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Motivation

e Cell signaling lends itself very naturally to information theory analysis
e Response to paper published in recently:

o R.Cheong, A. Rhee, C. J. Wang, |. Nemenman, A. Levchenko, Information transduction
capacity of noisy biochemical signaling networks. Science 334, 354-358 (2011).

o Analyzed information transmission in TNF pathway

o Showed that information between extracellular signal and cellular response is less that 1
bit.

o  Cellular response only measured with scalar variables



Introduction

Compare the Information Transmission in _Cellular Responses

e Signal to Noise Ratio (SNR) e Scalar Responses

e Mutual Information e Dynamic Responses
For Signaling Networks With Stochasticity:

e ERK e [Intrinsic Noise

o (Ca’* e Extrinsic Noise

e NF-kB



Overview

e Experimental Cellular
Response Measurement

e Information Transmission
Analysis

e Model Simulation and Analysis
of Noisy Signaling (Erk Only)

Erk Ca2t NFkB
Measure |EKARev-NES |Fluo-4 translocation
FRET reporter |indicator dye |of EYFP-p65
Stimulus |EGF ATP LPS
Doses (#) |8-16/expmt 6 / expmt 9/ expmt
Cells 825,001 80,566 4,554
Time (step) |60 min (1-3 min)l 15 min (3 sec)| 18 hr (5 min)
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Experimental Cellular Response Measurement

|Erk Ca’t |NFkB
Measure |EKARev-NES |Fluo-4 translocation
FRET reporter |indicator dye |of EYFP-p65
Stimulus |EGF ATP LPS
Doses (#) |8-16/expmt 6 / expmt 9 / expmt
Cells 825,001 80,566 4,554
Time (step) 160 min (1-3 min)l 15 min (3 sec)| 18 hr (5 min)




Image Analysis (ERK and Ca?*
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Image Analysis (NF

V.NFkB Measurement
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Fig. S6

NFxB measurement. (A) We calculate values that correspond to the nuclear (blue, me-
dian/mode) and cytoplasmic (green, higher mode) intensity distributions, which show iden-
tical decreasing trends over time (as a function of changing cell morphology). (B) Raw
nuclear trajectories show cells that are at basal level before stimulation, and eventually sta-
bilize after a maximum 10-14 hrs. We use this information, along with the shape computed
from each cell’s cytoplasmic trajectory, to calculate a true baseline for each cell. (C) Final,
corrected and normalized nuclear trajectories can be directly compared.

I. Cell identification (DIC/phase contrast)

Fig. S4

Initial cell and nucleus identification. (A) Raw DIC image. (B) Sobel edge-magnitude
image. (C) Thresholded edge image. (D) Final foreground/cellular boundaries. (E) Raw
nuclear image (H2B-mCherry). (F) Strong objects found by scanning edge image (G)
Weaker objects found in remaining candidate areas - pixels are ranked by intensity, and
appropriately concentric objects are identified as nuclei. (H) Final nuclear boundaries.

Ill. Tracking/error correction

IV. Shape-based segmentation
E

Fig. S5

Tracking and segmentation. (A-D) 4 consecutive images are individually processed. then
tracked together. Voting on objects across the stack allows easy identification and correc-
tion of false positives (A, red) and false negatives (B and C, red). (E) Segmentation begins
using the nuclear and cellular boundaries identified earlier. (F) The morphological skeleton
is computed, then pruned to areas connecting each nuclei. (G) We identify the local max-
ima of the distance transformation along the pruned skeleton, as candidate splitting points.
(H) Final segmented image.



Image Analysis R

esults

[Erk |ca2* |NFxkB
Measure |EKARev-NES |Fluo-4 translocation
FRET reporter |indicator dye |of EYFP-p65
Stimulus  |EGF ATP LPS
Doses (#) |8-16/expmt 6/ expmt 9/ expmt
Cells 825,001 80,566 4,554

Time (step) 160 min (1-3 min)l 15 min (3 sec)l 18 hr (5 min)
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Mutual Information

General In paper
e Measurement of mutual dependence of e Measurement of the mutual
two variables dependence of the extracellular ligand
e Has a negative correlation to the signal (S) and the cellular response (R)

similarity between a joint distribution of

2 variables and the product of their o "Ry h
marginal distributions. : Ry ri2
e When calculated using log base 2 has s=|:|lr=|’ | sssRr=]|"° R ST
the unit of bits. o Ry i - |
L5 _R./l'n._ | 77 n; |

e m = # of levels of the extracellular ligand
signal concentration
e n= # of timepoint measurements



Information Transmission Calculation
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Fig. §7
General scheme for estimation of information transmission based on experimentally ob-
tained conditional responses (R) to scalar input levels (S).



How Mutual Information was Calculated

I(R:S) = H(R) - H(R|S).  Hual¥) == [ f@loga(f@)is)

1
Hgig(X) = —/0 loga(f(z))dy. (2.3)

where y = ff , [ (t))dt is the cumulative probability density. We can estimate y by the
cumulative probability distribution of /N, observations using

Hyi(X) = =) _ djloga(f(x;)), (2.4)

where 9, is the probability of observing z;, P(X = x;).



How Mutual Information was Calculated

I(R:S) = H(R) — H(R|S).

R = = wl (R =71|S = s, n;
f(R=r) w;q FR=7]S = su) Haar(RilS = 1) = Z%"’ﬂ? (F(R; = rij|S = 5)).
j=1
Hqitr(R) = =) Y dijloga(f(R = rij))
i=1 j=1
. ", Hgire(R|S) = Zq Hgirr(R;|S = s;) Zq Z logg f(R; = rij|S = 51)).
Hin(R) = =Y LN " logs(F(R = 147)). -

g = probability of the ligand concentration _



KNN Estimator

Fig. S8

Representation of k-nearest neighbor calculation for & = 5. The blue circle radius is the
distance to the fifth closest neighbor within the same input response represented by blue
points. The green circle radius is the distance to the fifth closest neighbor to a different

input response (green points).

f(x|X)

1. Estimate probability density (PD) using KNN estimator

(R = 13j|S = sw) =

k
NuVez(R = 13j|S = sy)f

!

!

2. Calculate conditional PDs
f(Ri = 135S = )

2. Calculate non-conditional PDs
fR=15)= Y afR=rglS= s)
w=1




Plugging In KNN Estimate

I(R;S) = H(R) — H(R|S).

m n; m i n
4 k % k
Hyw(RIS) ==Y £V 1 . Hgg(R) ==Y — ) loga( ) aqu )
(1) = =3 S ot 2y 20 e R




Problem : We don’t know g

We can use maximal information transfer
instead.

C(R;5) = max{I(R: $)}.

where Q = [q1, 49, ..., @), such that X7, g; = 1and ¢; > 0




Information Transmission Calculation Review
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General scheme for estimation of information transmission based on experimentally ob-
tained conditional responses (R) to scalar input levels (S).



Single Time Point Mutual Information vs Dynamic Mutual Information
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Scalar Mutual Information vs Dynamic Mutual Information

2

1 Comparison of the multivariate vector (V)

ERK measurement to the following scalar
= o = & responses: maximum response amplitude (A),
MMBasuie maximum response time (T), maximal rate of
2 response (D), ratio of maximum response
Ca?t amplitude to initial response amplitude (R).

Error bars are SEMs from six biological
replicates for ERK and four for Ca%*, and SDs
from five jackknife iterations for NF-kB
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Simulation of Noisy Signaling

A standard amplifier B Negative feedback
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O. E. Sturm, R. Orton, J. Grindlay, M. Birtwistle, V. Vyshemirsky, D.
Gilbert, M. Calder, A. Pitt, B. Kholodenko, W. Kolch, The mammalian
MAPK/ERK pathway exhibits properties of a negative feedback
amplifier. Sci. Signal. 3, ra90 (2010).



Does the model agree with the experimental results?
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Model simulation comparison to experimental ERK FRET trajectories. (A) Mean response
of ERK FRET sensor to persistent EGF input. (B) ERKpp response trajectories from sim-
ulations of the ERK model (Sturm ez al ) for increasing amounts of RasGTP.



Adding Noise to the Model

Intrinsic Noise Extrinsic Noise

e Stochasticity inherent to e Variability in cellular states
biochemical reactions e Fluctuations due to extrinsic noise in

e Adds uncertainty in all time each time point are deterministically
dimensions independently of one dependent on one another
another e Simulated in the model by randomly

e Simulated in the model as a selecting MEK and ERK values from a
Gaussian random variable added uniform distribution that varies a max of
to the response 20% from the values used by Sturm et.

al



Effect of noise in the model on mutua
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Information transmission capacity of dynamic (blue, green) and static (red) calculated
based on the full computational model of ERK where the extrinsic (all) noise and intrinsic

Input signal (bits)

(green) noise contributed to cell response variability.

| information



Dynamic responses can eliminate information loss

info (bits)

output (bits)

"extrinsic" gain

2 e

,//

17" ""scalar TS ]

"intrinsic" gain

1 2 3 4

5

6 7 8

# of measurements

1 2

3

input (bits)

(A) Graphical representation of the
analytical expression for the gain in
mutual information from overcoming
intrinsic (cyan) and extrinsic (magenta)
noise sources obtained from random
linear Gaussian inputs and outputs with
three parameters .

(B) Information transmission capacity of
dynamic (orange) and static (maximal
response, purple) responses calculated
using simulated trajectories from the
computational model of ERK with only
the extrinsic noise contributing to cell
response variability.



Dynamics vs Scalar Measurements (A closer look)
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(C) Example of ERK trajectory variability for two
different inputs levels (red and blue). Variability was
generated using a uniform distribution of a single
parameter, MEK values, that was varied by +20%.

(D). Two-dimensional histogram (center) and marginal
distributions (left and bottom) for the two input levels
(shown in red and blue) at two time points (t =9 and
24 min) from the trajectories in (C). Because only a
single parameter was varied, the responses vary on a
1D curve. As a result, although the univariate
marginal distributions show substantial response
overlap, the 2D distribution shows completely
separated response levels (inset).



Adding noise to an experimental model of ERK
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Data from inhibitor experiments. The columns represent different MEK inhibitor (U0126)
concentrations. The color-coded rows are different EGF induction levels. The plots show
cell distribution with time where darker tint represents higher probability density. The
addition of inhibitor leads to reduced ERK response due to decrease in signal propagation
through the ERK pathway.



Estimating Noise from the Experimental Data
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(A) Using our data, intrinsic noise was estimated by
the mean of the mean of squared errors between
successive ERK trajectory points (red). Total noise was
estimated by the mean of squared errors (cyan)
between single ERK trajectory and average of all
trajectories (green). Extrinsic ratio was obtained from
the difference between total noise and intrinsic noise.
The mean ratio of intrinsic to extrinsic noise was
estimated to be 0:024.

(B)We fit a Hill function to the data and calculated the
mean squared error between the fit for each cell
(intrinsic noise) and between the fit for all points and
each cell (total noise). The IER was estimated to be 1:
14

(C) For increasing the time step in our estimate we
find an increase in our estimate of IER.



Signal to Noise Ratio(SNR)

SNR:

4.3.1 Signal-to-Noise Ratio (SNR)

Value that represent how strong the To calculate ERK signal-to-noise ratio (SNR), we defined the signal magnitude o2 as
response iS com pa red to how stron g the the variance of average responses over all m input levels of EGF:

noise is.
We can use SNR as summary of the

X . . 2_i m i m i Nw ‘ _i ni B )
amount of noise in the signal. o2 = m;((m; — ;rw,) - ;m)) 4.1)

Noise magnitude was defined as the average of the variances of n; responses to a single
input level of EGF:

L M
2 Z Z Z ) )2
Op = (ni (n Tiw Tz]) (4.2)

i=1 j=1  tw=1
SNR is then 02 /a2.



Comparing SNR to Information Transfer

Experimental measurement of the mutual
information between ERK response and EGF
measured as a function of the response signal-to-
noise ratio (SNR). Each marker represents
calculations of SNR and mutual information from the
dynamic (dot) and maximal scalar (cross) responses
of cells from an eight-well dose-response experiment.
Data shown are calculated based on single-cell
responses from 29 experiments with six doses of
MEK inhibitor U0126 . Lines represent theoretical
predictions of the mutual information as a function of
SNR for three types of responses: static scalar (red
line), redundant measurements where the
multivariate response has no dynamics (dark and
light blue lines) calculated based on two independent
estimates of IER, and dynamic response (orange) that
can mitigate both intrinsic and extrinsic noise.



Questions?
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