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BACKGROUND

Short-term synaptic plasticity in the deterministic
Tsodyks—Markram model leads to unpredictable
network dynamics
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The human brain — a spongy, three-pound mass
of tissue — is the most complex living structure in
the known universe.
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SIGNIFICANCE

+* With increasing life expectancy, neurological disorders drastically increase.
(WHO)

+* 1000+ diseases related to brain result in hospitalization and loss in productivity.
(SFN)

X8 Storage capacity of brain is larger than any supercomputer and the complexity of

network is way larger than a social network. (SFN)




BACKGROUND

® STSP : Temporal adjustment of synaptic strength in time-scales of ms to mins.

® STSP affects:
* Network dynamics and brain function
* Depression acts as activity regulator mechanism.

* Facilitation is a way of implementing working memory.




BACKGROUND

® Synaptic enhancement (facilitation, augmentation, potentiation)
= ALL presynaptic mechanisms

= |ncrease in mean number of transmitter quanta without change in quantal size or postsynaptic

effectiveness
Increased probability of release and perhaps an increased number of release sites
= Crucial role of calcium

Residual presynaptic intracellular calcium




BACKGROUND

® Synaptic depression
= MOSTLY presynaptic
= Depletion of pool of vesicles
= Decrease in number of transmitter quanta

Decrease in probability of release and perhaps a reduced release efficacy




MOTIVATION

*® Prove the existence of highly irregular and chaotic-like dynamics in the TM

model.

® |dentifying Shilnikov Chaos to account irregularities in the overall network

activity.
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METHODS

¢ XPPAUT AUTO
* XPPAUT (freeware, simulation and analysis of differential equation models)
* AUTO featureis used to obtain bifurcation diagram of the system.

* Uses continuation techniques to numerically analyze sets of differential
equations in an efficient manner
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METHODS

* Gillespie Algorithm
* Generates a statistically correct trajectory of a stochastic equation

*® Uses two random numbers to generate long trajectories, one for timestep and one for

next state.
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METHODS

* Gillespie Algorithm
* EXAMPLE
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METHODS

* Gillespie Algorithm
* EXAMPLE

» Step |: Generate two random numbers r, and r, in the
range (0, 1)

» Step 2: Compute the following variables
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METHODS

* Gillespie Algorithm
* EXAMPLE
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METHODS

* Gillespie Algorithm
* EXAMPLE

if0 <ry <ay/ag;
if ay/ao < 12 < (a1 + a2)/a0;
if (a1 + a2)/ag < 12 < (a1 + a2 + as)/ag;
if (e +az2+a3)/ag<ra< 1;

if0 <1y < ay/ag;
if a1 /ag < 13 < (a1 + az2)/ag;

if (a1 + a2)/ag < 12 < (1 + a2 + a3)/ag;

if (a +az+a3)/ag<ra < 1;
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METHODS

® Shilnikov Homoclinic Chaos

-px—wy + Fi(x)y2),
wx—-py + F(xy,2),
7z + Fi(x,y,2),
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RESULTS

* Stability Analysis of System SNP @ 1=-1.77

HO @ I=-1.76
Shilnikov Chaos

SNP @ I=-1.14

Up fixed point

SN @ I=-1.86

H@ I=-1.84

Down fixed point
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RESULTS

® Shilnikov Homoclinic Bifurcation
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RESULTS

Far from homoclinic bifurcation

8 VoROe;

Closer to homoclinic bifurcation

At homoclinic bifurcation
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RESULTS

® Influence of Noise on Network Dynamics near Shilnikov Homoclinic Bifurcation

r.(n.:)-Ns(lu(:)x(:)%+lo)/ t, T-(n)==n/r,

{i(:) =1p! (1 =x(t)) =u(t)x()n(r)/N
u(t)= =75 (u(t)=U) + U(1 =u(t))n(1)/N.
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RESULTS

® Influence of Noise on Network Dynamics near Shilnikov Homoclinic Bifurcation

1=-1.77 1=-1.9
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time(s)
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RESULTS
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network activity n/N (Hz)

Spring board like dynamics
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RESULTS

*® Derivation of mean field description in large N limit

%P(n.l)- Ty(n=1)P(n=1,0)+T-(n+1.0)P(n +1.1)

= [Ts(n) + Ty (n.0)] P(n,1).

‘%P(z.l) =N(T,(z=1/N)P(z=1/N.1)

+T_(z+1/N.OP(z+ 1IN.1) = [T (2) + T, (2.0)|P(z.1)).

To(n.l)-NS(Ju(l)x(l)%-flo)/r. T-(n)= =n/r,
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RESULTS

*® Derivation of mean field description in large N limit:

* Kramers-Moyal expansion of the master equation

wdz=A(z.x.u)dt + -JlﬁB(z.x.u)dW(f)

dyv= (23 (1 =x(1)) =u x z)dt
du = (=77 (u(t) = U) + U(1 =u)z)dt

Az xu)=SJuxz+lo)=z
B(z.x.u)=S(Juxz+ly) +z,
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RESULTS

* Derivation of mean field description in large N limit:
*N->wn

() = 75 (1 =x(0)) =u(Op()E()

{ tE(t) = = E(t) + S(Ju(ey(0)E(r) + Io)
u(t)= =75 (u(t) =U) + U (1 =u(t))E(r).

27



CONCLUSION

® Chaos is existing in the simple TM model for STSP dynamics.
® The chaos explains the irregularities in large scale brain dynamics.
* Effects of periodic or balanced inputs can be investigated.

* Feedback loop between inhibition and excitation is a reasonable candidate

for self organizing tuning mechanism to the edge of chaos.
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