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Background

» Molecular Docking

» Model binding between small molecules
and proteins at atomic scale

» Important for drug discovery projects

» Computationally screen libraries of small
molecules against known protein
structure

» Two stages:
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» Pose identification




Scoring Functions

» Force field

» Calculate potential energy of system as sum of energy terms from interactions
between bonded and non-bonded atoms

» Empirical parameter estimations

» Knowledge-based

» 3D coordinates of complex being tested is compared against library of known
coordinates

» Scored based on how similar it is to known complexes
» Empirical
» Counts number of certain types of interactions between protein and ligand

» Uses scaled factors such as H-bonding, hydrophobic interactions, etc.




Random Forests

» Uses decision trees grown from bootstrap
samples for classification or regression

» Picks set of N complexes with replacement

» At each node picks best split from random amount of
features

» Grows many trees and votes or averages
among them

» Measure importance of features by
evaluating change in error of randomly
permuted out-of-box samples




Goals

» Use machine learning to develop a scoring function that
isn’t based on predetermined forms

» Allows for more accurate scoring of complexes that don’t fit
modeling assumptions

» Use resampling techniques to prevent over fitting to training
dataset

» Estimate feature importance




Methods

» Pre-processing

» Feature defined as total number of times a pair of atoms from protein and ligand
from following sets occurs

{P()}_, ={CN,OEPSCLBLI} {L®)}_,={C,N,0.EPS,CLBL])
» Pair is counted if atoms are within 12 A
» Leads to vector of 36 features
 =m\ |V
» Dataset generatedas D={(* ")} y=-logik

» Trained using 1105 complexes and tested against 195 randomly picked from set.




Methods

» Scoring function
: : RFG™; m )Elzp T,G"imy) Tp:N°—>Rtvp
» Use CART algorithm (Breiman et. al., 1984) to grow I p Lap= TP T AP
each tree
» Score defined as average of all trees for given complex
» Resampling

» Used to quickly validate data by testing on out-of-box MSE®%B(my )= — o Z,,_ v (y(ro_T GO, muy))
samples Y1 ' | nelyO®

» Mean square error (MSE)

» Mgy With min MSE value used for RF score.




R= 0.953 on training set ( 1105 complexes)

:
» Scoring functions compared by their Pearson’s e
correlation coefficient (R), Spearman’s correlation

coefficient (R;), standard deviation (SD), and root : & 4 ¥ & .
mean square error (RMSE). oo o o0

Fig. 1. RF-Score reproduces its training data with very high accuracy

» Re p rod u CeS t ra.i n .i n g Set We l l (Pearson’s correlation coefficient R =0.953 and RMSE=0.74).

R= 0.776 on independent test set ( 195 complexes)

» R=0.953, RMSE=0.74 "
» Prediction on out-of-box samples also performs well g >
» R=0.699, RMSE=1.52 &
Similar performance on 195 complex test data g °
» R=0.776, RMSE=1.58 gﬂ-:
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Fig. 3. RF-Score predicts the test data with high accuracy (Pearson’s
correlation coefficient R=0.776 and RMSE = 1.58).




Results

Table 1. Dependence of RFE-Score on size of training set (Nirain)

Ngain R R, RMSE  mpq RMSECPB  ARMSE

» RF-Score performance increases 105 0776 0762 158

5 1.52 0.06
. . s 900 0.750  0.740 1.63 9 1.51 0.12
W]th SI1ZE Of tra]n]ng data 700 0.734  0.735 1.69 4 1.52 0.17
500 0.685  0.684 1.77 6 1.44 0.33
300 0.609  0.628 1.90 10 1.46 0.44

100 0562 0572 201 7 1.56




Results

Variable Importance
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Fig. 2. Estimation of feature importance based on internal validation data.
Overall, it shows the importance of each type of protein-ligand contact across
training complexes, which are by construction representative of the entire
PDB.




Results

» Results of testing against PDBbind benchmark
compared to those of other commercial and
academic scoring functions

» Significantly improved correlation coefficients
and standard deviation over state of the art

Table 2. Performance of scoring functions on the PDBbind benchmark

Scoring function R R SD
RF-Score 0.776
X-Score::HMScore 0.644
DrugScoreSP 0.569
SYBYL::ChemScore 0.555
DS::PLP1 0.545
GOLD::ASP 0.534
SYBYL::G-Score 0.492
DS::LUDI3 0.487
DS::LigScore2 0.464
GlideScore-XP 0.457
DS::PMF 0.445
GOLD::ChemScore 0.441
SYBYL::D-Score 0.392
DS::Jain 0.316
GOLD::GoldScore 0.295
SYBYL::PMF-Score 0.268
SYBYL::F-Score 0.216




Conclusions

» Authors were able to successfully generate scoring
function through non-parametric machine learning that
improves on state-of-the-art.

» Performance shown to increase with amount of training
data, so method should continue to improve with
increasing in docking data available.




