.90 5 3.56 259
1PPF 45 2.59 1 3.44 1 2.42 85
1FLE 1 1.14 1 1.54 1 1.54 65
2KAI 51 1.52 1 2.17 4 3.99 69
1HIA 1 2.72 4 3.60 1 2.61 57
3SGB 7 1.17 2 1.54 3 1.26 1,657
1MKW 7,531 2.91 36 3.11 166,269 2.91 5
1CSE* 1 1.73 1 1.81 1 3.93 39
2SIC 287 3.22 1 3.22 7 3.22 13
2SNI 1 1.77 1 2.70 1 1.33 379
1STF 1 1.64 1 2.87 1 2.71 62
4CPA 9 1.27 1 3.00 2 3.41 1,273
Large protease complexes
1BTH 1 2.05 7 2.05 1 2.05 18
4HTC 1 0.75 1 1.09 1 0.75 17
1TBQ* 1 1.41 1 1.41 1 1.41 5
1TOC NA NA NA 0
Antigen-antibody
1VFB 21 1.54 2 1.86 430 1.86 103
1MLC 1,493 2.58 47 3.52 248 2.58 11
1JHL 580 1.05 3 2.65 14,793 2.65 53
3HFL 27 1.90 3 2.58 136 2.58 100
3HFM 1,062 3.25 1 3.25 282 2.92 36
1FBI 32 2.37 2 2.32 93 2.32 62
1MEL 1 1.05 1 1.05 1 1.05 56
2JEL 59 2.81 1 2.81 2 2.81 132
1NSN 772 3.72 15 3.37 22 3.72 26
1OSP* 1,694 3.87 1 3.87 4,288 3.87 14
1NCA 1 3.60 2 3.60 5 3.60 57
1NMB 42,843 3.28 13 3.28 2,396 3.28 5
1DVF 174 2.79 78 2.85 1,113 2.79 26
1IAI 13,949 2.78 35 2.33 7,599 2.33 4
1NFD 3,176 3.92 58 1.79 46,167 3.79 23
1KB5 82 3.50 5,121 3.91 1,971 3.01 7
Enzyme-complexes
1BRS* 2 1.86 1 2.36 1 2.36 301
1DFJ 1 2.02 1 3.06 1 2.02 18
1DHK 1 3.49 1 3.49 1 3.11 15
1FSS 12 1.64 168 3.30 241 1.64 46
1GLA 437 2.19 85 2.86 93 2.40 32
1UDI 1 1.80 1 2.42 1 1.38 602
1YDR* 1 0.74 1 2.74 1 0.90 68
2PCC 377 3.60 1 3.60 3,210 3.02 36
G-proteins, cell cycle, signal transduction
1TX4* 34 2.68 26 2.19 1 2.68 21
1GUA 50 2.57 3 2.24 1,435 3.53 91
1GG2 8 3.62 2 3.62 1 3.48 27
1GOT 1 3.82 2 3.82 1 3.82 4
2TRC 1 1.50 2 1.50 1 1.53 201
1AGR 169 2.23 9 2.23 11,263 2.82 38
1FIN 1 1.32 1 3.65 1 1.64 17
1A0O 550 1.20 7 1.20 134 3.62 61
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where �S�Xa:Xb��l�1
L designates the set of L � 253 basis

functions. The parameters �pl�l�1
L are linear, therefore, can

be optimized using LP algorithms such as Simplex or
Interior-Point. Consistent with many existing knowledge-
based potentials,16,19,21,27,28 we express Sl�Xa:Xb� as a step
function of the form

Sl�Xa:Xb� � �
n�a,m�b

H��|rn � rm|�	�l,nm� (3)

where

H��|rn � rm|� � � 1 if |rn � rm| � rcutoff
l

0 otherwise (4)

is the Heaviside function that extracts all interacting pairs
m and n (in the respective monomers a and b) separated by
a distance �rn 
 rm� shorter than a cutoff distance rcutoff

l

characteristic of the type (l) of interaction between the two
sites; 	(l,nm) is the Kronecker delta equal to 1 if the type of
interaction between sites m and n is of type l (1 � l � 253),
zero otherwise. We adopted rcutoff

l values of 4.0 Å for B-B,
5.6 Å for B-S, and 6.8 Å for S-S interactions. The total
energy for a given decoy i reduces to the summation over
the effective PDPs pl, weighted by the numbers nl

i of
contacts of type l occurring in the examined decoy. The N
inequalities for each decoy i (1 � i � N) in Equation 1
become

�
l�1

253

pl�nl
i � n̂l� � �i (5)

where n̂l is the number of contacts of type l in the native
complex.

The adoption of a simplified model for protein structure
and energetics increases the tolerance to small conforma-
tional changes. It becomes, however, harder to distinguish
between native and native-like complexes. We use a
threshold root-mean-square deviation (RMSD) of 4.0 Å for
defining native-like conformations (TPs). Thus, the decoys
having RMSD � 4.0 Å form the set of FPs used for training
the PDPs.

Generation of a Population of Putative Docked
Conformations

A set of 400,000 decoys was generated for each complex
from the bound subunits, using the docking algorithm and
surface matching criteria proposed by Palma et al.1 Accord-
ingly, geometric fit was assessed from the number of
overlapping surface nodes between the receptor (large
protein) and the substrate (small protein). On average,
399,360 nonnative (FP) and 640 native-like structures
(TPs) were found for a given complex, which mapped to a
total of N � 25,159,988 inequalities (Eq. 5).

Numerical Solution of Inequalities

Each inequality divides the parameter space into two
regions, one accessible (any point within this space is a
valid solution), and the other excluded. A given inequality
may give rise to three outcomes: it may (1) reduce the
space allowed for the parameter set (most desirable), (2)
have no effect on the allowed space, or (3) impose an
impossible condition (reducing the allowed parameter
space to zero). A small subset of inequalities fell in the
third group. The problem was then to obtain an optimal set
of parameters that would satisfy most of the inequalities.
In some cases, especially with large complexes, the RMSD
criterion was observed to be too severe to capture native-
like conformations. A slight tilt of the substrate at the
binding site would, for example, lead to a large displace-
ment at the opposite (far) end of the substrate, and yield a
relatively high RMSD although most of the native interfa-
cial contacts were accurately captured. Penalizing such
cases would severely restrict the space accessible to the
PDPs. Such geometries are characterized by a relatively
small number of non-zero (nl

i � n̂l) terms (Eq. 5). We
filtered out the cases having �37 non-zero terms, which
led to a set of 25,069,820 inequalities. These were solved
with the interior point program BPMPD29 on an Opteron
246 processor with 8 GB of memory. Memory is the prime
limiting factor in the computations, determining the maxi-
mal number of inequalities that can be solved simulta-
neously. Solving a large number of inequalities (N � 25
millions in the present case) requires an iterative proce-

TABLE I. (Continued)

Complex

Results obtained from different ranking criteria
No. of decoys
with RMSD

� 4.0 Å

Shape PDP MJ

Ranka RMSDb Ranka RMSDb Ranka RMSDb

Miscellaneous
1FC2 21 3.22 5 2.95 11 3.22 87
1IGC 245 1.53 1 2.12 1,092 1.02 677
1AK4 15,120 3.42 2 2.50 426 3.82 17
1EFN 8 1.85 1 2.55 72 2.55 160
1ATN* 309 3.85 67 3.31 8 3.85 18
1EBP 3 1.63 5 1.21 2 1.63 181
1HWG NA NA NA 0
1YCS 779 2.16 1 2.16 9,366 2.16 28
aAmong 400,000 putative docked conformations.
bBetween the C coordinates of the computed and experimentally observed docked substrate.
*Designates the structures that have been subjected to jackknife tests (see text).
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dure, starting with a small set (about 200) of representa-
tive inequalities from each complex, and repeating the
calculations with larger subsets that include the inequali-
ties not satisfied at the preceding iteration. Usually three
iterations were sufficient to obtain the PDPs that satisfy
99.999% of the inequalities.

RESULTS
PDPs

The decoys generated by using the bound forms of the
complex-forming proteins show a diversity of conforma-
tions illustrated in Figure 1 for three examples. The figure
displays the distribution of the RMSDs from the native
structures for the 400,000 putative complexes, RMSDs
referring to the differences in substrate backbone coordi-
nates after optimal superposition of the receptors. The
generated dock structure is accepted to be native-like (TP)
if the corresponding RMSD is below 4Å. All decoys having
RMSD above this threshold were used as FPs in our LP
algorithms.

The resulting PDPs are presented in Table II. It is of
interest to compare the PDPs with knowledge-based poten-
tials commonly used for exploring protein folding or stabil-
ity characteristics.16,19,21,27,28 Figure 2(A) displays the
map of the docking potentials presently obtained; the
maps of two folding potentials, the Miyazawa-Jernigan
potentials27 and the TE potentials,21 are displayed at
Figure 2(B) and (C), respectively. Whereas folding and
docking potentials exhibit similarities, particular pairs
exhibit significant differences, which will be further dis-
cussed below.

Fig. 1. Distribution of the RMSD from native (correctly docked)
complex for the 400,000 putative docked structures, illustrated for three
complexes: 1YCS, 1BRS, and 2PCC. The RMSD is measured between
the C atoms of the substrate in the putative docked conformation and in
the native complex, after optimal superposition of the receptor proteins of
the two structures. Decoys showing an RMSD of up to 4.0 Å form the set
of native-like conformations (TPs). They amount to �0.16% of all
generated decoys, on average (over all the 63 cases). Those above the
threshold 4.0 Å provide the constraints implemented in the LP algorithm.
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Discriminating Ability of Docking Potentials

To evaluate the ability of the PDPs to distinguish
between native-like and nonnative structures, we rank-
ordered the 400,000 docked structures for each complex
according to their PDPs alone. Results are presented in
Table I, columns 4 and 5. In 32 of 63 complexes, a
native-like geometry (RMSD � 4 Å) was ranked in the first
place (lowest energy) and in 46 of 63 cases it was ranked

within the first five places, and finally among the top 100
places in 59 of 63 complexes. Thus, the PDPs exhibit a good
ability to detect the correctly docked conformations. For
two complexes, (1TOC) and (1HWG), no native-like struc-
ture could be sampled among the 400,000 putative docked
structures.

The last column in Table I lists the number of native-like
docked conformations generated for each complex. We note
that the ranking success is correlated with the ability of
the structure-generation methodology to sample native-
like conformations. A rank �10 is obtained when the
decoys set contains �50 native-like structures.

Comparison With the Performance of Other
Knowledge-Based Potentials

We tested the discriminating ability of three other sets
of knowledge-based potentials, the Miyazawa-Jernigan
(MJ)27 potentials, the Keskin et al. (KB)20 potentials, and
the Tobi et al. (TE)21 folding potentials.

The MJ solvent-mediated potentials were derived by a
quasi-chemical approximation from a set of soluble protein
subunits and represent S-S intramolecular interactions.
The KB potentials are also solvent-mediated, but derived
from the interfacial regions of a set of protein complexes
and multimeric proteins, and thereby represent S-S inter-
molecular interactions. The two sets are highly correlated
(correlation coefficient: 0.89), and their use in rank-
ordering the decoys also yield similar results, the MJ
potentials slightly outperforming the KB. The results for
the MJ potentials are presented in Table I, columns 6 and
7. A native-like orientation was ranked in the first position
in 24/63 cases, and in the top five position in 32/63 cases.
With the KB potentials (not shown) these figures de-
creased to 22/63 and 29/63, respectively. The relatively
high performance of the MJ and KB potentials may be
attributed to their incorporation of solvent mediation.

The TE potentials were constructed for discriminating
correctly folded structures, using the same LP technique,
requiring the energy of a sequence in its native fold to be
lower than that of any misfolded decoy. Decoys were
generated by threading 572 sequences onto the correspond-
ing set of structures.21 Upon using these (TE) potentials
for discriminating the corrected docked decoys, only in

TABLE III. Performance of Different Criteria for
Identifying Correctly Docked Proteins

Methodology for rank-
ordering the decoysa

Number of complexes whose native
structure is correctly identified in

the top-ranking R decoysb

R � 1 R � 5 R � 100

Shape complementarity 21 25 42
MJ potentials 24 32 41
KB potentials 22 29 40
Present PDPs 32 46 59
TE potentials for folding 4 7 16
a400,000 decoys generated for each complex.
bFrom a total set of 63 complexes, using bound structures of the
proteins in docking simulations.

Fig. 2. Interresidue contact energies for docking and folding. A: The
map corresponding to the presently obtained PDPs. B and C: The maps
for the MJ27 and the TE21 potentials. The last two potentials were obtained
from interresidue interactions in protein interiors rather than those at the
interface of transient complexes. Animo acids are indicated using (upper-
case) single-letter code; the amide nitrogen and the carbonyl oxygen are
indicated with the respective symbols n and o in panel A.
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seven cases was a native-like conformation ranked within
the top five positions, and in 16 cases in the top 100. The
performances of the different potentials are summarized
in Table III, supporting the utility of presently derived
PDPs.

How Effective Is Shape Complementarity in
Discriminating Correct Docking Geometries?

To assess the utility of shape complementarity, decoys
were rank-ordered based on the size of their matched
surface (i.e., number of shared surface nodes). The results
are presented in the columns 2 and 3 of Table III. A
native-like structure was found to rank in the first position
in 21/63 cases, and in the top five positions in 25/63 cases.
Notably, the native structure of about 1/3 of the complexes
can be effectively discriminated by shape complementarity
alone. This observation supports the important role of
shape, or contact topology, in defining stable structures.
Yet, the consideration of residue-specific PDPs increases
the number of correctly identified docked structures by
50% (Table III).

Dependence of the PDPs’ Performance on the
Types of Complexes

Figure 3 shows the success rate of the PDPs as a
function of the families of the examined complexes. Re-
sults are presented for five types of complexes: protease-
inhibitors, antigen-antibody complexes, enzyme-com-
plexes, G-proteins cell cycle signal transduction complexes,
and “miscellaneous.” The bars display the percent of
members in each group, for which a native-like geometry
ranked in the top 10 decoys. Three rank-ordering criteria—
shape complementarity, PDPs, and MJ potentials—are
compared.

The PDPs successfully discriminate the native structure
of �75% of each type of complex within the top-ranking 10
positions, except for the antigen-antibody complexes. Law-
rence and Colman30 suggested that the enzyme-inhibitor
and antigen-antibody complexes represent two different
classes of binding and that the latter as a whole exhibits
poorer shape complementarity at the interface, which is
also in accord with the reduced (to �60%) ability of the
PDP to assign a high rank to the native-like conformations
in this group. The same group shows, however, the largest
enhancement (by a factor of 3–4) in the fraction of cor-
rectly discriminated docked structures, compared with
those detected by MJ potentials or by shape complementa-
rity.

Validation of the PDPs by Jackknife Tests

The performance of the PDPs was further examined by
jackknife tests applied to eight complexes selected from
different families (indicated by asterisks in Table I). Six of
these complexes were accurately predicted by the PDPs as
the first ranking decoy, and two (1TX4 and 1 ATN) were
ranked in the 26th and 67th positions. New sets of
potentials were obtained for each case, by solving the
reduced set of inequalities in which the constraints associ-
ated with the tested proteins were not included. The
question was to find out whether the level of success
originally obtained with these complexes could be repro-
duced with the new PDPs. In six of eight cases, the
native-like structure was ranked in the first place as
before; in one case (ITX4), a native-like orientation was
ranked at the 98th place. The PDPs did not perform well in
1ATN, where the rank of the first native-like conformation
was 1,265th. A similar test was applied for a set of 20

TABLE IV. Jackknife Test

Complex name Ranka RMSDb

1ACB 6 2.83
1BTH 13 2.05
1EBP 3 1.21
1EFN 10 8.49
1FC2 —c —
1FIN 1 3.65
1FLE 1 1.54
1GUA 14 9.30
1MCT 7 1.09
1MEL 1 1.05
1TGS 1 1.28
1UDI 1 2.42
2JEL 2 2.81
2KAI 63 1.52
2PTC 1 3.39
2SNI 1 2.70
2TRC 2 2.29
3HFL 1 2.58
3SGB 3 3.38
3TPI 1 2.94

aAmong 400,000 putative docked conformations.
bBetween the C coordinates of the computed and experimentally
observed docked substrate.
cNo near-native complex (RMSD � 10) was found among the top 2,000
ranked decoys.

Fig. 3. Success rate of the PDPs in different families. Results are
presented for protease-inhibitor complexes (Pro-In), antigen-antibody
(Ag-Ab) complexes, enzyme complexes (En-Com), G-proteins, cell cycle,
signal transduction (G-Pro), and miscellaneous (Misc). The success rate
is based on the fraction of complexes whose native (or native-like)
structure is detected among the top-ranking 10 putative docked conforma-
tions, rank-ordered according to the indicated three criteria (shape
complementarity, present PDPs, and MJ potentials).
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proteins by excluding four proteins each time, solving the
reduced set of inequalities and ranking the test proteins
using the obtained potentials; results are presented in
Table IV. In 18/20 cases, a native-like structure (RMSD �
10) was ranked among the top 15 ranked orientations, in
one case it was ranked in the 63rd place, and in one case no
native-like complex was found among the top 2,000 ranked
orientations. The results confirmed the validity of the
potentials. The computing times required to score 400,000
putative docked conformations for 1ACB and 1UDI (Table
IV) were 40.3 and 49.25 min, respectively, using a Pentium
IV 2.8-GHz processor, which shows the computational
efficiency of the PDPs.

Rescoring CAPRI Predictions: Extension to the
Unbound Protein Docking Problem

We used our PDPs and the MJ potentials to score the
structures submitted for targets 1–9 in the CAPRI assess-
ment.31 Using energetic criteria, Comeau et al.2 (see Table
II therein) were able to rank correctly a near-native
structures (RMSD � 10 Å) for four of nine targets, and only
two of these near-native structures were ranked among
the top 10 clusters. The predicted complexes submitted by
the various participating groups are well-refined low-
energy decoys and therefore present a challenging task to
the PDPs. In the case of targets 4 and 5, no near-native
(RMSD � 10 Å) structure was found among the submitted
predictions, and therefore a near-native structure was
included by superimposing the unbound subunits onto the
coordinates of the complex structure.

The results are presented in Table V. Using the PDPs, in
seven of the nine targets a near-native complex is detected
among the top-ranking five low-energy structures and in
eight of the nine targets a near-native structure is ranked
in the top 10 low-energy structures. Using the MJ poten-
tials, however, four of the nine targets yielded a near-
native complex among the top-ranking five structures, and
six of nine targets led to a near-native structure among the
top 10 results. Therefore, the PDPs perform better than
the MJ potentials on this set of decoys. Some of the current
docking algorithms share comparable scoring functions
that are a combination of the ACE32 electrostatic and van
der Waals interactions. The present results suggest the

PDPs that are derived using a different (LP) approach may
considerably improve the prediction (or discriminatory)
ability of the scoring functions/potentials if combined with
the currently used scoring functions. Figure 4 shows the
RMSD versus energy plots for targets 5, 6, 8, and 9.

The Degree of Tolerance of the PDPs to the
Unbound Protein Conformation

Protein docking in the unbound case is a significantly
more challenging task than reconstruction of a complex
knowing the three-dimensional (3D) structure of its sub-
units in the bound form. The extent of structural change
that occurs upon complex formation may vary from local
changes in side-chain conformations to more global ones
that involve protein backbone or domain movements.

We tested the ability of the above derived PDPs to
discriminate between correctly docked and misdocked
complexes on 17 complexes using the unbound structures
of one or both proteins. Twelve of these test cases were
“unbound–unbound” problems, in the sense that the struc-
tures of both proteins in the unbound form were used as
input, and the remaining five were “bound–unbound”
cases, i.e., the bound form was used for one of the
proteins—receptor or substrate, whereas the unbound
form was taken for the other.

Results are presented in Table VI. Shape complementa-
rity alone (columns 2 and 3) led to very poor results for the
rank of the first native-like structure (RMSD � 4.0 Å)
within the list of rank-ordered putative docked structures.
Column 4 in Table VI presents the rank of the first
native-like structure in the set of decoys rank-ordered
according to the newly developed PDPs. In 10/17 cases, a
native-like structure is detected among the top-ranking
100 decoys out of the set of 400,000 generated for each
case; and in one case, it was ranked in the 604th place. In
5/17 cases where binding was accompanied by a large
conformational change in one of the complex subunits
(RMSD between bound and unbound forms �1.72 Å for
interfacial C atom, and �2.01Å for all atoms; see columns
6 and 7 in Table VI), the energy function failed to rank a
native-like structure within the first 2,000 decoys. The
docking algorithm failed to capture a native-like orienta-
tion within the original set of 400,000 docked orientations

TABLE V. Evaluation of CAPRI Structures Using Present PDPs

Properties of CAPRI targets PDP-based rank of
near-native complexc

MJ-based rank of
near-native complexca b

1 HPr kinase/HPr 102 8 4 5
2 Rotavirus VP6/Fab 88 4 7 5
3 Hemagglutinin/Fab HC63 90 4 48 18
4 -Amylase/camelide VH_1 66 1 2 40
5 -Amylase/camelide VH_2 65 1 3 27
6 -Amylase/camelide VH_3 65 9 4 4
7 T cell receptor/exotoxin A 70 19 1 8
8 Nidogen-G3/laminin EGF 179 12 3 6
9 LicT homodimer 162 32 1 1
aNumber of predicted complexes submitted for each CAPRI target.
bNumber of correctly predicted (hit) structures among those submitted.
cNear-native is defined by RMSD � 10 Å, in accord with Comeau et al.2

PROTEIN DOCKING POTENTIALS 977



Fig. 4. RMSD versus energy (based on PDPs) plot for four CAPRI targets using the PDPs (A–D) and the
MJ potentials (E–H). Results are shown for targets 5, 6, 8, and 9. The structures identified by the potentials
(Table V) are shown by the filled circles. Targets 5 and 6 are antibody-antigen complexes. None of the
submitted predictions for target 5 have ligand RMSD � 10 Å from the native structure; therefore a near-native
structure was included. For target 5, only two of the putative complexes have energy values below that of the
native structure upon using the PDPs, compared with 26 using the MJ potentials. In as much, for targets 6 and
8, the PDPs show improved discrimination ability compared with that of the MJ potentials. For target 9, both
potentials score the near-native structures better than any misdocked complex.
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for one complex, actin-DNase I (1ATN). The all-atoms
RMSD of the interfacial amino acids between the bound
(actin-ADP) and unbound (actin-ATP) forms is 6.38 Å in
this complex. These results indicate that the PDPs can
satisfactorily distinguish between near-native and mis-
docked complexes, provided that the subunit structural
changes accompanying binding do not exceed approxi-
mately 1.7 Å for C atoms.

Comparison Between Folding and Docking
Potentials

The TE folding potentials, shown in our previous work to
distinguish between native and nonnative folded struc-
tures, could not distinguish here between native-like and
nonnative docked structures (Table III). Figure 5(A) com-
pares the S-S contact potentials found in the two cases.
The two sets of potentials do not correlate (correlation
coefficient: 0.17). The same analysis also shows that the
PDPs do not correlate with the MJ potentials [Fig. 5(B);
correlation coefficient: 0.25] whereas the TE and the MJ
potentials yield a correlation coefficient of 0.57 [Fig. 5(C)].

The differences between folding and docking potentials
are consistent with the work of Lo Conte et al.18 that shows
that the amino acid composition at the interfaces of
complexes is different from that in the proteins interiors or
that at the interfaces of multimers. Cys-Cys interaction,
for example, is the third most attractive interaction in the
TE folding potential. However, it is the most repulsive
interaction in the present PDPs. This can be rationalized
by the fact that the Cys-Cys pairings tend to stabilize
folded structures via formation of a disulfide bond; how-
ever, formation of a covalent bond in protein interface is
undesirable because complexes are transient, and com-

plexes association and dissociation need to be synchro-
nized for normal cell function. Conversely, Arg-Trp interac-
tion is one of the most attractive interactions in the PDP,
whereas it is almost neutral in folding potentials. Arg-Tyr
interaction is very favorable PDP, but repulsive in the
folding potentials. Similarly Lys-Trp interaction is a favor-
able PDP, but slightly unfavorable in folding. Not surpris-
ingly, Arg, Tyr, and Trp are distinguished by their high
frequency at protein–protein interfaces’ hot spots.33 Hydro-
phobic interactions such as Phe-Phe, Leu-Leu, Ile-Val, and
Ile-Trp remain highly attractive in both potentials, whereas
Lys-Lys, Glu-Glu, and Arg-Gln are the most repulsive
interactions in both potentials.

DISCUSSION AND CONCLUSION

In this work, we constructed a new set of PDPs using an
LP technique at intermediate-resolution model that is
relatively insensitive to the precise orientations of side-
chains and still retains the ability to distinguish between
native and nonnative conformations. The PDPs were
shown to accurately distinguish between native-like and
nonnative conformations for different types of complexes
tested. The advantages of the presently proposed poten-
tials are twofold: (a) they enable us to score putative
docked structures very fast, and (b) they are relatively
insensitive to the precise geometry of the complex. These
advantages support the use of the PDPs in exhaustive
search protocols used in rigid-body docking algorithms.

The idea of using coarse-grained PDPs for protein–
protein interactions is not new. A challenge is, however, to
design the optimal set of potentials given the limitations
on the available data on transient complexes. Most of the
previously derived statistical potentials for protein dock-

TABLE VI. Ranking of Docked Orientations in the Unbound Case

Complex

Results based on
shape

complementarity
Results based on

docking potentials
RMSD between bound

and unbound forms

Rank RMSD Rank RMSD Receptora Substrateb

2PTC 9,729 1.54 6 3.34 0.31; 0.47 0.23; 1.21
1AVW 25,223 1.18 26 2.83 0.49; 1.12 0.33; 1.05
1MCT 1 0.49 57 1.98 0.51; 0.99 0.0; 0.0
3TPI 13,393 0.91 5 3.68 0.38; 0.60 0.32; 0.94
1TGS 1,763 0.54 2 0.64 4.22; 4.03 0.0; 0.0
1CHO 5,185 1.43 73 3.8 0.37; 0.96 0.61; 1.39
1ACB 43,591 2.34 26,402 3.37 0.90; 0.84 2.48; 3.14
1CBW 4,032 0.86 23 1.53 0.46; 0.70 0.30; 1.08
1PPF 17,375 1.88 604 2.71 0.0; 0.0 0.83; 1.53
1FLE 4,334 2.19 22,785 4.06 0.56; 1.17 2.47; 3.53
1CSE 370 0.82 17,901 3.7 0.33; 0.53 1.98; 3.07
1VFB 74,463 1.27 2,085 4.09 0.43; 0.77 1.72; 2.01
1NCA 14,604 1.23 7 3.1 0.0; 0.0 0.35; 0.80
1BRS 812 1.54 11 3.2 0.50; 0.86 1.17; 1.48
1YDR 8 0.73 11 3.56 0.94; 1.53 0.0; 0.0
1TX4 22,723 2.8 7,667 3.63 0.49; 1.55 2.57; 4.09
1ATN NF — NF — 6.34; 6.38 0.36; 0.69

aC atoms RMSD; all atoms RMSD, for the receptor interfacial amino acids after overlapping the bound
and unbound structures. Interfacial amino acids are defined as those whose distance is �6.5 Å from any
amino acid of the other complex subunit. Distance was measured between side-chains’ heavy atoms.
bC atoms RMSD; all atoms RMSD, for the substrate interfacial amino acids after overlapping the bound
and unbound structures.
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ing have used in their training combined sets intermolecu-
lar interactions in complexes and multimeric pro-
teins16,19,20 or even intramolecular interactions in proteins
domains.16 Moont et al.16 recently reevaluated a subset of
docked conformations generated by FTDock3 using differ-
ent potentials. Interestingly, the best results were found
with the potentials extracted from intramolecular interac-
tions in nonhomologous protein domains, as opposed to
intermolecular interactions in nonredundant complexes.

This is at odds with the fact that the amino acid composi-
tion at complexes’ interface is distinct from that in protein
interiors, and from that at oligomeric interfaces.18 A
possible explanation for the weaker performance of inter-
molecular potentials is the limited data exploited to derive
them using the statistical approaches. Using the LP
technique, we were able to alleviate this problem and
derive an optimal set of PDPs strictly from a set of
transient protein complexes, which outperform the com-
monly used MJ potentials (Table III). Most significantly,
the PDPs were able to identify (among the top 10 rank-
ordered structures) native-like complex structures.

The potentials tolerate small deviations in side-chain
conformations with respect to those in the unbound form, as
evidenced by the unbound–unbound docking tests (Table
VI). As an attempt to increase the tolerance of the potentials
to larger changes in side-chain orientations, we increased the
gap �i between the energy of the native complex structure
and that of the ith decoy by adopting a proportionality of the
form �i�min�RMSD�X̂a:X̂b, X̂a:Xb

i �, 10�, i.e., a higher �i value is
adopted if the RMSD is larger, whereas the PDPs were
constrained to be ��10� units. This approximation led, how-
ever, to infeasible solution, and we could not even obtain an
approximate solution that would satisfy the majority of the
inequalities. This suggests that further tolerance to side-
chain conformational changes may necessitate the adoption
of functional forms more sophisticated than the simple
expression (Eq. 3) presently adopted.

Comparison of the present PDPs with the folding poten-
tials reveals some similarities in interresidue interactions
in accord with their physical characteristics. However,
others seem to reflect biological functional aspects. A most
striking example is the Cys-Cys interactions that are very
attractive in Keskin et al.20 potential. In addition, our
potential favors interaction involving Arg, Tyr, and Trp.
This is consistent with the experimentally observed higher
frequency of these residues at protein interfaces’ hot
spots.33

The conclusions that can be drawn from the present
study, which may assist in future protein–protein docking
computations are: (i) the important role of contact topol-
ogy, evidenced by the ability of shape complementarity
criterion alone (or scoring function based on the “number”
of contacts) to accurately predict the docked structure in
1/3 of examined bound-docking cases, (ii) the possibility of
improving the former success rates by 100% upon adoption
of optimal PDPs, (iii) the qualitative and quantitative
differences between folding and docking potentials of
mean force and inadequacy of adopting folding potentials
for docking simulations.
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