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From MD Trajectories to Hypotheses

@ Proteins constitute high-dimensional systems

@ The majority of those dimensions provide no meaningful information
about major conformational changes

@ We want to reduce the dimensionality to include only those features
that provide information about a small number of major states, and
their transition rates
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HMM Background
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HMM and MD

This formulation applies naturally to analyzing MD trajectories - multiple
microstates should correspond to the same macrostate
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L1-Regularization

A L1 regularization B L2 regularization
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L1 regularization can be used for feature selection - produces a sparse
result because the constraint is able to drive some weights to 0. Because
L, regularization is rotationally invariant, no benefit can be derived from
searching for an extremum along a specific axis; Lj provides a clear benefit
associated with reducing the number of axes along which we search.
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L1-Regularization

The Lp-regularized loss function F(x) = f(x) + A||x||3 is smooth; the
optimum is a stationary point, which becomes smaller as A increases but it
won't be 0 unless f/(0) = 0.

The L;-regularized loss function F(x) = f(x) + A||x||1 is not smooth, and
it is not differentiable at 0. The optimum of a function is either the point
with a derivative of 0 or an irregularity (a corner or kink), so the optimum
of the Li-regularized loss function may be 0 even if that is not a stationary
point.

The authors further facilitate sparsity by including adaptive weights that
increase the penalty for non informative degrees of freedom.
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Detailed Balance

OOO/\O O
o O 0 00
00 O OOO

No net flows!

Vk, K 7k T = mpr T

where 7 is the stationary distribution of T.
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Given Y observed data, X missing data, and unknown parameters 6, we
can compute a maximum likelihood estimate of the parameters using the
marginal likelihood of the observed data

L(6;Y)=p(Y|0) = Zp (Y, X|0)

If X is a sequence of events (e.g. state transitions), this likelihood grows
exponentially with the length of the sequence. Instead we can search for
the maximum likelihood estimate iteratively:

E step: Calculate the expected value of the log likelihood function using
the current estimate of the parameters

Q(g‘g(t)) = EX|Y,theta(f)[/OgL(9; Y, X)]
M step: Find the parameter values that maximize @

00+ = argmaxQ(0]6(1))
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Their M-Step
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where ¢(x;; 1k, Xk) is a Gaussian density with mean vector
tk = (Hk,1, -5 ftk,p) @and covariance matrix .

We want to update the parameter estimates via

glt+1) — argmaxQ, (6, H(t)), equivalent to
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Timescale

We care about the slow dynamics, corresponding to observable dynamical
modes, given by

b
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Thus the HMM framework enables us to estimate physical rates so we can
predict values such as the mean passage time.
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GPU Implementation is Best

@ GPU implementation is 15X faster than CPU parallelized
implementation

@ Double-precision required to avoid floating point errors during
computation of the forward-backward algorithm
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Ubiquitin
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c-Src Tyrosine Kinase
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The End
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