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Introduction

COMMUNITY COMPUTING ALLOWS EVERYONE TO GET INVOLVED FROM HOME

Foldit is a computer game which enables you to contribute to cutting edge scientific research. Join this free
online game and help us to design new proteins to cure diseases, create new materials, and develop new
ways of capturing and storing energy.

Rosetta@home needs your help to determine the 3-dimensional shapes of proteins in research that may
Rosetta @ ho m e ultimately lead to finding cures for some major human diseases. By running the Rosetta program on your
computer while you don't need it you will help us speed up and extend our research in ways we couldn't
- Protein Folding, Design, and Docking possibly attempt without your help. You will also be helping our efforts at designing new proteins to fight
Dr. David Baker poesioy At jour hen o g e e ’

diseases such as HIV, Malaria, Cancer, and Alzheimers (See our Disease Related Research for more
information). Please join us in our efforts! Rosetta@home is not for profit.
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Robetta: Full-chain Protein Structure Prediction



Introduction

Why design proteins de novo?

e It is not clear how non-covalent interactions favor one specific native
structure over many other non-native structures.

* Protein design provides an opportunity to investigate the hypotheses
and experimentally assessing them.

What is the aim of this papers? 2

Investigate the rules that enable us to design a funnel-
shaped energy landscape for desired protein:

« Stabilizing the native state - positive design ‘

Effective energy

* Destabilizing non-native state - negative design 1

Conformational space

How the lengths of secondary structures - a-helix, 3-strand, and random
coils - contribute to the protein folding problem.



Secondary structure rules : definition of f3-junction
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Secondary structure rules : gf3-rule
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Secondary structure rules : definition of fa- and af- rule
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Secondary structure rules : fa- and af3- rule
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Secondary structure rules : emergent rules

a B8 L: s+/, =odd (/,=2), even (/,=5)
R: s+l, = even (/,=2), odd (/,=5)
s

L
I,=2 I,=5

lz I, s I, s+, F Fr F, Fe
4|2|even| 209 | 791 | 855 [ 145
4|3|odd| 796 | 204 | 181 | 819
5]/2]|odd| 850 | 150 | 289 | 711

R 5|3 |even| 147 | 853 | 823 177
6|2|even| 241 | 759 | 876 124
6|3|odd| 868 | 132 | 310 | 690
7]|2|odd| 950 | 50 | 373 | 627
7|3 |even| 311 | 689 | 826 | 174

L: s=odd (/=2), even (/=5)
R: s=even (I=2), odd (/=5)

s

4|even| 40 | 960 | 892 | 108
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Protein design pipeline

Design target
topology

| Select secondary structure lengths |

a

Build backbones Generate ~5000 backbones (No sidechains).
by fragment assembly -[ (Ca RMSD range ~ ZM
[ ]
Design sidechains 11 Perform 1 design run for each backbone:
(RosettaDesign) 1 x ~5000 structure-sequence pairs are produced.
[ ]

Relaxation &
x3 | of both sidechains and backbone

Select ~10 structures. Then, remove sidechains, and

| D"'Sig"Ed:""d"ms use the backbones for subsequent intensive sequence designs.
Design sidechains e | Perform ~10000 independent design runs for each backbone:
(RosettaDesign) i ~10 x ~10000 structure-sequence pairs are produced.
v
Relaxation

x5 | of both sidechains and backbhone

b |

[

[ targe hydrophobics (Ile, Leu, Phe) in core |
- | No exposed hydrophobic residues | E
" Packing ? - ]
(RosettaHoles) | Inward-pointing pelar residues at edge strands | ;
| —|LOcal sequence-structure T
compatibility ? &
¥ ~100 structure-sequence pairs are selected.
Designed proteins Buried polar and exposed hydrophobic residues .
) are mutated by Foldit. Conformational space
Explore energy landscape
(Rosetta ab initio
structure prediction)

| Experimental characterization I—["’lﬂ designs




Protein design pipeline

Build the sequence-independent backbone model:

* Assign the secondary structures to backbone;

* Select the lengths of secondary structures and connecting
loops based on rules.

The Ramachandran Plot.
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Protein design pipeline

Build the sequence-independent backbone model:
* Assign the secondary structures to backbone;

* Select the lengths of secondary structures and connecting

loops based on rules.

A. Run Monte Carlo simulations that minimize a potential

function:

Potential = hydrogen bonds + repulsive force + compaction
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Protein design pipeline

Build the sequence-independent backbone model:

* Assign the secondary structures to backbone;

* Select the lengths of secondary structures and connecting
loops based on rules.

A. Run Monte Carlo simulations that minimize a potential
function:

Potential = hydrogen bonds + repulsive force + compaction

B. Design side chains that favor/stabilize the secondary
structures and the tertiary structure.




Protein design pipeline

Build the sequence-independent backbone model:

* Assign the secondary structures to backbone;

* Select the lengths of secondary structures and connecting
loops based on rules.

A. Run Monte Carlo simulations that minimize a potential
function:

Potential = hydrogen bonds + repulsive force + compaction

B. Design side chains that favor/stabilize the secondary
structures and the tertiary structure.

C. Relax the backbone and side chains all together.




De novo design: 5 representative structures

Ferredoxin-like Rossmann2x2 [F-like P-loop2x2 Rossmann3x1

Fold-I: Bappop Fold-Il: BapaBafo.  Fold-lll: Boaopp  Fold-IV: BoBoBopo  Fold-V: BopoBoper
2 3 2

3 2 4

2 2 2 4
side chain
R W
c c c

B1a1B2P83%284
1)

(Bray) alayB2)p (a1 B283) L (B2B302) R (B3az) a(azfs)

BLAST E-value < 0.02 against the NCBI nr database



Simulated energy landscapes
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Experimental characterization: Circular Dichroism (CD)

The signal of CD is the ellipticity of the circularly polarized light.

* The intensity of light will be reduced by propagating through a sample.

« If the absorptions of left and right circularly polarized light are different, then

the line becomes an ellipse.




Experimental characterization: Circular Dichroism (CD)

molar ellipticity per residue x 107
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Alpha helix has negative bands at 222nm
and 208nm and a positive one at 190nm.

Beta sheet shows a negative band at 218
nm and a positive one at 196 nm.

Random coil has a positive band at 212 nm
and a negative one around 195 nm.

From Dr.Sandy Asher’s slides



Experimental characterization: Circular Dichroism (CD)
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Experimental characterization: Chemical denaturation

CD at 220 nm
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Experimental characterization: 2D-NMR (HSQC)

I5N (ppm)
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“The two-dimensional 'H-1°N Heteronuclear Single Quantum Coherence (HSQC) spectra show

the expected number of well-dispersed sharp peaks.”




Experimental-Simulation comparison

Di-_5 Di-Il_10 Di-lll_14

RMSD < 2A



Experimental characterization: Circular Dichroism (CD)

Light is essentially a electromagnetic field.
* The natural light fluctuates in every directions.

* The linear polarized light fluctuates in one direction.




Experimental characterization: Circular Dichroism (CD)

Circularly polarized light is the linear combination of two linearly polarized light.

* There are left and right circularly polarized.

* The combination of two mirror symmetric circularly polarized light is reduced

to a linearly polarized light.




