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Preface

The course that I teach desperately needed a text book. This is it, or the beginnings of it.
This text does not cover all the material that is covered in the lectures, but will continue to
evolve. Notably, many figures are missing.

Little of the material in here is not presented in greater depth in other texts, but it is
convenient to have everything in one place.

The level is of introductory graduate students in computational biology. I have made
every effort to include necessary background information on mathematics and physics to
make the “real” material accessible to students who lack strong backgrounds in math and
physics.

There are no mathematical proofs in this text. Some equations are derived, but I don’t use
theorems and lemmas. Feel free to consult a mathematician if you don’t believe something
presented.

iii



Chapter 1

A Crash Course in Linear Algebra

You will need to understand some math to learn protein structural dynamics. There is no
way around it. One chapter is not enough to teach all the math that is needed, but it
will touch on some of the important points and familiarize you with the style and notation
that will be used (hopefully) consistently throughout this text. This is a chapter on linear
algebra, which deals with solving multiple equations simultaneously. Conceptually, it is the
mathematics of knowing which way things are pointing and how objects transform other
objects.

1.1 The problem with hyperspace

Linear algebra deals with spaces of high dimension, which can be a tough concept to grasp
when we only live in a 3D world. Even though it can be difficult to imagine higher dimen-
sions, the mathematics involved in 10 or 20 or infinite dimensions is essentially the same
as that involved in three dimensions. There are mathematical formulas for manipulating
hyperspheres and hypercubes and other fantastical objects that we can’t visualize, but the
math is the same, and it all boils down to recursion. The general strategy is first to become
comfortable with ideas in a one dimensional space. Then we look at the same concepts in
two dimensions, which is still easy to visualize. If we understand how ideas change between
one and two dimensions, then we can straightforwardly add a third dimension. And if we
know how to add a third dimension, then we can add a fourth dimension, and so on.

A dimension is an axis on a graph. Anything that can be quantified constitutes its
own one dimensional space, or its own one dimensional subspace of some higher dimensional
space. We are familiar with seeing two dimensional plots. Any two-column data table can be
plotted in a 2D graph. For example, a biologist studying a population of critters may record
the weight and length of individuals sampled from the population. Length and weight are
two dimensions in which the population is measured, and we can talk about the length-weight
space and its properties.

The dimensions of any space are the properties that are being quantified. In compu-
tational biology we might hear about the 20-dimensional amino acid space, or the 20N

dimensional sequence space of a protein with N residues. In the context of protein struc-
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CHAPTER 1. A CRASH COURSE IN LINEAR ALGEBRA 2

Figure 1.1: An example of a two-dimensional space, possibly corresponding to biometrics
of critters. The position of critter i in this space is given by the vector ri = (liwi)

T , corre-
sponding to the ordered pair li, wi).

tural dynamics, we will be considering systems of n dimensions, where n is usually on the
order of the number of residues in a protein.

1.2 A note on notation

Throughout this text, scalars will appear in italics, vectors will be lowercase and bold faced,
and matrices will be uppercase and bold faced. All of these terms will be defined shortly.
There may be exceptions to these rules, for example when vectors are combined to form a
matrix, but hopefully the mathematics will be clear from the context.

Object Appearance Description
Scalar a or A A number
Vector x A column of numbers

Vector component xi The number in the ith row of x
Vector transpose x̃ or xT A row of numbers

Matrix M An array of numbers
Matrix component Mij The number in the ith row and jth column of M

Matrix column m(k) or M(k) The kth column of the matrix M
Submatrix MIJ A small matrix within the larger matrix M
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1.3 Vectors: The concept

We’ve probably (hopefully) learned in basic physics that vectors are objects with magnitude
and direction, and scalars are objects with magnitude but no direction. This is fine. The
magnitude of a vector is a scalar. Displacement is a vector; its magnitude is a scalar, called
distance. Velocity is a vector; its magnitude, speed, is a scalar. And so on. These particular
examples are limited to 3D space (which, somewhat confusingly, is just called space), but
vectors can have any number of dimensions. To go back to the data table example, if a
biologist measures n properties of an organism, we can associate with the organism an n-
dimensional vector, the components of which are the values of the n measurements. The
organism’s position in the n-dimensional space is specified by this vector. Regardless of the
number of dimensions that it has, a vector is just an arrow. The length of the arrow is given
by the Euclidian norm:

|a| =

√√√√ n∑
i=1

a2
i ,

where ai refers to component i of the vector a. We can define the dot product, or inner
product, between two vectors as

a · b =
n∑
i=1

aibi ,

which allows us to write the magnitude of a vector as |a| =
√

a · a. We can show using basic
trigonometry that a · b = |a||b| cos θab, where θab is the angle between the vectors a and b.

Problem 1.1. Show that a · b = |a||b| cos θab.

Thus, we can use the dot product to find the angle between two vectors, regardless of
their dimension. Why is this? If we put the tails of the two vectors at the same point – call
it A – and we call the tips of the vectors points B and C, then the triangle ABC uniquely
defines a plane. An angle in a plane is just a regular angle that we can measure with a
protractor. So two vectors define a space of two dimensions (unless one happens to be a
multiple of the other, but we’ll get to that later). What if we add a third vector? We can
put its tail at A and call its tip D. If D is in the plane ABC, then our three vectors still
exist in a 2D space. But if D is outside the plane ABC, then we need three dimensions to
describe our three vectors. That is, we need the 2D space ABC, plus some 1D space that
is perpendicular to ABC. If we continue adding vectors this way, we will find that a set of
m vectors that have n components will span at most a space of m dimensions if n > m. If
n < m, then the vectors will span at most n dimensions for what I hope are obvious reasons.

The dot product can also be used to find the projection of one vector onto another. That
is, it tells us what fraction of one vector is made up of a second vector. If the dot product
happens to be zero, it tells us that the angle between the two vectors is 90◦, or that the
vectors do not project onto each other at all. When two vectors have zero inner product,
they are said to be orthogonal.
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The arrow idea is useful for conceptualizing vectors, but it is not the best way of manip-
ulating them mathematically. For that we will turn to matrices, which will bring us back to
vectors and hopefully provide some insights into linear algebra as a whole.

1.4 Matrices

A matrix is a rectangular array of numbers. An m × n matrix has m rows (going across)
and n columns (going down). Matrix elements are indexed by row and column.

A =


A11 A12 · · · A1n

A21 A22 A2n
...

. . .

Am1 Am2 · · · Amn

 .

A matrix might be something as simple as a data table, where each element is the value of
some feature of some sample. The biologist in the earlier example might construct a matrix
of two columns and m rows. The columns are the length and mass measurements for the
individuals in a population, and each row represents an individual.

1.4.1 Transpose

The transpose of a matrix is the same matrix with its rows and columns swapped. It is
denoted with a tilde or superscript T .

Ã =


A11 A21 · · · Am1

A12 A22 Am2
...

. . .

A1n A2n · · · Amn

 .

Note that Ãij = Aji, and that ˜̃A = A (the transpose of the transpose is the original matrix).

1.4.2 Matrix arithmetic

If two matrices are the same size, we can add them just by adding their components:

A + B =

 A11 +B11 · · · A1n +B1n
...

. . .

Am1 +Bm1 · · · Amn +Bmn

 .

Multiplying matrices is a little trickier. Usually we multiply matrices only if the number
of columns of the first is equal to the number of rows of the second. The product is a matrix
with the same number of rows as the first matrix and the same number of columns as the
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second matrix. That is, if A is m×n and B is n×p, then C = AB is m×p. Its components
are given by

Cij = (AB)ij

=
n∑
k=1

AikBkj . (1.1)

Graphically,  Cm×p

 =

 Am×n


 Bn×p


A kind of explanation for why the matrix product has this form will be given shortly, but for
now just commit it to memory. You will definitely need to know how to multiply matrices, so
it’s worth taking a couple of seconds to make sure that you know how to calculate a matrix
product using the equation above. You don’t have to understand it or know what it means
right now, but just how to use it.

Matrix multiplication is not commutative. That is AB 6= BA. However,

ÃB = B̃Ã . (1.2)

This is an important identity that will pop up from time to time.
Eq. 1.1 allows us to define the identity matrix, 1, sometimes called I, with elements

1ij = δij. Graphically,

1 =


1 0 · · · 0
0 1 0
...

. . .
...

0 0 · · · 1

 .

The identity is a square matrix with 1’s on the diagonal and 0’s everywhere else. Multiplying
a matrix by 1 is like multiplying a scalar by one. In general, the dimension of 1 will be implied
by its use in equations. For the m × n matrix A, we can write 1A = A, where 1 is the
m×m identity. Alternatively, we could write A1 = A, in which case 1 represents the n×n
identity. The dimension of 1 should match up with the dimension of the matrix or matrices
that it’s multiplying.

Matrix division does not exist. Instead, we use the matrix inverse, A−1, defined as

AA−1 = A−1A = 1 .

Only square matrices have true inverses according to this definition, but we will later see how
to construct pseudoinverses of matrices of arbitrary size. The matrix inverse is important
insofar as it enables much of matrix algebra. It also reminds us of an important rule of matrix
algebra: order matters. Consider solving the scalar equation y = ax for a. Dividing each side
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by x, we find a = y/x. If we want to avoid division, we can multiply each side by the inverse
of x, yielding the equivalent expression a = yx−1. And because of the commutitive property
of scalar multiplication, we can switch the order of the right-hand side, giving a = x−1y.

Now let us consider an analogous matrix problem, Y = AX, and let us also assume that
X is invertible. As matrix multiplication is not commutitive, order matters:

Y = AX

YX−1 = AXX−1

YX−1 = A1

A = YX−1 .

To get rid of X, we multiplied both sides from the right by X−1. This removed the X from
the right-hand side of the equation and added a X−1 to the right of Y on the left-hand side
of the equation. The result, A = YX−1, is not the same as A = X−1Y, because order
matters! Keeping track of whether multiplication takes place from the left or from the right
is the primary difference between matrix algebra and scalar algebra.

1.4.3 Vectors are just simple matrices

Now back to vectors. A vector is just a matrix with a single column, like this:

a =


a1

a2
...
an

 .

This definition allows us to construct matrices by grouping together vectors. An m × n
matrix might be thought of as an ordered set of n vectors that have m dimensions.

The transpose of a vector is a row of the same numbers:

ã = (a1 a2 · · · an) .

Note that ãi = ai because we only need one index per element. It is understood that ai is in
the first (and only) column of a, and in the first (and only) row of ã. Sometimes vectors are
explicitly specified to be column vectors or row vectors, but this is only for the purposes of
mathematics and does not really change the concept (at least where we are concerned). As
a rule, a vector that multiplies something from the left is a row, and a vector that multiplies
something from the right is a column. In either case, the vector is just a list of numbers, or
an arrow. By convention, a vector without a qualifier is a column.

Using the definition of transpose we can write the dot product as

a · b ≡ ãb

=
n∑
i=1

aibi ,
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where the sum is taken over the n components of the vectors. So a dot product is just a
row matrix times a column matrix. When constructing the dot product, we are implicitly
transposing the first vector into a row, and then taking a standard matrix product. The
product is a matrix with one row and one column, or a scalar. For this reason, the “dot”
notation will henceforth be avoided to prevent confusion. Think of vectors as one-column
matrices, and explicitly consider transposes as needed for algebraic purposes. This will avoid
some of the confusion that can come from mixing vectors and matrices.

Going back to the case of multiplying two rectangular matrices, A (which is m× n) and
B (which is n× p): Now that we know how inner products are handled in matrix notation,
we can see that the elements of C = AB are just the inner products of the vectors given by
the columns of Ã with those given by B. The product of two matrices is just a matrix of
inner products.

We can construct the outer product, ab̃, by multiplying a column vector by a row vector.
The outer product is itself a matrix with the same number of rows as a and the same number
of columns as b̃: a1b1 a1b2 · · · a1bn

...
. . .

amb1 amb2 · · · ambn

 =


a1

a2
...
am

 (b1 b2 · · · bn) .

For the outer product, the two vectors do not have to have the same number of components.
If they do, however, you’ll get a square matrix, and the sum over the diagonal elements (the
trace of the matrix) is the inner product of the two vectors.

We can also multiply matrices and vectors. For example, if we multiply an m×n matrix
with an n-component column vector, the result is an m-component column vector:

Ab =

A11 · · · A1n
...

. . .

Am1 · · · Amn


b1

...
bn


=

 A11b1 + A12b2 + · · ·+ A1nbn
...

Am1b1 + Am2b2 + · · ·+ Amnbn


We can take the transpose of this using the identity given in Eq. 1.2, Ãb = b̃Ã, which is a
row vector times an n×m matrix. We know that Ab is a column, so its transpose must be
a row. Therefore, a row vector times a matrix is a row vector. Once again, we can see that
under normal circumstances, when a vector multiplies a matrix from the left it is considered
a row, but when it multiplies a matrix from the right, it is considered a column.

Multiplying vectors with matrices is a staple of linear algebra, and now is a good time
to start thinking about what it means. An m× n matrix might be thought of as an object
that eats an n-component vector and spits out an m-component vector1. Depending on the

1This wording was stolen from John Baez’s website, which I should reference here.
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matrix and what it represents, the vector that it spits out may exist in the same space as
the vector that is taken in, or in an entirely different vector space.

1.5 Eigensystems

Consider the equation
Av = λv ,

where A is a square matrix. When A multiplies the vector v, the result is the same vector
scaled by a factor λ. If this equation (which I slickly failed to motivate with any real-world
examples) holds, then that means that v has a special relationship with A: All A does to
v is stretch or shrink it. The direction that v points in is unaffectd by A. We call v and
eigenvector of A, and λ its associated eigenvalue. If A is n × n, we expect it to have n
eigenvalues, each associated with its own eigenvector2. Let’s label the eigenvectors with an
index k = 1 . . . n. Now we have n equations,

Av(k) = λkv
(k)

or, by making the v(k)’s the columns of a matrix V, we get

AV = VΛ ,

where Λ is a diagonal matrix containing the eigenvalues λk. It might seem odd that Λ
wound up on the right side of V, but it’s a good exercise to convince yourself that the above
equation is mathematically correct. As a final step, we can multiply each side from the right
by V−1, leaving us with

A = VΛV−1 .

This tells us that when A multiplies a vector from the left, it has the effect of first transform-
ing the vector into some new coordinate system (using V−1), then stretching each component
of the transformed vector by some factor (using Λ), and then transforming the modified vec-
tor back to the original coordinate system (using V). The eigenvector matrix V and its
inverse then have the interesting jobs of transforming vectors out of and into some space
where A is diagonal. It is easier to work with diagonal matrices because they treat each of a
vector’s components independently. We will encounter several cases where using a diagonal
matrix will come in handy.

1.6 The special case of the real symmetric matrix

There are a number of “special” matrices that are defined and discussed throughout the
mathematical and physical sciences literature. Here we are mostly concerned with one kind

2Maybe the reason for this isn’t clear, but for the curious: We can rewrite Av = λv as (A − λ1)v = 0.
The only non-trivial solutions are those for which the determinant |A−λ1| = 0. Expanding the determinant
yields an nth order polynomial in λ, indicating n roots or eigenvalues. It is left to the student to learn what
a determinant is.
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of matrix: The real symmetric matrix. Matrices like this are real because their elements
have no imaginary parts. They are symmetric about the diagonal, such that Aij = Aji.
Symmetric matrices are necessarily square. Other matrices may pop up from time to time,
but there is little need to explain their properties in detail here. The student is referred to
the text by Arfken [1] for a more complete discussion.

A real symmetric matrix A can be decomposed or factored

A = VΛṼ , (1.3)

where V is an orthogonal matrix and Λ is diagonal (that is, all off-diagonal elements of Λ are
identically zero). We write this compactly using the Kronecker delta function: Λij = δijλi.

We have identified V as an orthogonal matrix, which means that its transpose is its
inverse: VṼ = ṼV = 1. In words, the columns of V are orthogonal to each other –
they have zero inner product – and each has unit length. The columns (and also rows)
of V form an orthonormal basis over the space spanned by A. Orthogonal matrices may
be thought of as matrices that perform rotations. They preserve the lengths of vectors, as
well as the relative handedness of coordinate systems (i.e., they do not cause inversions or
reflections). The columns of V are the eigenvectors of A, and the diagonal elements of Λ are
the corresponding eigenvalues. When A has units, we think of V as dimensionless directions,
and we give Λ the units of A.

Note that any column of V can be multiplied by −1 without affecting A. The matrix V
in the eigendecomposition is therefore not unique, but unique only up to an arbitrary choice
of direction for each of its columns. It is also worth noting that two or more eigenvectors
that share the same eigenvalue are degenerate and not unique. When two eigenvectors have
the same eigenvalue, any linear combination of these two eigenvectors will also have the same
eigenvalue. Thus, degenerate eigenvectors are not uniquely defined.

Eq. 1.3 contains a great deal of information. First, it tells us that multiplying a vector by
A is the same as rotating the vector to a new coordinate system, stretching each component
of this rotated vector by some amount λi, and rotating it back to the original frame. It
also tells us that the matrix A is the sum of n symmetric matrices, each given by the outer
product of one eigenvector with itself and scaled by an eigenvalue. Finally, Eq. 1.3 suggests
a way of calculating the inverse of A as A−1 = VΛ−1Ṽ, where (Λ−1)ij = δij/λi.

There is one problem with this definition of A−1: What happens if λi = 0? Certainly we
don’t want to divide by zero, so we take the drastic measure of ignoring it. Writing Eq. 1.3
element-wise:

Aij =
n∑
k=1

VikVjkλk .

We see that we will get the same result if we ignore all terms in which λk = 0. Suppose
that there are T such eigenvalues, then we can give them the last p indices and re-write the
elements of A as

Aij =

n−p∑
k=1

VikVjkλk .
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To invert, we can simply write

A†ij =

n−p∑
k=1

VikVjk/λk . (1.4)

Eq. 1.4 defines the pseudo-inverse of A and provides a well-defined approximation to the
actual inverse of A, which doesn’t exist. Note that we display the pseudo-inverse with a
dagger, A†, to identify it as something that is not quite the true inverse. When working
with linear algebra and an inverse is needed, we generally will solve equations assuming
that the inverse exists, and substitute the pseudo-inverse at the end, although this can be
mathematically dangerous.

Problem 1.2. Consider two orthogonal modes, v(1) and v(2), that share the eigenvalue λ.
Show that an arbitrary linear combination v′ = a1v

(1) + a2v
(2) is also a valid mode with

eigenvalue λ.

Problem 1.3. Find the eigenvalues and eigenvectors of 2 −1 −1
−1 2 −1
−1 −1 2

 .
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Chapter 2

Structural Dynamics of Chain
Molecules

2.1 Introduction

Before we can perform theoretical and computational studies on biomolecules, it would
behoove us to have an idea of how other, similar molecules that are not associated with living
organisms behave. The molecules of life – DNA, RNA and proteins – are chain molecules;
however, their behavior is remarkably different than other chain molecules, such as might be
found in household plastics. Here we will investigate the statistical physics of chain molecules
using simple but well-studied models. We will start by defining some statistical measures of
chain conformations, and then look at successively more complicated models. In the end we
will see that simple models reveal a surprising amount of information about the statistical
properties of chains, but that simple models are not sufficient for describing the general
properties of proteins. Additional information on the topics covered here can be found in
the texts of Flory [1], Dill [2], Phillips [3] and Hiemenz [4].

2.2 Statistical measures of chain conformation

First we will establish some conventions for discussion. Consider a chain as an ordered set of
N beads, or particles, 1 . . . N , connected by N − 1 links. For convenience, it will be useful to
define n ≡ N − 1 as the number of links. Depending on our system of study, beads may be
atoms, residues, monomers, etc., and links may be bonds (between atoms) or pseudobonds
(e.g., between Cα atoms in a protein). The location of bead i is given by ri = (xi, yi, zi)

T ,
and link i points from bead i to bead i+ 1: li = ri+1− ri and has length li =

√
(ri+1 − ri)2.

The link length li does not have to be the same for all i, but we will often assume that this
is the case for simplicity. When considering proteins, for example, there are three distinct
backbone bond lengths, corresponding to N-Cα, Cα-C and C-N bonds. If all backbone atoms
are treated as beads, then there will be three different bond lengths. If instead only Cα atoms
act as beads, then all links will have approximately equal length (3.8Å). The primary use of

12
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Figure 2.1: A simple model chain molecule.

the link length (and other chain details) in these notes is to calculate statistical averages, so
the average link length, l = 1

n

∑n
i=1

√
li · li is in general sufficient.

The position of the first bead on the chain, r1, is arbitrary. Given r1, we can use the
definition of l1 to find the position of the second bead as r2 = r1 + l1. Continuing in this
way, the position of bead i is

ri = r1 +
i−1∑
j=1

lj .

The end-to-end vector is defined as

h ≡ rN − r1 (2.1)

=
N−1∑
i

li .

For practical reasons, h is not a particularly informative measure of chain conformation.
Real chain molecules move – not just internally, but externally. A rigid chain will tend to
rotate and translate in space, even in the absence of internal motions of its beads relative
to each other. This rotation is spatially isotropic, meaning that all orientations are equally
likely. Thus, if we average h over all chain orientations, we will find that it becomes zero:
〈h〉 = 0.

2.2.1 End-to-end distance

A slightly better measure, and the one that will get us started on calculating statistical
features of chains, is the end-to-end distance:

h ≡ 〈|h|2〉1/2 . (2.2)
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The squared end-to-end distance will prove useful in many calculations and can be found:

h2 = 〈

(
N−1∑
i=1

li

)
·

(
N−1∑
j=1

lj

)
〉

= 〈
N−1∑
i=1

N−1∑
j=1

li · lj〉

= 〈
N−1∑
i=1

li · li +
N−1∑
i=1

∑
j 6=i

li · lj〉

=
N−1∑
i=1

〈li · li〉+
N−1∑
i=1

∑
j 6=i

〈li · lj〉

= nl2 +
N−1∑
i=1

∑
j 6=i

〈li · lj〉 , (2.3)

where we have made use of the average squared link length, l2, in the last step. The first
term in Eq. 2.3 captures a universal dependence of h on the number of links and their average
length. The second term depends on the constraints of the chain and is model-dependent.

Fun as it is to calculate expressions like Eq. 2.3, they are often of little use in reality.
The mean end-to-end distance is difficult to accurately measure in experiments, and it only
provides information on two of the beads on the chain. The remainder of the chain, which
is often of great interest, is ignored by h, leaving something to be desired. Nonetheless,
the simple form of h2 is useful because it relates to more descriptive measures of chain
conformation.

2.2.2 Radius of gyration

A more commonly used statistical descriptor of chain conformation is the radius of gyration,
Rg, defined as the average distance of any bead from the chain’s center of mass. Recall that
the center of mass is given by

rCM =

∑N
i=1miri∑N
i=1mi

,

where mi is the mass of bead i. Defining the position of bead i relative to the center of mass
as si ≡ ri − rCM , the radius of gyration is

Rg ≡ 〈s2〉1/2 . (2.4)

Eq. 2.4 is valid not only for chains, but for any distribution of points in space. Rg is a
measure of the spread of a distribution: Small Rg implies a compact distribution, whereas
large Rg indicates an open or extended distribution. It can be shown that Rg is related to
the average distance between particles. An expression that is equivalent to Eq. 2.4 is

R2
g =

1

N2

N∑
i=1

∑
j>i

〈|rij|2〉 . (2.5)
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Here rij simply means the distance between particles i and j. As with h, it is often easier
to work with R2

g. Not only can Rg apply to any distribution of discrete points, it can also
be generalized to continua:

R2
g =

∫
dV ρ(r)(r− rCM)2 .

Applying the above expression to a uniform sphere of radius R, we can see that Rg =
√

3
5
R.

It might be fun to think about the relationship between h and Rg. Consider a chain in
a random conformation with some Rg. Without knowing anything else about the chain, we
might assume that its beads are distributed uniformly in space, amounting to something like

a sphere of radius R =
√

5
3
Rg. The first bead of the chain has an equal probability of being

anywhere in the sphere, as does the last bead. From Eq. 2.5, we know that the average
distance between the ends of the chain is Rg. So we might expect R2

g ∼ h2, naively. This can
be shown rigorously for various cases, but as a simple approximation, it shows that knowing
h2 tells us something about R2

g. Thus, if you can’t calculate Rg, it may suffice to calculate
h2. Our initial excursion into the end-to-end distance wasn’t all for naught, after all.

Problem 2.1. Show that the radius of gyration for a system of N particles satisfies

R2
g =

1

N2

N∑
i=1

∑
j>i

〈|rij|2〉 ,

where rij is the distance between particles i and j.

Problem 2.2. Find Rg for a sphere of radius RA and density ρA encased by a spherical shell
of outer radius RB = 2RA and density ρB = 2ρA.

Problem 2.3. Find the mean square radius of gyration of an infinitely thin rod of length L,
with mass density (per unit length) λ in the center L/2 section and mass density 2λ for the
L/4 sections at each end.

2.2.3 Persistence length

A third measure of chain conformation that may come in handy is the persistence length,

ξp =
1

l

n∑
j=i

〈li · lj〉 (2.6)

=
1

l
[〈li · li〉+ 〈li · li+1〉+ . . .+ 〈li · ln〉] .

Flory [1] defines this as the “average sum of the projections of all bonds j : j ≥ i on an
arbitrary bond i in an indefinitely long chain.” Persistence length is a measure of the chain’s
tendency to remain straight, or the average distance that a chain travels before turning 90◦.
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Happily, ξp is also related to h2. The arbitrary link that we have referenced is somewhere
in the middle of the chain, far removed from either of the ends, so we could just as easily
calculated ξp by summing from 1 to i instead of from i to n:

ξp = 〈 li
l
·

n∑
j=i

lj〉 = 〈 li
l
·

i∑
j=1

lj〉 .

Combining these two equivalent definitions for ξp,

2ξp =
1

l

n∑
j=1

〈li · lj〉+
1

l
〈li · li〉 .

Understanding that for a homogeneous chain, ξp should be independent of the reference link,
one can average it over all links:

2ξp =
1

n

n∑
i=1

1

l

n∑
j=1

〈li · lj〉+ l

ξp =
h2

2nl
+
l

2
. (2.7)

Once again, we can relate an informative quantity, ξp, to an easily calculable one, h2.

2.3 Freely jointed chain

The simplest model of a chain is the Freely Jointed Chain, or Random Flight. This model
assumes no restrictions on bond angles and amounts to a random walk in three dimensions.
Even though the assumptions (no bond angle restrictions, no penalty for self-intersection,
no solvent) may make this model appear to be comically simple, it makes a surprisingly
accurate first attempt at exploring chain molecules.

2.3.1 FJC: End-to-end distance

From Eq. 2.3,

h2 = nl2 +
n∑
i=1

∑
j 6=i

〈li · lj〉 . (2.8)

The second term on the right-hand side of Eq. 2.8 is zero. The chain is free to rotate about all
bonds, so 〈li ·lj〉 = l2δij ∀ i, j. This can be shown easily by integrating over the conformations
of the chain. Note that this result implies that ξp = l for the freely jointed chain, indicating
that the chain has no persistence past one link. The end-to-end distance,

h =
√
nl , (2.9)

recovers the scaling that we find for a random walk.
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Problem 2.4. Show that
n∑
i=1

∑
j 6=i

〈li · lj〉 = 0

for a freely jointed chain.

Problem 2.5. Consider a freely jointed chain with nA steps of length lA and nB steps of
length lB. Find the mean square end-to-end distance, 〈h2〉, for alternating, random and
diblock cases. Are they the same or different? Why?

2.3.2 FJC: Radius of gyration

That was easy enough, right? Now, what about the radius of gyration of the FJC? Let’s
start from Eq. 2.5:

R2
g =

1

N2

N∑
i=1

∑
j>i

〈|rij|2〉

=
1

N2

N∑
i=1

∑
j>i

|j − i|l2

=
l2

N2

N−1∑
k=1

k(N − k)

=
l2

N2

[
N

N−1∑
k=1

k −
N−1∑
k=1

k2

]
. (2.10)

The two geometric series in Eq. 2.10 can be simplified algebraically. The first one is just
the number of elements in the upper triangle of a square matrix, but the closed form of the
second series is more involved (A simple derivation appears in B). Substituting:

R2
g =

l2

N2

[
N2(N − 1)

2
− N(N − 1)(2N − 1)

6

]
(2.11)

=
l2

6

[
N − 1

N

]
.

For N � 1, the second term is negligible, leaving

R2
g ≈

Nl2

6

=
h2 + l2

6
.

So R2
g indeed goes like h2 for FJC, agreeing with our earlier approximation. In the limit of

small l, R2
g ∼ h2/6.
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2.3.3 Distribution of end-to-end vector for FJC

As its alternate name (“Random Flight”) implies, the FJC is just diffusion in three dimen-
sions. We know that, in one dimension, the probability for traveling a distance ∆x after
taking n steps of length l is

P (n,∆x) =
1√

2πnl2
exp

{
− x2

2nl2

}
.

We can conceptually extend this to a random flight in three dimensions by altering the step
size or the number of steps. Consider a random walk on a 3D lattice. There is no difference
between x−, y− and z− directions, so we expect P (n,∆x) = P (n,∆y) = P (n,∆z). If our
walk has n total steps, then we expect n/3 steps to be taken in each direction. Alternatively,
we might argue that a single step of length l in 3D can be decomposed into x−, y− and z−
components: l2 = l2x + l2y + l2z . Again invoking spatial isotropy, we find lx = ly = lz = l/

√
3.

Thus, if we perform a 3D random walk starting at the origin and using steps of length l, the
probability of the walk having some x−component after n steps is

P ′(n, x) =

√
3

2πnl2
exp

{
− 3x2

2nl2

}
,

and similarly for the y− and z− components. As usual, this result can be shown more
rigorously by those so inclined. The probability of finding a final displacement vector h after
n steps of a random flight in 3D is then

P (n,h) = P ′(n, hx)P
′(n, hy)P

′(n, hz)

=

[
3

2πnl2

]3/2

exp

{
− 3h2

2nl2

}
. (2.12)

Does this result make sense? It indicates that the probability of winding up at h depends
on the magnitude, but not the direction, of h, consistent with spatial isotropy. The width of
the distribution is σ = l

√
n/3, just as we would expect for a random walk. It is also peaked

at h = 0, indicating that the chain returns to the origin. That might seem peculiar, and
will be discussed more below; however, we can confirm this with another simple calculation.
From the definition of the end-to-end vector (Eq. 2.1) we find

〈h〉 = 〈rN − r1〉

= 〈
N−1∑
i=1

li〉

=
n∑
i=1

〈li〉

= 0 .

Finally, there is a non-zero probability of finding a chain with length greater than nl. This
is obviously unphysical and results from approximating a multinomial distribution with a
Gaussian.
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Problem 2.6. A random walk with step size l in 3D can be thought of as 3 random walks
of step size l√

3
in 1D. Show that this scaling is expected by calculating the average projection

of a random 3-dimensional unit vector onto a single axis. (Hint: use spherical coordinates
and the z axis)

2.3.4 End-to-end distance revisited

So what about that FJC returning to the origin? Does this mean that we expect the distance
between ends to be zero? Not at all. We might reason that the probability for finding a
particular h vector will decrease with its magnitude. If we consider a sphere of radius h
centered at r1 (which we will also take as the origin), then there is only one vector h that
corresponds to zero distance between the chain ends. As h increases, the allowed area onto
which the second chain end may fall increases, so the probability of a specific h vector for
a given h decreases. More formally, we can say that the probability P (n, h) of finding an
end-to-end distance h is just the sum of all probabilities of finding end-to-end vectors h with
magnitude |h| = h. This sum is the integral over the surface of the sphere with radius h:

P (n, h) =

∫ 2π

0

dφ

∫ π

0

dθ r2 sin θP (n,h : |h| = r)

= 4πh2

[
3

2πnl2

]3/2

exp

{
− 3h2

2nl2

}
. (2.13)

Note that Eq. 2.13 is already normalized:∫ ∞
0

dh P (n, h) = 1 .

Eq. 2.13 is the familiar Maxwell-Boltzmann distribution for particle speeds in a gas. Differ-
entiation yields a maximum probability at h =

√
2nl2/3.

So what is 〈h2〉? We find it by integrating, as usual:

〈h2〉 =

∫
dr r2P (n, r)

= 4πh2

[
3

2πnl2

]3/2 ∫ ∞
0

dr r4 exp

{
− 3r2

2nl2

}
= nl2 , (2.14)

where we have made use of the well-known result
∫∞

0
dx x4e−αx

2
= 3

8α2

√
π
α

. Eq. 2.14 is
exactly the result that we expected: The distance of the walk increases with the square root
of the number of steps, as we found in Eq. 2.9.

2.3.5 Elasticity in FJC

We can use our knowledge of distributions of the FJC to calculate its mechanical properties.
Let us start by considering the free energy of the FJC. Recall

F = 〈E〉 − TS
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The 〈E〉 term is zero because there is neither a potential or motion in the FJC. Were we to
assume that the chain can move, the lack of self-interaction would make the kinetic energy
equal for all configurations, and 〈E〉 = 0 still. We are left with

F = −TS .

The entropy for a chain of N beads with end-to-end vector h is

S(N,h) = kB lnW (N,h)

where W (N,h) is the number of conformations of chains of length N that have end-to-end
vector h. This is related to the probability of h (Eq. 2.12) by W (N,h) = P (N,h)W (N),
where W (N) is the total number of configurations of the freely jointed chain of N beads
(i.e., considering all end-to-end vectors). We can then write the free energy as

F (N,h) = −kBT lnP (N,h)− T lnW (N)

=
3kBTh

2

2Nl2
− 3T

2
ln

[
3W (N)2/3

2πNl2

]
. (2.15)

Only the first term depends on the chain conformation; the second term is a constant of the
system and can essentially be ignored. In fact, as we’re dealing with free energies, it is really
differences that we are interested in, so this constant term will explicitly drop out soon.

One thing that we see from Eq. 2.15 is that the minimum free energy occurs for h = 0.
We will use this as a reference point and ask how the free energy changes as we pull one end
of the chain away from the other along some arbitrary vector h. We have

∆F (N,h) ≡ F (N,h)− F (N, 0)

= −kBT ln

[
P (N,h)

P (N, 0)

]
=

3kBTh
2

2nl2
. (2.16)

Interestingly, the energy increases harmonically, just as if we were pulling a spring. More
interesting still is that this effect arises solely from entropic considerations. Comparing
Eq. 2.16 with Hooke’s Law (E = 1

2
k(∆x)2), we find that the effective force constant for the

FJC is k = 3kBT/nl
2. Thus, the restoring force that pulls the chain ends together increases

with temperature but decreases with chain length.
We can extend our analysis even further by asking how the restoring force is expected to

depend on the spatial separation between beads. From Eq. 2.9, we can see (if N is large so
that N ≈ N − 1) that k = 3kBT/〈h2〉. This result shows us that the restoring force itself
follows an inverse-square law, so that if we know the distance between chain ends, we can
guess how strong the restoring force is if we pull the ends apart. If we consider replacing N
with the chemical distance |j − i| between two arbitrary beads, we are very close to having
ourselves an elastic network model. That is the topic of another lecture, but the important
point is that a very – almost stupidly – simple model of a chain can yield useful results.
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Problem 2.7. Consider two freely jointed chains, A and B. The ends of chain A, having
NA residues, are separated by a distance of r0 when pulled apart by a force of magnitude
F. What is the expected separation between the end of chain B, having NB = 2NA residues,
when pulled apart by a force of the same magnitude?

2.3.6 How does FJC compare to proteins?

This model does not represent proteins well. We find that for globular proteins (see Fig. 2.2),
Rg ∼ N0.380.

Figure 2.2: End-to-end distance and gyration radius for 2674 non-homologous globular pro-
teins.

Among the many differences between proteins and the FJC are

• Proteins have restricted bond angles

• Proteins have side chains

• Proteins cannot self-intersect

• Proteins are solvated

• Protein residue-residue interactions have non-zero potential energies

We will look next at how fixed bond angles alter the properties of the model chain. The
other issues are difficult to address and will have to wait.
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2.4 Freely rotating chain

The FJC is truly a minimalist representation of reality, but it’s a start. Perhaps the simplest
bit of complexity that we can tack on to it is a constraint on bond angles. Assume that
we have a chain in which all bond angles have the fixed value θ. This is called the Freely
Rotating Chain. The methods developed here can be generalized to more realistic systems,
such a proteins, in which the bond angles are not all identical, but we will start with the
simplest case. The convention that will be used is that the bond angle at bead i satisfies

Figure 2.3: The freely jointed chain, wherein all bond angles are identical.

(see Fig. 2.3)
li−1 · li = |li||li+1| cos θi .

The N − 2 bond angles for a chain of N beads have indices 2 . . . (N − 1). Let’s start by
considering h for the FRC, and let us assume that all links have the same length and all bonds
have the same angle. That is, |li| = l, θi = θ ∀ i. The second term in Eq. 2.3,

∑
i

∑
j〈li · lj〉,

does not vanish in this case; however, we can find it by recursion. By definition,

li · li+1 = l2 cos θ .

Then,

〈li · li+2〉 = li · (̂li+1 · li+2)̂li+1

= l2 cos2 θ ,

and in general
〈li · li+k〉 = l2 cosk θ .

In the above, hats represent unit vectors. One can show that all terms orthogonal to the
links average to zero owing to the freedom of the dihedral angles. We won’t do that here.
Going back to Eq. 2.3, we find

h2 = nl2 +
n∑
i=1

∑
j 6=i

〈li · lj〉 (2.17)

= nl2 +
n∑
i=1

∑
j 6=i

l2 cos|j−i| θ

= nl2 + 2
n∑
i=1

∑
j>i

l2 cos|j−i| θ
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The second term is just l2 times a sum of powers of cos θ. By restricting the sum to j > i, we
are effectively looking at the upper triangle of the matrix of inner products of link vectors.
The number of times that the kth power of cos θ appears is equal to the number of elements
in the kth diagonal above the main diagonal of the n× n matrix. Thus,

n∑
i=1

∑
j 6=i

〈li · lj〉 = 2
n−1∑
k=1

(n− k)l2 cosk θ

= 2nl2
n−1∑
k=1

cosk θ − 2l2
n−1∑
k=1

k cosk θ (2.18)

≈ 2l2 cos θ

[
n

1− cos θ
− 1

(1− cos θ)2

]
,

where we have made use of the identities

n∑
k=1

xk =
x(1− xn)

1− x

≈ x

1− x
n∑
k=1

kxk =
x(1− xn+1)

(1− x)2

≈ x

(1− x)2

Then,

h2 = nl2
[

1 + cos θ

1− cos θ
− 2 cos θ

n(1− cos θ)2

]
≈ nl2

[
1 + cos θ

1− cos θ

]
Note that 〈h2〉 ∼ nl2, just like in the FJC; however, there is now an additional term of
(1 + cos θ)/(1− cos θ), called the stiffness. For θ = π/2, the result is exactly the same as the
FJC. For θ < π/2, 〈h2〉 > Nl2, and the chain is more extended than the FJC. For θ > π/2,
〈h2〉 < nl2, and the chain is compact. At θ = 0, the chain should be ballistic (i.e., h2 = n2l2).
Instead, we find that it has infinite length. This is a fault of the large n approximations
that we have made. Returning to the last exact expression, Eq. 2.18, it can be seen that the
chain is indeed ballistic for θ = 0.

Problem 2.8. Calculate 〈h2〉 for a freely rotating chain that has alternating bond angles θA
and θB, and alternating bond lengths lA and lB.



CHAPTER 2. STRUCTURAL DYNAMICS OF CHAIN MOLECULES 24

2.4.1 Characteristic ratio

We have seen that for the FJC, h2 = nl2, whereas for the FRC, h2 = nl2(1+cos θ)/(1−cos θ).
Although we don’t see this explicitly here, for a general chain molecule one might expect the
measured square end-to-end distance, 〈h2〉0, (note the subscript) to scale as 〈h2〉0 = Cnnl

2.
In the limit n→∞, we find for the FRC C∞ = (1 + cos θ)/(1− cos θ). The constant C∞ is
called the characteristic ratio, and it can be experimentally determined for a variety of chain
molecules. For carbon-based polymers, 4 ≤ C∞ ≤ 12, in general. By defining an effective
length of leff ≡

√
C∞l, we see that h2 = nl2eff . That is, as far as the end-to-end distance

is concerned, the FRC (and many other simple models) behave as a FJC with effective link
length leff .

2.4.2 FRC: Persistence length

Going back to Eq. 2.7, it can be seen that the persistence length of the FRC is

ξp =
l

2
(C∞ + 1)

≈ C∞l

2
for l→ 0

Or, starting from Eq. 2.6, it can be seen for the FRC:

ξp =
1

l

n∑
j=i

〈li · lj〉

=
1

l

n∑
j=1

l2 cosj−1 θ

= l

n−1∑
j=0

cosj θ

= l

[
cos0 θ +

n−1∑
j=1

cosj θ

]

= l

[
1 +

cos θ(1− cosn−1 θ)

1− cos θ

]
= l

[
1− cosn θ

1− cos θ

]
≈ l

1− cos θ

where the final approximation is taken in the limit n → ∞. We can see that when θ = 0,
ξp is infinite, which is in accord with what we would expect for a straight chain of infinitely
many links. When θ = π/2, ξp = l, once again agreeing with the FJC.
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2.5 Local coordinates

In general, chain molecules are not as simple as the FJC or FRC. Usually bond lengths and
angles can vary in some range, as can dihedral angles. Frequently these values are correlated,
as is the case for the φ and ψ backbone dihedrals in proteins. We can address the general
case using matrices.

Suppose that we have a chain of N beads [1 . . . N ]. There are n = (N − 1) links
[1, . . . , (N−1)], N−2 bond angles [2, . . . , (N−1)], and N−3 dihedral angles [2, . . . , (N−2)].
With the exception of the dihedral angles, all of these have been previously defined. The
dihedral φi is the clockwise rotation about link i from the cis conformation, and will be
defined mathematically below.

(a) Local coordinate systems (b) View along l̂i.

Figure 2.4: Local coordinates defined using backbone conformation.

For each internal bead i, define a local orthogonal coordinate basis l̂i, b̂i, n̂i as follows:

l̂i ≡
ri+1 − ri
|ri+1 − ri|

b̂i ≡
l̂i × l̂i−1

sin θi

n̂i ≡ b̂i × l̂i

The selection of coordinates is not unique; there are other possibilities that are equally valid,
such as that discussed by Flory [1]. The coordinates here have the following interpretation:
l̂i is the unit link vector that we have been using all along; b̂i is a binormal vector that defines
the plane containing beads i − 1, i and i + 1; n̂i is normal to the curve and perpendicular
to both l̂i and b̂i. The three form a right-handed coordinate system at bead i: l̂i × n̂i = b̂i.
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Nicely, we can construct a recursion relation to form coordinate systems from earlier systems:

l̂i+1 = cos θi+1̂li + sin θi+1[− cosφin̂i − sinφib̂i]

b̂i+1 =
l̂i × l̂i−1

sin θi

=
1

sin θi+1

∣∣∣∣∣∣
l̂i n̂i b̂i

cos θi+1 − sin θi+1 cosφi − sin θi+1 sinφi
1 0 0

∣∣∣∣∣∣
= − sinφin̂i + cosφib̂i

n̂i+1 = b̂i × l̂i

=

∣∣∣∣∣∣
l̂i n̂i b̂i
0 − sinφi cosφi

cos θi+1 − sin θi+1 cosφi − sin θi+1 sinφi

∣∣∣∣∣∣
= sin θi+1̂li + cos θi+1 cosφin̂i + cos θi+1 sinφib̂i

Or,  l̂i+1

n̂i+1

b̂i+1

 =

cos θi+1 − sin θi+1 cosφi sin θi+1 sinφi
sin θi+1 cos θi+1 cosφi cos θi+1 sinφi

0 − sinφi cosφi

 l̂i
n̂i
b̂i

 (2.19)

The matrix in Eq. 2.19 is a transformation matrix between the local coordinate system at i
and that at i+ 1. It is an orthogonal matrix, so its transpose,

Ti+1 =

 cos θi+1 sin θi+1 0
− sin θi+1 cosφi cos θi+1 cosφi − sinφi
sin θi+1 sinφi cos θi+1 sinφi cosφi


is also its inverse. Multiplying both sides of Eq. 2.19 by Ti+1 gives the coordinates of
l̂i+1, b̂i+1, n̂i+1 in the basis of l̂i, b̂i, n̂i: l̂i

n̂i
b̂i

 = Ti+1

 l̂i+1

n̂i+1

b̂i+1


Or, in general,  l̂i

n̂i
b̂i

 =

(
k∏
j=1

Ti+j

) l̂i+k
n̂i+k
b̂i+k


Note that

(∏k
j=1 Ti+j

)
is itself a matrix of inner products:

(
k∏
j=1

Ti+j

)
=

 l̂i · l̂k l̂i · n̂k l̂i · b̂k
n̂i · l̂k n̂i · n̂k n̂i · b̂k
b̂i · l̂k b̂i · n̂k b̂i · b̂k
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All of the above analysis is applicable only to chains with fixed conformations. Usually
we will be interested in models in which the chain is free to move within some constraints,
as in the FJC and FRC. In such cases, the matrices Ti must be replaced by their ensemble
averages, 〈Ti〉.

Now consider as an example the FRC with the special case that θi = θ ∀ i. All internal
beads are under identical conditions, and Ti is the same for all i. Further, 〈Ti〉 is the same
for all i, so the transformation matrix between i and j is just 〈T〉j−i.

To calculate 〈T〉 for the FRC, we let φ vary freely:

〈T〉 =

∫ 2π

0
dφT∫ 2π

0
dφ

yielding

〈T〉 =

cos θ sin θ 0
0 0 0
0 0 0


and

〈Tk〉 =

cosk θ cosk−1 θ sin θ 0
0 0 0
0 0 0


Problem 2.9. Consider a random chain of N beads on a 2D square lattice with spacing l.
Beads can only be placed on lattice sites, and sequential beads must be on neighboring sites
(i.e., the distance between beads i and i + 1 is always l). Assume that the chain is allowed
to self-intersect.

a. Find expressions for the squared end-to-end distance, h2, and the radius of gyration,
Rg, under the assumption that bead i+ 1 can occupy any of the four lattice sites adjacent to
bead i with equal probability (i.e., the chain is a random walk on a 2D lattice). It may be
helpful to follow the approach taken for the Freely Rotating Chain, and to make use of the
geometric series in the notes.

b. Find expressions for the same values for a chain that cannot turn back on itself. In
this case, bead i + 1 can occupy any of the three lattice sites that are adjacent to bead i and
are not occupied by bead i− 1.

Problem 2.10. Find an expression for the radius of gyration, Rg, for a chain on a 2D
square lattice. Assume that the chain can self-intersect.

2.6 Wormlike chain

In many cases, when n � l, it becomes nonsensical to sum over n elements. Porod and
Kratky [5] introduced the idea of taking the continuum limit of a discrete chain by letting
n → ∞ and l → 0. The chain length, L = nl, remains constant, and the chain essentially
becomes a smooth curve in space. The model of Kratky and Porod is often called the
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“Wormlike Chain”, although it has been pointed out that unlike a worm, the chain is not
extensible.

Consider a FRC. We find that the persistence length is

ξp =
l

cos θ
so

cos θ = 1− l/ξp .
Let’s look at h2, starting from Eqs. 2.17 and 2.18:

h2 = nl2 + 2nl2
n−1∑
k=1

cosk θ − 2l2
n−1∑
k=1

k cosk θ

= nl2 + 2nl2
(

cos θ

1− cos θ

)
− 2l2

(
1− cosn θ

(1− cos θ)2

)
= nl2

(
2− l/ξp
l/ξp

)
− 2l2(1− l/ξp)

(
1− (1− l/ξp)n

(l/ξp)2

)
= nlξp(2− l/ξp)− 2ξ2

p(1− l/ξp)(1− exp{−nl/ξp}) ,

where we have used the approximation e−nl/ξp ≈ 1 − nl/ξp in the last line. This holds as
long as nl� ξp, which is the case if our chain is long and thin. Defining L ≡ nl and taking
the small l limit,

lim
n→0

h2 = 2Lξp − 2ξ2
p(1− e−L/ξp) . (2.20)

This final result demonstrates that the end-to-end distance can be found without knowledge
of microscopic details of the chain (n,l,θ): Only ξp and the total length are needed. This
is an early hint at universality, or scale invariance, in chains. By defining an overall scaling
factor a ≡ L/ξp,

h2 = 2aξ2
p − 2ξ2

p(1− e−a)

= 2ξ2
p(a− 1− e−a)

Even though the end-to-end distance scales with length, it is qualitatively the same for
different chains with the same L : ξp ratio.

Problem 2.11. Show that the expression for the mean square end-to-end distance of a
wormlike chain (Eq. 2.20) reduces to the expected answers for a random coil and for a rigid
rod, respectively, in the limits L� ξp and L� ξp.

2.6.1 Bending of WLC

To go from a discrete chain model to a continuous chain, consider a chain of equal length
links bent at an angle θi at bead i. If the chain has the tendency to remain straight, we
might impose upon it a harmonic potential that penalizes deflections from θi = 0, such as

Ui =
k

2
θ2
i .
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Figure 2.5: Bending a discrete chain with equally spaced beads. Bending the chain by an
angle θ is equivalent to bending the chain around a radius R ≈ 2l/θ.

This is related to a harmonic spring restoring a linear displacement if we think of the dis-
placement ∆si = Riθi as the length of the arc that connects bead i− 1 to bead i + 1 when
bending the chain by θi about bead i produces an arc with radius Ri. It’s safe to say that
∆si ≈ 2l, but here we are trying to avoid using l and θi in favor of the continuous variables
R and s. Let us define s as a continuous variable representing the position along the chain.
For the whole chain, the energy of bending is

U =
k

2

n−1∑
i=1

θ2
i

=
k

2

n−1∑
i=1

(
∆s

Ri

)2

=
k∆s

2

n−1∑
i=1

∆s

(
1

Ri

)2

=
K

2

∫ L

0

ds

(
1

R(s)

)2

=
K

2

∫ L

0

ds

∣∣∣∣dt

ds

∣∣∣∣2 ,
where R(s) is the local curvature at s, t(s) is the tangent vector to the curve at s and K is
the bending modulus. This is engineering here. Materials science stuff. The bending modulus
has units of energy times distance.

Problem 2.12. Follow the steps below to approximate the elastic energy that is stored in
DNA packed into a viral capsid. The result from this approximation can be combined with an
electrostatic calculation (not done here) to estimate the free energy cost of packing DNA into
a capsid. Assume the capsid is a cylinder of radius Rout and height z, and that the DNA is a
cylinder of diameter ds and length L that behaves like a wormlike chain of persistence length
ξp > Rout. Answers should be in terms of these values. Recall that the energy of bending a
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flexible beam of length l through a radius R is

U =
Kl

2R2
, (2.21)

where K = ξpkbT is the bending modulus. Assume that the DNA packs into well-ordered
helices around the cylindrical axis, starting from the outer radius and progressing into helices
of smaller and smaller radii.

a. Instead of helices, we can use the approximation that the DNA forms concentric circles
within the capsid. Find an expression for the energetic cost, U(R), of a circle of DNA with
radius R.

b. As the DNA is packed tightly, we can use the approximation that inside the capsid it
forms a uniformly dense cylindrical shell of inner radius Rin and outer radius Rout. Find an
expression for Rin as a function of the known dimensions of the DNA and capsid.

c. The total elastic energy of the DNA is the sum over the energy of the rings:

UDNA =
kmax∑
k=0

U(Rin + k∆R)N(Rin + k∆R) (2.22)

where ∆R is the distance between successive rings, N(R) is the number of rings with radius
R, and kmax is simply (Rout−Rin)/∆R, the number of steps to get to the capsid wall. When
the DNA is packed tightly, each ring (except for those on the surface) will be touching six
other rings. This type of packing, like a cells in a honeycomb or logs on a truck, is called
hexagonal packing. Show that if the rings are packed tightly the distance between successive
rings will be ∆R =

√
3ds/2.

d. Noting that there is one ring radius every ∆R, we can say that the density of radii is
1/∆R. This can be used to convert the sum in Eq. 2.22 to an integral:

UDNA ≈
2√
3ds

∫ Rout

Rin

dRU(R)N(R) . (2.23)

Note that
2√
3ds

∫ Rout

Rin

dR = kmax , (2.24)

so 2/
√

3ds is indeed a density. Assume that N(R) = z/ds for all R, and calculate UDNA
from Eq. 2.23.

e. Calculate the force F (L) = −dUDNA/dL required to put a length L of DNA into the
capsid.

2.7 Self-avoiding walk

Another ingredient that has been missing from our models is self-avoidance. To get a sense
of the conformational ensemble adopted by self-avoiding chains, we can follow Flory [1] and
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construct some simple arguments based on scaling. We will minimize free energy with respect
to the chain’s size.

Start by introducing a potential that imposes a penalty for any contacting pairs:

U =
N∑
i=1

∑
j 6=i

Θ(Rc − |rj − ri|)Uij , (2.25)

where Θ(x) is the Heavyside function, equal to 1 if its argument is positive and 1 otherwise.
The potential of Eq. 2.25 contains one non-zero term for each contacting pair of beads.
Assume that the density of contacts is more or less uniform throughout the volume occupied
by the chain (i.e., ρ = # of contacts/volume is constant). The number of contacts scales
with the square of the number of beads, and the volume scales as a power of the chain radius,
depending on dimension. In two dimensions, the chain volume is approximated by the area
of a circle: V2 = 2πR2. In three dimensions, it is approximated by the volume of a sphere:
V3 = 4/3πR3. In d dimensions,

ρ ∼ N2/Rd .

The free energy is given by
F = U − TS ,

where S = kB lnW . We have seen from previous models that the chain parameters tend to
follow Gaussian distributions. Here we will continue this approximation

S = kB lnW

= kB lnP (h2) + const.

≈ kB ln(exp{−h2/N})

Yielding
F = c1N

2/Rd − c2R
2/N

Minimizing with respect to R,

0 = ∂F/∂R

= −c1dN
2R−d−1 − 2c2RN

−1

R ∼ N
3
d+2 . (2.26)

Eq. 2.26 indicates that the end-to-end distance (orRg) will scale with the chain dimension.
In one dimension, we see that R ∼ N , and the chain is ballistic. In two dimensions, R ∼ N3/4.
This is an exact result. In three dimensions, R ∼ N3/5. Computational results indicate
that the scaling in three dimensions is more accurately R ∼ N0.588, which is remarkably
close to the value arrived at through this simple exercise. The scaling of R ∼ N1/2 for a
four-dimensional chain is again exact. Beyond four dimensions, the self-avoidance causes
attraction (R < N1/2), indicating that this simple scaling is not valid in higher dimensions.
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Chapter 3

Small Oscillations

An easy way to approach normal mode analysis is through the study of small oscillations.
The ideas that are central to the theory of small oscillations are the same as those seen in
equilibrium protein structural dynamics, but we can investigate small oscillations in systems
of arbitrary size and shape. Material presented here has been discussed in greater detail in
a number of mechanics textbooks, like Goldstein [1], Fetter and Walecka [2] and Fowles and
Cassiday [3].

3.1 The one-body one-dimensional harmonic system

About the simplest oscillatory mechanical system is a particle connected to an immobile wall
by means of a massless spring. We will say that the mass can only move in one dimension
and apply the usual unrealistic approximations of no gravity and zero friction (Fig. 3.1).
The particle has mass m and when the spring is in its equilibrium conformation, the mass
is at position x0. The spring has force constant k. If the mass moves to a new position, x,
then the spring will push or pull on it with a force

F = −k(x− x0) .

This is Hooke’s law, and you’ve hopefully seen it before. For simplicity, we can define
δ ≡ x− x0 as the displacement of the mass from its equilibrium position.

Figure 3.1: A mass m connected to an immobile wall via a massless spring of constant k.

It is worth pointing out that the potential energy of the system is

V =
1

2
kδ2 , (3.1)

33
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and that the restoring force is the negative of the derivative of the potential with respect to
x: F = −∂V/∂x. The second derivative is just the force constant: ∂2V/∂x2 = k.

According to Newton, the force (because it is the only external force on the mass) causes
the mass to accelerate back toward x0. Specifically, Newton tells us

mδ̈ = −kδ , (3.2)

where δ̈ = d2δ
dt2

is the second derivative of δ with respect to time. The solution is oscillatory,
taking the general form

δ(t) = δ+eiωt + δ−e−iωt , (3.3)

where δ+ and δ− are complex constants. This is the most general solution to Eq. 3.2, and
it should appeal to mathematicians, but it contains a lot of complex numbers that are not
useful in our analysis of real systems. We will instead work with the more specific and
completely real solution

δ(t) = A sin(ωt+ φ) , (3.4)

where A is a constant specifying the amplitude of the motion, and φ is a phase. We know
that −1 ≤ sin(ωt+ φ) ≤ 1, so the maximum displacement of the mass is A. The phase φ
tells us when this maximum amplitude is reached. If φ = 0, then at time t = 0 the mass
is at the origin. If φ = ±π/2, then at time t = 0 the mass is a distance A from the origin.
When φ is somewhere in-between, then in-between behavior is expected.

Problem 3.1. Show that Eqs. 3.3 and 3.4 are solutions of 3.2.

Figure 3.2: Harmonic motion. The top panel shows oscillatory position as a function of time,
and the two lower panels show kinetic and potential energy in arbitrary units.

The total energy E is the sum of the potential energy (Eq. 3.1) and the kinetic energy
T = 1

2
mẋ2. Substituting mω2 for k gives the energy in terms of frequency and amplitude,

E =
mω2A2

2
. (3.5)

Because all the terms on the right-hand-side of Eq. 3.5 are constants, the total energy of
the mass-spring system is conserved. We have given it no place to go in our toy system. A
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more realistic model would include interactions with the environment that would allow the
internal energy of the system to change over time, but not here. An oscillator that has total

energy E will have amplitude A =
√

2E
mω2 and a phase set by initial conditions. The energy

itself oscillates between kinetic and potential (Fig. 3.2). When ωt + φ = 0, the potential is
zero and T = E. When ωt+φ = ±π

2
, there is instantaneous velocity and V = E. The phase

might then be thought of as controlling the mixture of kinetic to potential energy at a time
t.

Problem 3.2. Find an expression for ρ(x), the probability of finding the mass at posistion
x. Start by thinking of the probability ρ(x)dx as proportional to the amount of time that the
particle spends in an interval of size dx centered at x.

3.2 The many-body harmonic system

Figure 3.3: Three particles connected by springs.

Now consider a slightly less simple system of three masses constrained to one dimension
and connected to each other via three springs, as shown in Fig. 3.3. We will say that all of
the springs are happily at their rest lengths in the configuration shown. This three-particle
system is just a simple example of the N -body system, and what follows can be applied to
similar systems of any number of interacting particles. To see how the system moves, we can
analyze each mass independently. The spring k12 exerts a rightward (+x) force on particle
1 if δ2 > δ1, it exerts a force to the left if δ2 < δ1, and it exerts no force if δ2 = δ1. A similar
statement can be made for k13 and δ3. The equation of motion of particle 1 is

m1δ̈1 = k12(δ2 − δ1) + k13(δ3 − δ1) .

For particle 2, spring k12 imposes a force that is equal and opposite the force it imposes on
particle 1, and k23 imposes a force in the direction of δ3 − δ2:

m2δ̈2 = −k12(δ2 − δ1) + k23(δ3 − δ2) .

Finally, particle 3:
m3δ̈3 = −k13(δ3 − δ1)− k23(δ3 − δ2) .
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The right-hand sides of these three equations can be rearranged to give the pretty form

m1δ̈1 = −(k12 + k23)δ1 + k12δ2 + k13δ3

m2δ̈2 = k12δ1 − (k12 + k23)δ2 + k23δ3

m3δ̈3 = k12δ1 + k23δ2 − (k13 + k23)δ3 ,

which can be re-written using matrices:m1 0 0
0 m2 0
0 0 m3

δ̈1

δ̈2

δ̈3

 = −

(k12 + k23) −k12 −k13

−k12 (k12 + k23) −k23

−k13 −k23 (k13 + k23)

δ1

δ2

δ3

 ,

or, in really compact notation,
Mδ̈ = −Kδ . (3.6)

The 3-component vector δ contains the displacements of the 3 particles from their rest
positions, and the matrix M is a diagonal matrix containing our particles’ masses. It is
appropriately referred to as the mass matrix. On the right-hand side is a matrix, K, of force
constants. It is real, symmetric and positive semi-definite, and each of its rows or columns
sums to zero. It is a Hessian matrix, and warrants some discussion.

3.2.1 The Hessian matrix

The system’s potential energy is just the sum of potentials from the individual springs:

V =
k12

2
(δ2 − δ1)2 +

k13

2
(δ3 − δ1)2 +

k23

2
(δ3 − δ2)2 . (3.7)

The student can verify that this is equivalent to

V =
1

2

(
δ1 δ2 δ3

)(k12 + k23) −k12 −k13

−k12 (k12 + k23) −k23

−k13 −k23 (k13 + k23)

δ1

δ2

δ3


=

1

2
δ̃Kδ . (3.8)

The potential of the system is a quadratic function of its coordinates, and the matrix K
holds the coefficients. Its elements are the second partial derivatives of the potential with
respect to the system’s coordinates:

Kij =
∂2V

∂δi∂δj
. (3.9)

Matrices like Eq. 3.9 are called Hessian matrices, and they are important in harmonic anal-
ysis. In the present simple case the Hessian is just a matrix of force constants, but when
we look at more complicated systems in later chapters, the form of the Hessian will become
increasingly complex.
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Equation 3.6 looks very much like Eq. 3.2, but in bold face. We can try a solution that is
similar to Eq. 3.4, but using a vector out in front rather than a scalar: δ(t) = δ0 sin(ωt+φ).
Then δ̈(t) = −ω2δ(t), and we have

ω2Mδ = Kδ (3.10)

It may be tempting to follow the 1D example of the previous section and eliminate the δ from
both sides of this equation, but that’s not allowed in matrix algebra: Removing a variable
from both sides of an equation is actually dividing each side by the variable, and there is no
such thing as vector divsion. We could try multiplying by the inverse of δ, but we don’t yet
know it. We do know the inverse of M, so we can multiply both sides of Eq. 3.10 by that,
giving

ω2δ = M−1Kδ .

In this equation, the scalar ω2 multiplies a vector on the left-hand side, and the matrix
M−1K multiplies the same vector on the right-hand side. It is an eigenvalue equation. But
in multiplying through by M−1, we have merged the two symmetric matrices M and K
into one non-symmetric matrix. We would like to preserve the symmetry, as we have seen
that the eigenvectors of symmetric matrices can be easily interpreted as a special orthogonal
basis. Thus, we need a way to get rid of M yet retain the symmetry of the problem.

Problem 3.3. Show that K is obtained from Eqs. 3.7 and 3.9.

Problem 3.4. Show that the product of two symmetric matrices is not necessarily symmetric.
What conditions must be satisfied for the product of two symmetric matrices to be symmetric?

3.2.2 Mass weighting

For our second shot at Eq. 3.6, let’s see what happens when we multiply by M−1/2 from the
left:

M−1/2Mδ̈ = −M−1/2Kδ

M1/2δ̈ = −M−1/2Kδ

q̈ = −M−1/2KM−1/2q .

In the last step we introduced the mass-weighted coordinates, q ≡ M1/2δ. Using these
coordinates allows us to keep the Hessian matrix symmetric because it gets multiplied from
both the left and the right by the same symmetric matrix. In the mass-weighted coordinate
system, our equations of motion reduce to the symmetric eigenvalue equation

ω2q = K′q , (3.11)

where K′ = M−1/2KM−1/2 is the mass-weighted Hessian matrix. Whereas the Hessian
matrix has units of force constant (e.g., kg/s2), the mass-weighted Hessian has units of force
constant divided by mass, or s−2. The solutions of Eq. 3.11 are the eigenvectors of K′, and
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their corresponding eigenvalues are the squares of the vibrational frequencies. We can find
the modes of motion by constructing the mass-weighted Hessian matrix, diagonalizing it,
and then performing the inverse of the mass-weighting transformation.

If some vector v is a solution of Eq. 3.11, then the system satisfies the equation

v(t) = Av sin(ωt+ φ) ,

where A is an arbitrary amplitude. All particles in the system oscillate with the same
frequency ω, and their relative amplitudes are given by the components of v. As v contains
mass-weighted displacements from the minimum-energy conformation, all components of v
pass through zero simultaneously.

The amplitude A was included explicitly even though the magnitude of v is unspecified.
Why not just wrap A up into v? The answer is that, as a matter of convention and conve-
nience, eigenvectors are generally assigned a magnitude of 1. They are unit vectors, pointing
in the direction of instantaneous displacements from equilibrium. They describe not just
position, but higher derivatives as well: v describes the direction of displacements, velocities
and accelerations for the oscillating system.

The mass-weighted Hessian K′ for a system having N degrees of freedom will be N ×N .
We expect that there will be N solutions to Eq. 3.11, corresponding to the eigenvectors of K′.
Each solution describes a vibration of a particular frequency, ω, with the eigenvectors point-
ing in the direction of the vibration. Eigenvectors are frequently called the modes of motion:
they are allowed and independent vibrational directions. The condition of orthogonality
leads to the descriptive normal modes, meaning that the phase and amplitude of motion
in one mode is independent of the phase and amplitude of motion in the other modes. As
such, the modes are uncoupled: There is no energy transferred between modes, and once the
system commences oscillating along one mode, it continues to do so indefinitely. This is, of
course, totally unrealistic. It results from the assumptions that the particles interact only
through their harmonic constraints (springs), and that they don’t collide with each other or
with their environment. Real systems are far more complex, but this provides a good place
to start.

3.2.3 Finding the modes

Assume for the system above that all particles have equal mass (m1 = m2 = m3 = m) and
all force constants are equal (k12 = k13 = k23 = k). Equation 3.6 is then

m

1 0 0
0 1 0
0 0 1

δ̈1

δ̈2

δ̈3

 = −k

 2 −1 −1
−1 2 −1
−1 −1 2

δ1

δ2

δ3

 ,

and the mass-weighted Hessian matrix is

K′ =
k

m

 2 −1 −1
−1 2 −1
−1 −1 2

 .
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It is diagonalized by solving
|K′ − λ1| = 0 ,

which yields the characteristic polynomial

λ3 − 6λ2 + 9λ = 0 .

There are two solutions: λ = 0 and λ = 3k/m, which will be labeled λ1 and λ2, respectively.
The eigenvalues have units of k/m, or 1/(time)2, just as should be expected for squared
frequencies. The system oscillates along each mode, i, independently, with an oscillatory
frequency of ωi =

√
λi.

Figure 3.4: Modes of the 3-particle mass-spring system with equal masses and equal force
constants.

Once we have a mode, v, we can transform it back to the Cartesian coordinate system
with the inverse transformation

u = M−1/2v .

Or, writing the mass-weighted modes as the columns of the matrix V,

U = M−1/2V , (3.12)

where U is the matrix of modes in the Cartesian coordinate system. Eq. 3.12 indicates that
particles with large mass will have reduced motion in the Cartesian system, relative to their
motions in the mass-weighted system. The orthonormality relationship ṼV = 1 can be
rewritten to show that in the Cartesian coordinates,

ŨMU = 1 ,

so that the Cartesian modes are “normal” only when the mass matrix is sandwiched between
them. This is an important point that can be easily overlooked. So-called normal modes are
not necessarily normal. Most ENMs wave away this technicality by assuming that all amino
acid residues have roughly equal mass, reducing the mass matrix to a multiple of the identity
matrix. If all particle masses are equal, then the mass-weighted modes and the Cartesian
modes are equivalent.

The eigenvector associated with λ1 = 0 is v(1) = 1√
3
[1 1 1]T , corresponding to simultane-

ous and equivalent translation of all three particles. The factor of 1/
√

3 is in place to satisfy
the normalization condition ṽv = 1. This vector changes the system’s center of mass, but
does not alter its internal energy, as the inter-particle distances remain fixed. There are no
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oscillations along this mode, so its frequency is understandably zero. The mode stretches
no springs and therefore has zero energy. It is quite common to find eigenvalues of zero in
elastic network models, and they serve a diagnostic purpose. There will be one zero mode for
each degree of freedom of the rigid system. In the present case, each of the particles has one
degree of freedom, but if all particles are displaced equally along that degree, then there is
no net change in their relative positions. Other examples will follow. Modes that move the
system’s center of mass should have zero eigenvalue, but not all modes with zero eigenvalue
will move the system’s center of mass.

The only other eigenvalue of K′ is λ2 = 3k/m, even though there are two more eigen-
vectors. Modes that share an eigenvalue are referred to as degenerate because they are not
unique. Mode degeneracies arise from symmetries in the system. In the present example,
the particle masses are equal and each particle has the same influence on the positions of
the other particles. The result is a twofold degeneracy in the second mode (Fig. 3.5). The
nature of the degeneracy can be intuited by exploring an example. A valid eigenvector with
λ2 = 3k/m is v(2) = 1√

2
[1 0 − 1]T , corresponding to motion of the outer points (1 and 3) in

opposite directions and no motion of the central point (#2). Note that displacements along
this mode do not alter the system’s center of mass.

Problem 3.5. Calculate the components of the mode v′ in Fig. 3.5. Find another mode,
v′′, that is orthogonal to and degenerate with v′ . Sketch v′′.

Defining v(2) also specifies that v(3) = ± 1√
6
[1 − 2 1]T , because this is the unit vector

that is orthogonal to both v(1) and v(2). It is easy to verify that v(3) is an eigenvector of
K′ with eigenvalue λ2. The eigenvectors v(2) and v(3) form an orthogonal basis over the
space of modes with eigenvalue λ2, but they are not the only acceptable choice. In fact, any
linear combination of v(2) and v(3) is itself a valid mode with eigenvalue λ2. For example,
the columns of K′ are all eigenvectors with eigenvalue λ2, and they can all be expressed as
linear combinations of v(2) and v(3).

Problem 3.6. Find the general form of the frequencies and eigenmodes for the 1D 3-body
system with masses m1, m2 and m3, and with force constants k12, k13 and k23.

Problem 3.7. Suggest a simple modification to the example that will remove the degeneracy.
Show that the resulting Hessian matrix has no degeneracies.

3.2.4 Energy

Let us consider the specific case of the system oscillating along mode i alone, where i 6= 0
Its mass-weighted position will be given by

q(t) = Aiv
(i) sin(ωit+ φi) , (3.13)

where ωi =
√

3k/m, Ai is an amplitude and φi a phase. The mass-weighted vector q must
have dimensions of distance×

√
mass, and we will assume these dimensions into the constant
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Figure 3.5: An illustration of degenerate modes for a simple 3-body system. The mode v′ can
be constructed as a linear combination of modes v(2) = 1√

2
[1 0 −1]T and v(3) = 1√

6
[1 −2 1]T .

The new mode v′ eliminates motion of mass 3.

Ai, so that v(i) does not carry dimensions. The potential energy at time t is given by Eq. 3.8,

V (t) =
1

2
q̃(t)K′q(t) (3.14)

=
1

2

[
Aiṽ

(i) sin(ωit+ φi)
]
K′
[
Aiv

(i) sin(ωit+ φi)
]

=
A2
i

2
sin2(ωit+ φi) ṽ(i)K′v

(i)

=
A2
iω

2
i

2
sin2(ωit+ φi) ,
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where we have used the fact that ṽ(i)K′v(i) = λi in the last equation. The kinetic energy in
mass-weighted coordinates is

T (t) =
1

2
˜̇qq̇

=
1

2

[
Aiωiṽ

(i) cos(ωit+ φi)
] [
Aiωiv

(i) cos(ωit+ φi)
]

=
A2
iω

2
i

2
cos2(ωit+ φi) ṽ(i)v(i)

=
A2
iω

2
i

2
cos2(ωit+ φi) .

The total energy along mode i at time t is

Ei = T + V

=
A2
iω

2
i

2
sin2(ωit+ φi) +

A2
iω

2
i

2
cos2(ωit+ φi)

=
A2
iω

2
i

2
, (3.15)

which is a constant. The energy along any mode is constant, so no energy is transferred
between modes. This is an important and unrealistic result of normal mode analysis, but
one upon which we will rely to make mathematics easier. Note that by assuming mass into
Ai we have lost the explicit m term from Eq. 3.5, and that the result is independent of the
phase φi.

The orthogonality of mass-weighted modes provides us with the interesting mathematical
result that any deformation of the system can be expressed as a combination of the modes. As
there are N orthogonal modes in N dimensions, they form a complete basis over the system’s
degrees of freedom. Any vector in the mass-weighted coordinates is therefore expressible in
exactly one way as a sum of the modes.

Suppose that we have a system that has N internal modes into which we put an amount
of energy, E. Because there is no exchange of energy between modes, we know from Eq. 3.15
that

E =
N∑
i=1

Ei (3.16)

=
N∑
i=1

A2
iλi
2

=
N∑
i=1

(
Ai√
2/λi

)2

1 =
N∑
i=1

(
Ai√

2E/λi

)2

. (3.17)
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The last line may be recognized as the equation of an N -dimensional ellipse with radii√
2E
λi

. All possible dynamical states of this system with energy E fall on the isoenergetic

hyperelliptical surface described by Eq. 3.17. Putting energy E into the system is equivalent
to specifying a point on this surface, as well as the phase φi for each mode. One can verify
that

〈A2
i 〉 =

E

λi
,

or the squared amplitude of motion increases linearly with energy, as would be expected for
a harmonic system. It also decreases with mode frequency, showing us that low-frequency
modes have larger expected amplitudes than their high-frequency counterparts.

Problem 3.8. Show that all deformations in Cartesian coordinates can be expressed as sums
of normal modes.

Figure 3.6: A 2D harmonic well describes the energy landscape associated with a 2D Gaussian
probability distribution.

Problem 3.9. Consider a 1 dimensional chain of four monomers as shown in the figure.
Successive monomers are equally separated along the chain and connected to each other
via springs with constants k1 and k2 as shown. Monomers 1 and 3 have mass m1, and
monomers 2 and 4 have mass m2. In the configuration shown, all springs are at their rest
length. a. Write down the mass matrix and Hessian matrix for the system. From this
point onward, assume that all masses are equal (that is, m1 = m2 = m) and
all force constants are equal (k1 = k2 = k). b. The eigenvalues of the mass-weighted
Hessian matrix are λ ∈ {0, 2k

m
, 4k
m
}. Find the corresponding modes of oscillation (i.e, the

eigenvectors). Note that one of the modes is doubly degenerate, meaning that two modes
have the same frequency. c. Calculate the response of the system if monomers 2 and 4 are
each displaced by an amount δ toward each other. That is, what are the displacements of the
four monomers? d. Assume that the system is coarse-grained into two blocks: monomers 1
and 2 constitute a single block, and monomers 3 and 4 constitute another block. What is the
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projection matrix that transforms the system between the block space and the all-monomer
space? e. Calculate the modes of vibration using this blocking scheme. Express your answer
in terms of the coordinates of the original system. f. Recalculate the response of the system
to the perturbation described in question 3, using the blocking scheme.
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Chapter 4

The Gaussian Network Model

One of the first ENMs developed for the study of protein dynamics is the Gaussian Network
Model (GNM) of Bahar and others [1]. This model has its origins in elastic polymer theory,
although the exact connection may be a little difficult to see. The early GNM papers refer
to the work of Flory [2] as the inspiration for the model. Flory’s paper discusses the elastic
properties of bulk polymer materials, such as rubber. Specifically, the paper addresses
polymer networks, or random networks of long polymers that cross and connect at certain
points. In the Flory model, the nodes of the network are crossings of polymer chains, and
its edges are the polymer chains themselves. The elastic properties of a random network of
polymers thus arises as the sum of elastic interactions between nodes that are connected by
springlike chains. In the GNM, the nodes are the protein residues, each represented by it
alpha carbon atom. The edges represent the abstract realization of the net pairwise forces
between residues in the folded protein. In the spirit of Flory, we can derive the GNM from
the elastic nature of a simple chain molecule.

4.1 From polymer networks to proteins

Recall from Chapter 2 that the mean end-to-end vector h of a freely jointed chain with n
edges of length l is given by

P (n,h) =

[
3

2πnl2

]3/2

exp

{
− 3h2

2nl2

}
.

We can generalize this to describe the distribution of the vector connecting nodes i and j,

P (rij) =

[
3

2π(r0
ij)

2

]3/2

exp

{
−3(rij)

2

2(r0
ij)

2

}
, (4.1)

where rij = rj − ri is the vector displacement from node i to node j and has magnitude
rij = |rij|, and the zero superscript implies the crystal structure. Inspecting Eq. 4.1, we see
that the inter-residue distance fluctuates about zero, meaning that the residues tend to be
right on top of each other. This is an unphysical case that Flory refers to as “Phantom
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Networks”. He allows the nodes to pass through each other, and then he constrains some of
them in a surrounding medium and lets the remainder relax. We will take a simpler approach
of straightforwardly demanding the distances between residues i and j to fluctuate about the
equilibrium distance r0

ij. Defining displacements from the minimum energy conformation as
∆ri = ri − r0

i , Eq. 4.1 becomes

P (∆rij) =

[
γ∗ij
π

]3/2

exp
{
−γ∗ij(∆rij)2

}
,

where ∆rij = rij − r0
ij = ∆rj − ∆ri and γ∗ij = 3/2(r0

ij)
2. Assuming that the distances

between nodes fluctuate independently, the probability of finding some displacement ∆r of
all residues from their equilibrium positions can be expressed as a product of the independent
probabilities of pairwise distances. That is,

P (∆r) =
N∏
i=1

N∏
j=i+1

P (∆rij)

=
1

ZGNM
exp

{
−

N∑
i=1

N∑
j=i+1

γ∗ij(∆rij)
2

}
. (4.2)

The student can verify that this becomes

P (∆r) =
1

ZGNM
exp

{
−

N∑
i=1

N∑
j=1

γij∆ri ·∆rj

}
(4.3)

where

γij =

{
−γ∗ij if i 6= j∑

k 6=i γ
∗
ik if i = j

.

Expanding the dot product,

P (∆r) =
1

ZGNM
e−

∑
ij ∆xiγij∆xje−

∑
ij ∆yiγij∆yje−

∑
ij ∆ziγij∆zj ,

which looks like the product of three Gaussians.

Problem 4.1. Show that Eq. 4.3 follows from Eq. 4.2.

4.2 Equations of the GNM

If we assume that all non-zero off-diagonal elements have a value of γij = γ/2kBT ∀ i, j and
define the N -component vectors of coordinate displacements ∆x = (∆xi . . .∆xN)T (and
similarly for ∆y and ∆z), we get

PGNM(∆r) =
1

ZGNM
exp

{
− γ

2kBT

[
∆̃xΓ∆x + ∆̃yΓ∆y + ∆̃zΓ∆z

]}
, (4.4)
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where Γ is the Kirchhoff Matrix, also known as the Laplacian Matrix. More on this later. As
we have slipped our old friend β = 1/kBT into the exponent, we can use the above equation
to define the GNM potential:

VGNM =
γ

2

[
∆̃xΓ∆x + ∆̃yΓ∆y + ∆̃zΓ∆z

]
. (4.5)

The Kirchhoff matrix Γ is unitless (more on this later), so the constant γ must have units
of energy per squared distance. That is, it is a classical Hookean spring constant (recall
E = 1

2
k(∆x)2 from introductory physics). Using our knowledge of Gaussian integrals, we

can find the GNM partition function,

ZGNM =

∫
d3N∆r exp

{
− γ

2kBT

[
∆̃xΓ∆x + ∆̃yΓ∆y + ∆̃zΓ∆z

]}
=

∫
dN∆x e

− γ
2kBT

∆̃xΓ∆x
∫

dN∆y e
− γ

2kBT
∆̃yΓ∆y

∫
dN∆z e

− γ
2kBT

∆̃zΓ∆z

= (2π)3N/2

∣∣∣∣kBTγ Γ−1

∣∣∣∣3/2 .
The covariance in fluctuations along the x-direction for residues i and j are

〈∆xi∆xj〉 =

∫
d3N∆r PGNM(∆r)∆xi∆xj

= (2π)−N/2
∣∣∣∣ γ

kBT
Γ−1

∣∣∣∣1/2 ∫ dN∆x′ e
− γ

2kBT
∆̃x′Γ∆x′

∆xi∆xj

=
kBT

γ
(Γ−1)ij .

If we want to calculate the entire matrix of x- (or y-, or z−) covariances

〈∆x∆̃x〉 = 〈∆y∆̃y〉 = 〈∆z∆̃z〉 =
kBT

γ
Γ−1 .

Using the definition of the inner product, we can find each residue’s variance, as well as its
covariance with other residues:

〈∆r2
i 〉 =

3kBT

γ
(Γ−1)ii

〈∆ri∆rj〉 =
3kBT

γ
(Γ−1)ij . (4.6)

To recap: We started with the assumptions that fluctuations in inter-residue distances
are Gaussian – as described by polymer theory – and isotropic. From there we derived a
distribution function that provides the probability of a structural deviation from the native
state (Eq. 4.4), and we found the potential associated with this distribution (Eq. 4.5). A key
part of this potential is the Kirchhoff matrix (more on that later), the inverse of which gives
the residue-residue covariances to within a multiplicative constant (Eq. 4.6). Thus, armed
with knowledge of the elastic properties of chain molecules, we can infer residue covariances
from a single structure.
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4.3 The Kirchhoff matrix

Matrices like Γ are quite common in graph theory. For an undirected graph (i.e., one in which
the edges represent mutual interactions) an off-diagonal element Γij of the Kirchhoff matrix
is -1 if nodes i and j are connected by an edge and 0 otherwise. In the GNM, residues are
connected if the distance between them in the crystal structure is less than a cutoff distance
rC , generally taken to be about 7Å. The diagonal elements are determined such that the
sum over any row or column is zero. Mathematically,

Γij =


−1 if i 6= j & rij ≤ rC

0 if i 6= j & rij > rC∑
k 6=i Γik if i = j

.

Sometimes the form of Γ is explained in terms of the degree matrix and the adjacency matrix,
Γ = D−A. The diagonal element Dii of the degree matrix D indicates the degree (number
of edges) of node i. All off-diagonal elements of D are zero. The element Aij of the adjacency
matrix A is 1 if nodes i and j are connected and 0 otherwise. The Kirchhoff matrix is real
and symmetric, so it can be decomposed with an orthogonal transformation. As discussed
below, it is positive semi-definite, indicating that all of its eigenvalues are non-negative real
numbers. This allows us to bestow them with physical meaning. It turns out that Γ, which
is constructed from a single protein structure, contains just about all of the information that
we need to estimate certain properties of the protein’s equilibrium dynamics.

Problem 4.2. Show that Γ has one zero eigenvalue.

As it cannot be inverted properly, we use its pseudo-inverse (Eq. 1.4) to calculate the
fluctuations and covariances in Eq. 4.6. The mode associated with the zero eigenvalue
represents rigid translations of the entire system. For a protein ofN residues, each component
of this mode has a value of 1/

√
N . This single mode arises from the isotropic assumption

of GNM: An average translation in x is accompanied by an identical average translation
in y and z. It should be noted, however, that the GNM is not rotationally invariant [3].
Rigid rotations of the full molecule increase the system’s energy, causing some to argue that
the model is unphysical. It is nonetheless useful for exploring motions that do not include
rigid-body rotations or translations.

4.4 Comparing the GNM to experiments

The two common ways of comparing GNM predictions to experiment are through mean
squared fluctuations (MSFs) and mode shapes. MSFs are contained in the diagonal elements
of the covariance matrix given by Eq. 4.6. Experimentally, MSFs can be inferred from
multiple sources, most commonly X-ray B-factors. The B-factor for atom i is

Bi =
8π2

3
〈(∆ri)

2〉 (4.7)

=
8π2kBT

γ
(Γ−1)ii
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The Pearson correlation between GNM-predicted MSFs and experimental B-factors is gener-
ally accepted to be around 0.6 [4]. Whether or not this constitutes a “good” agreement is a
topic that is still open for discussion, but the fact that such a simple model gives a non-zero
correlation with experiment is impressive.

Better correlations (around 0.75) are found by comparing GNM-predicted MSFs with
the sample variance of NMR models [4]. Generally, solution NMR does not permit the
identification of a single best protein structure, but suggests an ensemble of structures. PDB
files of proteins solved using NMR therefore contain multiple models, each of which satisfies
the restraints that are measured in the experiment. If the collection of NMR models is used
to approximate protein fluctuations, we can compare it with the fluctuations predicted by the
GNM. It is important to note that the structures deposited to the PDB are not necessarily
all of the structures that satisfy the constraints, but some representative subset. Further,
they are fit to the experimental data using harmonic functions, so they may have a natural
tendency to agree with the similarly harmonic GNM.

A second way of comparing GNM results with experiment is through the individual
modes. Decomposing Γ in the standard way,

Γ = VΛṼ ,

we can see that the MSFs (Eq. 4.6) are the weighted sums of MSFs from the individual
modes:

〈∆r2
i 〉 =

3kBT

γ
(Γ−1)ii

=
3kBT

γ

N−1∑
k=1

(Vik)
2

λk
.

The contribution of mode k to the MSF of any residue goes like 1/λk, so the smallest
eigenvalues of Γ have the largest influence on dynamics. It so happens that 1/λk decreases
quickly with k, and usually only the top 10 or so modes need to be used to estimate MSFs.
It has even been suggested through rigorous comparison with random matrices that only
about the top three modes are significant [5].

Analysis of theoretical MSFs is straightforward. Large MSFs indicate high mobility, and
small MSFs indicate low mobility. When two regions of high mobility are separated by a
region of low mobility, a hinge is suggested: That is, a stable point between two moving
regions. This same analysis applies to the individual modes. Mode k mobilizes residue i if
(Vik)

2 is large, and it stabilizes the residue if (Vik)
2 is small. But we can get more information

from analyzing modes individually. The contribution (Vik)
2 is always non-negative, even

though Vik itself has a sign. The choice of sign is arbitrary, but it indicates the motion of
the residue relative to other residues.

Consider two residues, i and j. If VikVjk > 0, then the residues are correlated in mode k.
If VikVjk < 0, then they are anticorrelated in the mode. By plotting the modes themselves
rather than their squares, we can distinguish true hinges from regions of damped motions.
A zero-crossing in the mode indicates that motions of neighboring regions in the protein are
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anti-correlated. Hinge regions identified in this manner have shown to be associated with
ligand binding and catalytic activity.
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Chapter 5

The Anisotropic Network Model

The ANM is a model for exploring the equilibrium dynamics of macromolecules. It is similar
in nature to the GNM, but does not assume spatial isotropy of residue fluctuations. A
protein of N residues has 3N degrees of freedom in the ANM: One degree for each Cartesian
coordinate of each residue. The same mathematical approach is taken for the ANM as for
simpler systems, with a few critical adjustments.

5.1 ANM potential

The ANM assumes that nearby residues interact through harmonic potentials that are all at
their minumum in the equilibrium conformation. It is a coarse-grained model in which the
residue positions are approximated as coincident with the coordinates of the Cα atoms. The
distance between two residues i and j with positions [xi yi zi]

T and [xj yj zj]
T is

Rij =
√

(xj − xi)2 + (yj − yi)2 + (zj − zi)2 .

Their equilibrium distance – that is, their distance in the crystal structure – is defined as R0
ij,

with the superscript zero indicating equilibrium conformation throughout what follows. If
these residues are joined via a Hookean spring with force constant γ, the potential associated
with any conformation of residues i and j is

V = γ/2(Rij −R0
ij)

2 .

Thus, the potential is not directly dependent on the locations of the residues, but on the
distance between them. Specifically, it depends on the difference between the inter-residue
distance in the instantaneous and the equilibrium conformation.

The ANM potential,

VANM =
γ

2

N∑
i=1

N∑
j=i+1

(Rij −R0
ij)

2Θ(rc −R0
ij) , (5.1)

is just a sum of potentials that are harmonic in the distance between residues. In Eq. 5.1,
the double summation covers all N(N − 1)/2 pairs of residues in the protein, allowing each
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pair to contribute to the energy. The Heavyside step function Θ(rc−R0
ij) is 0 if R0

ij > rc and
1 otherwise. This function ensures that only residue pairs that are within a cutoff distance
of rc in the crystal structure are connected by springs. This is a very simple model that can
be constructed using only a single crystal structure.

5.1.1 The second order approximation

A key difference between the ANM and the models in Chapters 3 and 4 is that the ANM
allows particles to move in three dimensions instead of just one. Although this may seem
like something that can be handled without much difficulty, it has a significant impact on
the mathematics of the model because the potential is no longer a quadratic function of
the particle positions, as it was in Eq. 3.7. To get such a function, we first define a 3N -
dimensional coordinate vector r = [x1 y1 z1 . . . xN yN zN ]T . Based on this definition, the
x-, y- and z-components of residue i are r3i−2, r3i−1 and r3i, respectively. Eq. 5.1 can then
be Taylor expanded about the equilibrium conformation r0 as

VANM(r) = VANM(r0) +
3N∑
i=1

∂V

∂ri

∣∣∣∣
r0

(ri − r0
i ) +

1

2

3N∑
i=1

3N∑
j=1

∂2V

∂ri∂rj

∣∣∣∣
r0

(ri − r0
i )(rj − r0

j ) + . . .

The first term is a constant that can be set to zero. The second term is the sum over first
derivatives of the potential with respect to the coordinates, evaluated at r0. By definition,
r0 is a minimum of the potential, so all terms in the sum vanish. To leading order, this
leaves

VANM(r) ≈ 1

2

3N∑
i=1

3N∑
j=1

∂2V

∂ri∂rj

∣∣∣∣
r0

(ri − r0
i )(rj − r0

j )

=
1

2
∆̃rH∆r , (5.2)

where ∆r ≡ r− r0 and H is the Hessian matrix (Eq. 3.9) evaluated at r0. When expanded
to second order, the ANM potential becomes harmonic in the Cα displacements from the
crystal structure. This is convenient because the dynamics in a harmonic potential can be
solved analytically.

Following the simple example outlined in Chapter 3, we can write the equations of motion
as

M∆̈r = −H∆r , (5.3)

where M is now a 3N × 3N diagonal matrix of residue masses. The mass, mi, of residue i
appears on the diagonal elements of the rows corresponding to xi, yi and zi, which are rows
3i− 2, 3i− 1 and 3i, respectively. Mathematically,

M3i−k,j = miδ3i−k,j k ∈ {0, 1, 2} .

In the earlier example of small oscillations, we solved the equations of motion in mass-
weighted coordinates. In the ANM, we avoid complications associated with mass-weighting
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by assuming that all residues have equal mass, m0. Under this assumption, the mass matrix
becomes a multiple of the identity matrix: M = m01. The scalar mass m0 is easy to move
around in equations, without needing to invert or ensure symmetries. Under this assumption,
Eq. 5.3 becomes

∆̈r = − 1

m0

H∆r ,

and a solution of the form ∆r(t) = ∆r0 sin(ωt+ φ) yields the eigenvalue equation

m0ω
2∆r = H∆r .

This is satisfied when ∆r is an eigenvector of H, in which case m0ω
2 is its eigenvalue.

The eigenvectors, {v(1), . . . ,v(3N)}, of H are the ANM modes. Each has 3N components,
corresponding to the displacements along the three coordinates of each residue. The first
three components correspond to the x-, y- and z-motions of the first residue, the next three
components correspond to the second residue, and so on. The eigenvalues {λ1, . . . , λ3N} are
the effective force constants associated with stretching or squeezing the protein along the
modes.

5.1.2 Hessian matrix: Superelements n’at

The form of the Hessian matrix H is worth exploring. We have already seen that its elements
are the second partial derivatives,

Hij =
∂2V

∂ri∂rj

∣∣∣∣
r0
,

and the student can verify that this reduces to

∂2V

∂αi∂βj

∣∣∣∣
r0

= −
γ(α0

j − α0
i )(β

0
j − β0

i )

(r0
ij)

2
i 6= j (5.4)

= γ
∑
k 6=j

(α0
k − α0

j )(β
0
k − β0

j )

(r0
kj)

2
i = j (5.5)

where α, β ∈ {x, y, z}.
The ANM Hessian matrix is 3N ×3N and is best thought of as an N ×N matrix of 3×3

matrices. Associated with each pair of residues, i and j, is a 3 × 3 matrix describing how
relative motions of those residues influence the potential. These 3 × 3 matrices are called
superelements, and the superelement of residues i and j is written Hij, where the subscripts
are in bold type. When residue i is displaced along the x-axis by some amount dxi from its
equilibrium position, and residue j is displaced along the y-axis by some amount dyi, the
corresponding increase in energy is given by Hij

xydxidyj = H3(i−1)+1,3(j−1)+2dxidyj.
We can see from the equations above that the diagonal superelements of the Hessian

are constructed such that the sum over the superelements in a superrow or supercolumn
will be zero (or, more precisely, a 3 × 3 matrix of zeros). As a result, the elements of the
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Hessian are not all linearly independent, and the Hessian has some eigenvalues that are zero.
If the system is properly connected, ANM will always give exactly six eigenvalues of zero,
corresponding to rigid-body translations and rotations of the system. The reason for this
is that rigid motions of the system as a whole do not affect the relative positions of the
particles, and therefore have no effect on the internal energy. Translations along the three
Cartesian coordinates and rotations along the three principal axes of inertia do nothing to
the system’s energy. This is independent of the number of particles in the system, but
depends on the dimension. We saw earlier that a system of N particles in one dimension
has a single degree of freedom – translation along the coordinate axis – and a single zero
eigenvalue. The eigenvector confirmed that translations along the coordinate axis leave the
energy unchanged.

In two dimensions, there are three types of motion that do not change the energy: Trans-
lations along the two axes that define the plane containing the system, and a rotation about
the normal to the plane. Conceptually, each motion corresponds to an element in the Hes-
sian superelement. The Hessian superelements of a two-dimensional system contain four
components each,

Hij =
γ

(r0
ij)

2

(
(x0

j − x0
i )

2 (x0
j − x0

i )(y
0
j − y0

i )
(y0
j − y0

i )(x
0
j − x0

i ) (y0
j − y0

i )
2

)
.

The diagonal elements of the super-element correspond to rigid translations: If there is no
motion along y, then the only terms in the potential will be those containing (x0

j − x0
i )

2.
The form of the diagonal superelements ensures that a rigid translation in the x direction
will cancel these terms. Similarly, a rigid translation in the y direction will cause no overall
contribution from the (y0

j − y0
i )

2 terms in the Hessian. The mixed terms correspond to the
rotation. As the Hessian superelement is symmetric, there is only one unique mixed term
per superelement, or one rotation. Only motions that have the proper combination of x and
y can lead to vanishing of the mixed terms. These are the rigid rotations.

In three dimensions, the Hessian superelements each has nine elements, six of which are
unique by symmetry. The three diagonal elements of the superelement correspond to rigid
translations along the Cartesian coordinates, and the off-diagonal mixed elements correspond
to three rotations. Again, the correct combination of x y and z motions will result in canceling
the mixed terms in the Hessian, leading to no change in energy.

What if something other than six zero modes are found? This indicates that the system
is not properly constrained. Fewer than six zero modes result from excessive constraints.
This usually does not happen, but can stem from tethering the molecule to a specific point
in space, or to a particular orientation. A more common occurrence is finding more than six
zero modes, indicating an underconstrained system. Perhaps the most obvious case of an
underconstrained system is one consisting of two disjointed subsystems. Consider a PDB file
containing two structures that are spatially separated by a distance greater than rc. When
the ENM is constructed over the entire system, there will be no connection between the two
sub-structures, resulting in two independent systems, each with 6 degrees of freedom. This
will clearly show up as 12 zero modes in the ANM, but it is not the only situation that can
lead to 12 zero modes.
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The six zero modes stem from motions that do not change the conformation of the
system in any way that alters its internal energy. If the system is under-constrained, there
may be additional motions that do not increase its internal energy. Consider a residue
that is connected to only two other residues. The two connections restrain the residue to
a fixed distance from two points in space. Mathematically, the residue is allowed to be
anywhere on the circle defined by these two distances and these two points. Any motion of
the residue along the circle will leave the internal energy of the system unchanged, as no
springs are stretched by the motion. This situation leads to an additional degree of freedom.
In general, each residue must have at least 3 connections in order for the system to be
properly restrained. The minimum number of connections depends on the dimensionality of
the system. For a system of n dimensions, each node must have at least n edges, in general.
There are exceptions to this rule, but they only occur in special cases. Additional zero modes
will arise if the system has other freedoms.

Problem 5.1. Show that the superelements of the ANM Hessian matrix reduce to the form
given in Eqs. 5.4 and 5.5.

Problem 5.2. Describe a 3D system in which a residue that is connected to only two other
residues is properly restrained. Describe a case in which a residue connected to three other
residues is unadequately restrained.

Problem 5.3. Describe situations leading to 8 and 9 zero modes.

5.1.3 The Hessian-covariance connection

As we have seen with GNM, we can calculate the partition function and dynamical infor-
mation from the ANM potential (Eq. 5.2). To get the partition function, we integrate the
potential over all conformations of the structure, applying Boltzmann weighting:

ZANM =

∫
dNr exp

{
− 1

2kBT
r̃Hr

}
= (2πkBT )N/2

(
det(H†)

)1/2
.

Because det(H†) is the product of the reciprocal nonzero eigenvalues of H, the lowest fre-
quency modes contribute most to ZANM .

The correlations between the system’s coordinates,

〈∆ri∆rj〉 =
1

Z

∫
dNr exp

{
− 1

2kBT
r̃Hr

}
∆ri∆rj

= kBT (H†)ij ,

can be solved through Gaussian integration and show us that the 3N×3N covariance matrix
is the inverse of the Hessian to within a factor of kBT .
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5.2 Comparing to experiment

5.2.1 MSFs

Both the ANM and the GNM predict the amount by which each residue’s position fluctuates
under equilibrium conditions. That is, they both provide estimates for residue mean squared
fluctuations. As we have seen earlier, MSFs are, within a multiplicative constant, captured
by the diagonal elements of the inverse of the GNM Kirchhoff matrix. In ANM, the 3N ×
3N covariance is the pseudoinverse of the Hessian, and its diagonal elements represent the
directional fluctuations of the residues. The MSF of residue i is given in terms of the
displacements along the Cartesian coordinates by

〈(∆ri)
2〉 = 〈∆x2

i 〉+ 〈∆y2
i 〉+ 〈∆z2

i 〉 . (5.6)

Thus, in order to find the MSF of residue i, we add the diagonal elements of the covariance
matrix that correspond to residue i. As the diagonal elements of the covariance matrix are
in fact variances (no “co” needed), this is simply stating that the total variance of a residue’s
position is the sum of its variances along the three Cartesian coordinates. It is the trace
of the superelement of the Hessian pseudo-inverse corresponding to residue i, which we will
represent as

〈(∆ri)
2〉 = (kBT ) Tr(H†ii) ,

where the bold subscript indicates a 3× 3 superelement.
Studies have shown that MSFs calculated from ANM do not agree as well with experi-

mentally determined motions as do MSFs calculated from GNM; however, ANM predictions
go well beyond those of the GNM. MSFs are really not well-suited for assessing the per-
formance of the ANM, largely because they do not account for directionality. Equation 5.6
shows that the MSF is a sum of squares, so that a given MSF is associated with an infinite
number of vectors. The MSF is telling us the magnitude of a residue’s motion, but it is
neglecting the direction. Once we know residue MSFs, we can randomly reassign the x-, y-
and z-components of the variance such that they have the same sum but different individ-
ual values. That is to say, the mapping of ANM Hessians to MSFs is many-to-one, so we
lose information when going from ANM to MSFs. The ANM has much more to offer than
estimates of fluctuation magnitudes.

Problem 5.4. Show that 〈(∆ri)
2〉 = 〈∆x2

i 〉 + 〈∆y2
i 〉 + 〈∆z2

i 〉, where ∆ri = ri − r0
i is the

displacment of residue i from its equilibrium position.

5.2.2 ADPs

One way to retain some of the information provided by ANM is to use anisotropic displace-
ment parameters (ADPs) that are present in some PDB files. For structures of sufficiently
high resolution, the spatial anisotropy of atomic fluctuations can be determined, and each
atom’s spatial distribution is described by a set of six ADPs representing the upper triangle
of its variance-covariance matrix. Using the relationship between Hessian and covariance
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matrices, the ADPs of atom i correspond to the upper-triangle of the diagonal superelement
of the Hessian pseudoinverse

kBT (H†ii) .

ADPs are essentially Gaussian ellipsoids centered on the atoms, and a number of methods can
be used to quantitatively compare ADPs to ANM-predicted fluctuations. As with the MSFs,
one can simply calculate the correlation between ADPs and ANM fluctuations. Instead of
comparing N MSFs with N b-factors, the comparison here is of 6N covariances with 6N
ADPs. Alternatively, one might consider the extent to which the ellipsoids defined by ADPs
overlap with those defined by ANM fluctuations. One way to do this is using the principal
axes of motion. The ADP matrix for residue i can be decomposed, revealing eigenvectors
that indicate the principal directions of motion for the residue. The largest such motion
can be directly compared to its analagous vector in the ANM-approximated distribution
using the inner product. In essence, this is comparing two covariance matrices, which will
be discussed in greater detail later.

A caveat of using ADPs is that they require structural alignment. Although MSFs have
no directionality, ADPs depend on the spatial orientation of the molecule. In order to
compare ADPs from two molecules, it is essential that they are properly aligned. This is
addressed later. Note that there is still a many-to-one mapping of Hessians to ADPs: The
ADPs tell how each residue moves individually, but they tell us nothing about correlations
between residue motions. For this, we need to look at the individual modes.

5.2.3 Deformations

One of the great things about ANM is that its results can be compared to deformations
between two known structures. The PDB has high sequence redundancy, and many proteins
have more than one crystal structure. The structures may correspond to different bound
states, such as apo vs. holo forms, or the same protein bound to different ligands. They may
also correspond simply to structures solved by different laboratories, or using different meth-
ods. In any case, it is assumed that each structure represents a local free energy minimum
and therefore represents a local population maximum within the ensemble of conformations
accessible to the protein. We can say that each structure represents a stable state of the
protein, and the modes generated through the ANM provide a convenient basis for studying
putative transition pathways between known states.

Suppose that the 3N -component vectors a and b contain the Cα coordinates for two
structures of the same N residue protein. The 3N -component deformation vector that de-
scribes the transition from state a to state b is given by

dab = a− b .

The identity b = a + dab shows that, starting from structure a, we can arrive at structure
b by deforming the structure by an amount dab. Using the completeness of the orthogonal
basis described by the ANM modes, dab can be expressed in terms of the modes as

dab =
3N∑
k=1

(
v̂(k) · dab

)
v̂(k) ,
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where the inner product v̂(k) · dab is the projection of dab onto mode k. It tells how much
of the deformation is accounted for by mode k. This implies that if we have ANM modes
calculated about the structure a, we can deform the structure a little bit along each of the
modes and by doing so reach the state b. This is interesting because our modes are not just
arbitrary directions in the conformation space, but are aligned with directions of energetically
favorable deformations and ordered according to importance. If the ANM properly captures
the equilibrium dynamics of the molecule, one might expect the least energetic modes to
account for the bulk of the deformation. We will claim that this is the case, and quantify
the extent to which this claim may or may not hold.

Note that if a and b are properly aligned to eliminate rotations and translations, only
the 3N − 6 internal modes contribute to dab. A proper alignment is here essential, as the
deformation vector will be affected by adding rotations or translations. The term deformation
implies that it is the structure, not its position or orientation in space, that is changing.

Normalizing by the magnitude of dab provides the unit vector that points in the direction
of the deformation,

d̂ab = dab/|dab|2 .

Expressed in terms of the modes,

d̂ab =
3N−6∑
k=1

(
v̂(k) · d̂ab

)
v̂(k) ,

and using the normalization of the unit vector leads to

1 = d̂ab · d̂ab

=

[
3N−6∑
k=1

(
v̂(k) · d̂ab

)
v̂(k)

]
·

[
3N−6∑
k′=1

(
v̂(k′) · d̂ab

)
v̂(k′)

]

=
3N−6∑
k=1

3N−6∑
k′=1

(
v̂(k) · d̂ab

)(
v̂(k′) · d̂ab

)
v̂(k) · v̂(k′)

=
3N−6∑
k=1

3N−6∑
k′=1

(
v̂(k) · d̂ab

)(
v̂(k′) · d̂ab

)
δkk′

=
3N−6∑
k=1

(
v̂(k) · d̂ab

)2

,

which is just a long way of showing that the sums of the squares of components of a unit
vector is unity. The inner product v̂(k) ·d̂ab is the cosine of the angle between the deformation
and mode k, and its square is the fraction of the deformation that is captured by mode k.

We can now quantify the extent to which any mode overlaps with a known deformation.
Assuming that the structure fluctuates about its equilibrium position in a random walk that
is weighted by the mode energies, we expect the largest structural excursions to take place
along the softest modes. We therefore also expect that, if an observed deformation results



CHAPTER 5. THE ANISOTROPIC NETWORK MODEL 61

from allowed fluctuations along normal modes, it will overlap most with the modes of least
energy. There are countless examples of proteins with known structural deformations that
are captured well by only a few ANM modes, and such claims indeed are responsible for the
popularity of ANM.

A common way to present ANM results in terms of a known deformation between two
structures is to plot the cumulative overlap,

Om =

 m∑
k=1

(
v̂(k) · d

|d̂|

)2
1/2

=
1

|d|

[
m∑
k=1

(
v̂(k) · d

)2

]1/2

, (5.7)

for the first m modes. Recall that the ANM modes are ordered from lowest to highest energy,
or eigenvalue. But the ANM eigenvalues cannot be taken too seriously, because they don’t
account for the damping effects of the solvent. Although ANM calculations are based on the
structures of solvated proteins, the ANM potential represents a system in vacuo. The solvent
that surrounds the protein should dampen motion along the ANM modes, realistically. It
will actually overdamp the motions, so that proteins do not oscillate along the modes, but
randomly explore them. Nonetheless, the relative lengths of excursions along the modes are
expected to follow the same order as the eigenvalues. All this means is that we know the
order of the modes, but we don’t necessarily know exactly their magnitudes. The cumulative
overlap measures how much of the vector d is accounted for by the first m modes. It depends
on the modes occurring in a certain order, but it does not depend on the magnitudes of their
eigenvalues. Usually, to show that the first few slow modes contribute disproportionately to
an inferred deformation, researchers will plot the cumulative overlap for several small values
of m.

A problem with this approach is that it is not symmetric. ANM will more easily predict
open-to-closed conformational changes than closed-to-open changes. When the conformation
is open, Note that assuming equal residue mass eliminated the need to mass-weight the
Hessian. it has some outlying regions that have few inter-residue contacts. These regions
are loosely restrained and highly mobile. They can move in two directions, as indicated by
the mathematical invariance of eigenvectors to a change in sign: Either they open more or
they close. We select the mode in the direction of closing, so there is high overlap with the
deformation. In the case of the closed structure, there are no highly mobile residues, so the
energetic differences among the global modes are smaller.

5.2.4 Overlap vs. RMSD

It is common practice to compare the predicted modes to some known vector, such as the
deformation between two alternate crystal structures of a protein, and we have seen above
how overlap can be used to quantify the agreement between modes and deformations. But
what does some overlap or cumulative overlap value really mean, in terms of the struc-
ture? How much overlap is needed before there is “good” agreement between the model and
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the observed deformation? Here we take a brief look at how the overlap between modes
and displacement vectors relates to the reduction of root mean squared distance (RMSD)
between the structures. We start by assuming that we have a protein of N residues that
has two crystal structures, represented by the 3N -dimensional vectors a = (a1 . . . a3N)T and
b = (b1 . . . b3N)T .

In terms of the displacement vector, d = b− a, from a to b, the RMSD is

DRMS (d) =

[
1

3N

3N∑
i=1

(di)
2

]1/2

(5.8)

=

[
1

3N
d · d

]1/2

(5.9)

=
|d|√
3N

. (5.10)

If the set {v̂(1), . . . , v̂(3N)} of normalized modes is calculated about the structure a, we can
define the cumulative overlap of the first m modes with d using Eq. 5.7. As the vectors
{v̂(1), . . . , v̂(3N)} form an orthonormal basis over the deformations of the structure, we know
that O3N = 1. Using Eq. 5.7, we find

3N∑
k=1

(
v̂(k) · d

)2
= |d|2 , (5.11)

from which it follows

〈(v̂(k) · d)2〉 =
1

3N

3N∑
k=1

(
v̂(k) · d

)2
(5.12)

=
|d|2

3N
. (5.13)

The expected cumulative overlap of a vector d on m modes is then

〈Om〉 =
1

|d|
[
m〈(v̂(k) · d)2〉

]1/2
(5.14)

=

√
m

3N
. (5.15)

Thus, the cumulative overlap is expected to scale with the square root of the number of
modes used. This value can be used as a comparison when evaluating how well the predicted
modes reproduce known deformations.

The amount by which the RMSD is reduced by a given mode can also be calculated.
Defining the coefficients ck = v̂(k) ·d, the deformation is written in the basis of the modes as

d =
3N∑
k=1

ckv̂
(k), (5.16)
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where ck is the displacement along mode k that minimizes the RMSD. After a displacement
of c1 along mode v̂(1), the displacement vector becomes d′ = d − c1v̂

(1) with a magnitude
that satisfies |d′|2 = |d|2 − (c1)2. Using Eq. 5.10, we find

DRMS (d′) =
|d′|√
3N

(5.17)

=

[
|d|2 − (c1)2

3N

]1/2

(5.18)

=
|d|√
3N

√
1− f 2 (5.19)

= RMSD (d)
√

1− f 2 , (5.20)

where f = v̂(1) · d̂ = c1/|d| is the normalized overlap of d with v̂(1). Thus, a deformation
along a single mode that has an overlap of 0.6 with the initial displacement vector will only
reduce the RMSD by 20%.

Finally, we can gauge the statistical significance of the observed overlap between the
displacement vector and a slow mode. That is, how unlikely is it that a random mode
will have a particular overlap with the displacement vector? We approach the question as
follows: The set of all unit vectors in a 3N -dimensional space describes the surface of the
unit 3N -sphere. A subset of these vectors have a projection of magnitude p or greater on the
basis vector v̂(1). The ratio of the area of the 3N -sphere that is described by this second set
to the area of the full 3N -sphere is the probability that a random vector will have overlap
of at least p : 0 ≤ p ≤ 1 with v̂(1). The surface area of a 3N -sphere is given by

S3N =

∫ π

0

dφ1 sin3N−2 φ1

∫ π

0

dφ2 sin3N−3 φ2 . . .

∫ π

0

dφ3N−2 sinφ3N−2

∫ 2π

0

dφ3N−1 , (5.21)

where the φis are directional cosines, equivalent to the angles θ and φ in spherical polar
coordinates. Specifically, the angle φ1 is the angle of departure from the v̂(1) axis. The
projection of a unit vector on the v̂(1) axis is then cosφ1, and for every unit vector û :
|û · v̂(1)| = p, φ1(û) = ϕ = arccos p. The surface area of the 3N -sphere that is covered by
only those vectors û : |û · v̂(1)| ≥ p is given by

Sp3N = 2

∫ ϕ

0

dφ1 sin3N−2 φ1

∫ π

0

dφ2 sin3N−3 φ2 . . .

∫ π

0

dφ3N−2 sinφ3N−2

∫ 2π

0

dφ3N−1 . (5.22)

The limit of the integral over φ1 ensures that only a subsurface is integrated over, and the
factor of two is included to account for the case when û · v̂(1) < 0. The probability of finding
a random vector with projection of at least p on the first mode is the ratio of Eq. 5.22 to
Eq. 5.21:

P (p, 3N) =
2
∫ ϕ

0
dφ1 sin3N−2 φ1∫ π

0
dφ1 sin3N−2 φ1

. (5.23)
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Eq. 5.23 gives a concise form of the probability of finding some overlap between a displace-
ment vector and a basis vector. Using the recursion relation∫

sinn xdx = − 1

n
sinn−1 x cosx+

n− 1

n

∫
sinn−2 xdx , (5.24)

this function has been plotted against dimensionality, d, for various values of overlap, p in
Figure 5.1.

Figure 5.1: Eq. 5.23 plotted for various values of overlap. The dimensionality, d = 3N varies
between 10 and 600, corresponding to chains of length 3 to 200 residues. The probability of
finding high overlap drops very quickly with increasing protein size.

The probability that a random vector will overlap well with a displacement vector drops
quickly with the protein size, particularly for high overlaps. As shown in Figure 5.1, the
probability that a purely random global motion of a 200 residue protein has 0.2 overlap with
a known deformation vector is about one in a million. An important consideration is that
these values apply only to single vectors; that is, the probability that the slowest mode has
a given overlap with the deformation. Because the modes are orthogonal, the probabilities
taken over several modes are not independent. The probability that one of the first ten
modes of a 200 residue protein has a 0.2 overlap with the displacement vector is not simply
10 in a million, because the selection of the each mode greatly reduces the pool from which
subsequent modes may be selected.
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5.3 Modeling with ANM

ANM can be compared to a variety of experimental data, including fluctuations and observed
deformations. But what good does it do to repeatedly show that a model compares well
with known results? The true power of a model is not in reproducing observations, but in
generating novel predictions. For the case of deformations, the ANM might be used to suggest
an initial direction for the transition pathway from one state to another. The enterprising
scientist may then be able to develop a means of physically blocking this transition pathway
and thereby reduce or eliminate the population of the final state. Another possible use of
the ANM is to predict unknown conformations of proteins from known conformations. By
deforming the structure along the slow modes, one may explore the global motions of the
protein and predict new energetic minima. Here we will look at some of the steps necessary
to more realistically model protein dynamics with the ANM.

5.3.1 Estimating the size of the force constant

In order to make an accurate model from an ENM, we must first make sure that the scale
of the predicted motions agrees with the scale of the motions that we are modeling. In the
case of ANM, all dynamics are controlled by two parameters: The cutoff distance rc and
the force constant γ. The shapes of the modes are determined by the cutoff distance, but
their magnitudes depend on γ. We have seen above how experimental data such as X-ray B
factors or ADPs correlate with ANM-predicted fluctuations, and we will now use the same
data to adjust the scale of γ. The isotropic B factors associated with structures solved via
X-ray crystallography relate to the MSFs of the individual atoms as shown in Eq. 4.7,

Bi =
8π2

3
〈(∆ri)

2〉 ,

where ∆ri is the vector displacement of residue i from its average position. The ANM-
predicted fluctuations can be calculated from the Hessian pseudoinverse, which has the force
constants embedded in it. We define the dimensionless matrix H = 1

γ
H to represent the

Hessian without explicitly containing the force constant. The fluctuation of residue i is then

〈(∆ri)
2〉 =

kBT

γ
Tr(H†

ii) .

Having separated the force constant from the Hessian, we can now find a value that agrees
best with experiments. The ANM spring constants that best account for the experimental
values are found by minimizing a distance between experimental and theoretical fluctuations.
There are at least two methods in use for fitting γ to fluctuation data, and they differ by
the distance metric used. The first method [1] minimizes

f1 =

∣∣∣∣∣
N∑
i=1

(
3bi
8π2
− kBT

γ
Tr(H†

ii)

)∣∣∣∣∣ , (5.25)
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where bi is the B factor of residue i and kBT
γ

Tr(H†
ii) is its ANM-predicted MSF. The quantity

f1 is the total error, or the difference in area under the curves given by experimental and
theoretical fluctuations. It is minimized when

γ =
8π2kBT

∑N
i=1 Tr(H†

ii)

3
∑N

i=1 bi
, (5.26)

which might not appeal to some because it does not link individual B factors to individual
residue fluctuations. Instead, γ as calculated above depends separately on the sum of B
factors and on the sum of ANM predicted fluctuations. If we randomly re-order the B
factors, we will wind up with the same force constant. A second distance metric is

f2 =
N∑
i=1

(
3bi
8π2
− kBT

γ
Tr(H†

ii)

)2

, (5.27)

which measures the squared error. This form is minimized when

γ =
8π2kBT

3

∑N
i=1[Tr(H†

ii)]
2∑N

i=1 Tr(H†
ii)bi

. (5.28)

Note that the denominator links ANM-predicted fluctuations with B factors for individual
residues. We’ll use this form because of personal preference. The value obtained for the ENM
force constant can vary considerably based on the type of data to which it is fit [2, 3]. For
example, MSFs derived from NMR ensembles tend to be larger than those calculated from
X-ray B factors, and not just because of temperature differences. A number of studies [4,
5, 6, 7] investigating force constants using MSFs provide values that range from 0.1 to 10
kcal/mol/Å2.

For structures of sufficiently high resolution, the spatial anisotropy of atomic fluctuations
can be determined, and each atom’s spatial distribution is described by a set of six ADPs.
The ADPs of atom i define the trivariate Gaussian distribution and correspond to the upper-
triangle of kBT

γ
H†

ii. When fitting force constants using ADPs, the 6N components of ANM-

predicted fluctuations are taken from the diagonal super-elements of H†, the 6N components
of experimental fluctuations are the corresponding anisotropic temperature factors from the
PDB file, and the force constant that minimizes f2 is

γ = kBT

∑N
i=1

∑6
j=1[H†

ii]
2
j∑N

i=1

∑6
j=1[H†

ii]jbij
. (5.29)

Here [A]j indicates the jth element of the upper triangle of the 3 × 3 matrix A, and bij is
its experimental analogue. The formulas in Eqs. 5.28 and 5.29 are valid so long as all of the
motion captured by the experiment arises from the internal modes of the molecule. When
fitting to B factors or ADPs, the possibility exists that some of the measured fluctuations
are accounted for by rigid-body motions, necessitating another approach to finding the force
constants from these values [8].

Problem 5.5. Show that the values of γ given in Eqs. 5.26 and 5.28 respectively minimize
the functions f1 and f2.
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5.3.2 How big is too big?

Once we have a value for the ANM force constant, we can predict global motions. To do this,
we must be able to provide a reasonable size for an excursion along a mode. A simple way
to estimate this is to assume that excursions are allowed if they stand a reasonable chance
of getting sampled through thermal fluctuations. Invoking equipartition, we will say that
each mode of our system contains one kBT of energy, all of which is in the potential when
the amplitude is maximum. Then any ∆r that satisfies

1

2
∆̃rH∆r ≤ kBT

represents a conformational state that has a realistic chance of getting sampled. Suppose we
wish to deform the structure along eigenvector v(k) of H with eigenvalue λk. The maximum
extent of the deformation, ak, satisfies

2kBT = ˜(akv(k))H(akv
(k))

= a2
kλk ,

or
ak =

√
2kBT/λk .

As expected, the magnitude of fluctuations increases with the (square root of) temperature
and decreases with the mode frequency. This order-of-magnitude estimate of how large
excursions may be is a rule of thumb. It is quite conceivable – in fact, likely – that larger
excursions will take place, given enough time. Once we have a Hessian, we can assign a
probability for observing the system in any imaginable state, but we don’t know exactly how
much time it will take before the system samples rare states because the true dynamics of
the molecule are damped by solvent. Nonetheless, we can calculate something like transition
rates in the context of the ANM.

Suppose that we want to deform a protein a distance dM along mode i. The harmonic
ANM potential tells us that the probability of traveling a distance x along mode i is

pi(x) =

√
λi
2π

exp

{
−λix

2

2

}
,

where λi is the eigenvalue of the Hessian (not of the covariance matrix). The probability of
an excursion of at least dM will be the area under the tails of this distribution,

pi(|x| > dM) =

∫ −dM
−∞

pi(x
′)dx′ +

∫ ∞
dM

pi(x
′)dx′

= 2

∫ dM

−∞
pi(x

′)dx′

=
1

2
+

1

2
erf

(
dM
√
λi√

2

)
.
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We can imagine that if we randomly sampled this distribution, it would take on average
1/pi(|x| > dM) samples before we drew one with |x| > dM . Assuming that our samples are
drawn with the frequency of oscillation along mode i, the period between successive samples
is τi =

√
m0/λi. The mean first passage time to a state that is a distance dM along mode i

is then

τ =
2m0

√
λi

[
1 + erf

(√
dMλi√

2

)] .
Keep in mind that this isn’t a rigorous result. It’s just a quick example to show how real1

values can be obtained from ANM results.
There are other factors that need to be considered when looking at the size of an ANM

motion. The ANM modes are officially tangents to the direction of motion and should only
be believed for displacements that are small enough to be approximated by a tangent vector.
An easy way to see this is to consider a structure pivoting about a hinge. If the structure
is moving rigidly, the tangent vector will be larger at the tip than near the hinge. Were we
to displace the structure along the tangent vector, we would find that it does not maintain
its shape, but becomes distorted because the rotational motion is approximated as linear
displacements. Song and Jernigan [9] addressed this by defining a new overlap, but basically
it is good practice to avoid deformations that distort the structure. Interestingly, every mode
except rigid translations will cause the structure to explode if taken to an extreme. This is
probably not realistic.

5.3.3 Tip effect and collectivity

Another problem that occurs from time to time in ANM analysis is the tip effect. This occurs
when some part of a protein – generally a long loop or one of the termini – is extended away
from the main mass of the protein. In terms of the elastic network, the distant residues will
have fewer contacts than most of the residues in the protein, so the extended “tip” will be
poorly constrained. The slowest modes of such systems usually involve wild fluctuations of
the tip and often have little to do with the biological function of the protein. The easiest
way to address the tip effect is to cut off the offending bit of protein. It’s not an elegant
solution, but it solves the problem.

An alternative strategy is to select modes based not just on their eigenvalues, but on
how much they mobilize global motions in the protein. Although high-frequency motions
are almost always localized, low-frequency motions are not always global. The extent to
which a mode is “global” can be calculated using well-known quantities, like entropy. The
x-, y- and z- components of the motion of residue i from eigenvector v are v3i−2, v3i−1 and
v3i, respectively. The mobility that residue i gets from mode k is

(∆ri
(k))2 = (v

(k)
3i−2)2 + (v

(k)
3i−1)2 + (v

(k)
3i )2 .

Noting that
∑N

i=1(∆ri
(k))2 = 1, the distribution of residue mobilities within a mode is

analogous to a discrete probability distribution. We can then define the Shannon entropy of

1or realish
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mode k as

Sk = −
N∑
i=1

(∆ri
(k))2 log(∆ri

(k))2 .

Sk is the information entropy of a distribution of residues that are weighted by their mobili-
ties. We can see that Sk is a good measure of how global our mode is. A highly global mode
will mobilize all residues to the same extent (1/N), and Sk has its maximum value at logN .
This is exactly what we see for rigid-body translations, which are clearly global and also low
energy. A completely local mode mobilizes only a single residue while the rest remain fixed,
giving a lower limit of Sk = 0.

Problem 5.6. Why can Sk = 0 never occur for an internal mode?

The limits on Sk make it difficult to interpret, so the common measure of the collectiv-
ity [10] of mode k is

κk =
1

N
expSk .

By exponentiating the entropy, we have converted it to an effective number: expSk is the
effective number of residues that are mobile in mode k. The collectivity κk is then the fraction
of residues that are effectively mobilized by mode k. Collectivity is often used as a filter
to eliminate localized low-energy motions like the tip effect. The downside of collectivity is
that clever researchers can concoct combinations of eigenvalues and collectivity to “choose”
modes that seem interesting. That is, one might select the slowest mode with a collectivity
above an arbitrary threshold as the mode of interest. There is nothing to stop researchers
from finding the mode and then retroactively defining the collectivity threshold. Nothing
except research ethics. So there.
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Chapter 6

Ensemble Analysis

Normal mode analysis (NMA) is a common technique for statistically inferring small motions
of complex systems. The idea behind NMA is that equilibrium fluctuations of many-body
systems can be explained – up to second order – as the sum of orthogonal modes of vibration.
NMA is useful for inferring dynamics near a potential minimum, as is the case with elastic
network models or energy-minimized molecular dynamics simulations. It is also useful for
characterizing systems dynamics from data, in which case it may take on a different name.
When applied to structural ensembles, NMA is usually called principal component analysis
(PCA); when applied to molecular dynamics trajectories, it is referred to as essential dynam-
ics (ED). Here the concepts and mathematics behind NMA will be presented in the context
of covariance analysis, which provides a somewhat intuitive framework for the theory.

6.1 The one-dimensional ensemble

We will begin with the example of a one dimensional ensemble. This is a distribution of
discrete points in space, but we know from probability theory that this sample of points
is drawn from an underlying population distribution. We will not concern ourselves with
analysis of the population distribution, but will look only at the sample distribution. The
difference is subtle. Our sample is a collection of points drawn from some unknown popula-
tion. We can estimate the population distribution by taking many samples, and our estimate
improves with the number of samples that we take. Statisticians are often concerned with
finding unbiased estimators of the properties of the population distribution. We, on the
other hand, will consider that the whole of reality is contained within our data, and we will
not try to infer the properties of the unknown population distribution. It really comes down
to a matter of preference, and the fact that dividing things by N − 1 instead of by N is
aesthetically unappealing.

Suppose we have a one dimensional distribution, ρ(x). How do we characterize it? We
may start by finding its mean,

µ =

∫ ∞
−∞

dx ρ(x)x = 〈x〉 . (6.1)
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In practice, this is approximated via sampling:

µ ≈ 1

N

N∑
i=1

xi . (6.2)

The problem with the mean is that it just gives one point, so it’s not very informative. If we
want some more detailed information on the distribution, we can proceed to second order
and look at the variance,

σ2 = 〈(x− µ)2〉 (6.3)

=

∫ ∞
−∞

dx ρ(x)(x− µ)2

= 〈x2〉 − 〈x〉2 . (6.4)

In practice, the averages are usually estimated from a sample, giving

σ2 ≈ 1

N

N∑
i=1

x2
i −

(
1

N

N∑
i=1

xi

)2

. (6.5)

Higher moments can also be calculated, but we usually stop at second order because it
permits neat analytical solutions. In fact, if there are no higher moments to our distribution,
then it is Gaussian and subject to the mathematical techniques described in Appendix A.

Problem 6.1. Show the steps to get from Eq. 6.3 to Eq. 6.4.

6.2 The two-dimensional ensemble

Before jumping into multivariate distributions we’ll consider the two-dimensional case. Con-
sider a space of two variables, x1 and x2. Any point in the space can be described using
a two-component vector x = (x1 x2)T . Now consider the distribution ρ(x) in x. We can
calculate the mean of the distribution by taking the probability-weighted sum of all vectors
x,

〈x〉 =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 ρ(x)x .

Because we are integrating a two-component vector over the entire space, the mean is also
going to be a two-component vector. We can calculate each component separately, so the
mean vector is simply 〈x〉 = (〈x1〉 〈x2〉)T , where

〈xi〉 =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 ρ(x)xi .

The variance can be calculated similarly. If we want to find the variance of xi, we can
use

σ2
i =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 ρ(x)(xi − 〈xi〉)2 ,
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just like before. The variance σ2
i of xi tells us how much the distribution varies in direction

i; however, the presence of more than one variable gives us an additional quantity, the
covariance between xi and xj:

σ2
ij =

∫ ∞
−∞

dx1

∫ ∞
−∞

dx2 ρ(x)(xi − 〈xi〉)(xj − 〈xj〉) .

The covariance σ2
ij tells us how much xi and xj are related. If σ2

ij = 0 then xi and xj are
independent: Knowing xi tells us nothing about xj, and vice versa. If σ2

ij 6= 0, then the two
variables carry some information on each other.

Problem 6.2. Show that σ2
ij falls in the range

[
−
√
σ2
i σ

2
j ,
√
σ2
i σ

2
j

]
.

Problem 6.3. Show that σ2
ij = 〈xixj〉 − 〈xi〉〈xj〉.

The variances and covariances typically appear in a matrix, called the variance-covariance
matrix. We will just call it a covariance matrix, because a variance is just a special case of
a covariance. The matrix in two dimensions looks like this:

C =

[
σ2

11 σ2
12

σ2
21 σ2

22

]
.

The covariance matrix is sometimes given the name Σ, but we will call it C (for covariance) to
avoid confusion with the summation symbol. Note that this matrix is symmetric: σ2

21 = σ2
12.

The diagonal elements are squares of real numbers and are therefore positive-valued. They
are also greater than or equal to the off-diagonal elements (see Problem 6.2), so C is non-
negative definite.

In practice, we will not know the true form of ρ(x), but will have to estimate it from a

sample set. The first point is x(1) = (x
(1)
1 x

(1)
2 )T , the second is x(2) = (x

(2)
1 x

(2)
2 )T , and so on.

We can gather all of these vectors into a single 2 × N matrix, X = (x(1) . . . x(N)). This is
our data matrix. In terms of X, the components of mean vector are

µi =
1

N

N∑
k=1

Xik , (6.6)

and the components of the covariance matrix are

Cij =
1

N

(
XX̃

)
ij
−

[
1

N

N∑
k=1

Xik

][
1

N

N∑
p=1

Xjp

]

=
1

N

(
XX̃

)
ij
− µiµj . (6.7)

It’s often convenient to center our data so that µ = 0, which will provide us with a
matrix ∆X of the differences from the average, with components given by

(∆X)ij = Xij − µi .
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Mean-centering the data like this removes the second term from Eq. 6.7 and lets us write
the covariances as

Cij =
1

N

(
∆X∆̃X

)
ij

= 〈∆xi∆xj〉 .

Once again, the covariances are just the expected products of displacements of the coordinate
variables from their average values. The diagonals are the mean-squared fluctuations of the
variables.

6.3 Analysis of distributions of n dimensions

Our findings for the two-dimensional distribution can be generalized to distributions of n
dimensions. The mean vector µ and covariance matrix C for an n-dimensional distribution
has components given by Eqs. 6.6 and 6.7. The only conceptual leap (more of a hop) that
needs to be taken to go from the two-dimensional case described above to the general n-
dimensional case is to understand that µ has n components and C is n× n.

We have seen in Chapter 1 that symmetric matrices like C can be decomposed with the
orthogonal transformation

C = VΛVT ,

where V is an n×n orthogonal matrix of eigenvectors and Λ is a diagonal matrix of eigenval-
ues. The matrix V is taken to be dimensionless, so Λ has the same units as C, i.e., distance
squared. Using Eq. 6.7,

VΛVT =
1

N
∆X(∆X)T

Λ =
1

N
VT∆X(∆X)TV

=
1

N
∆Z(∆Z)T ,

where we have defined the matrix ∆Z ≡ VT∆X. So V transforms C into new coordinates
that have only variances, and no covariances. What this means is that if we were to take
our distribution and look at it along the direction of v(i), the ith eigenvector (given by the
ith column of V, we would see a variance of λi. We would also see that the fluctuations in
the direction of v(i) are totally uncorrelated with those along any of the other directions.
The same goes for all other eigenvectors. Diagonalizing the covariance matrix enables us
to define a set of n independent directions, such that fluctuations along any one of these
directions are independent of the fluctuations along all of the others. The eigenvectors of C
are called the principal components of the distribution.

When only the mean vector and covariance matrix are known (and here we have con-
veniently chosen to ignore all higher moments), the distribution can be represented as a
Gaussian,

ρ(x) = (2π)−m/2|C|−1/2 e−
1
2

(x̃−µ)C−1(x−µ) .
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Defining ∆z ≡ VT (x− µ) and Z = (2π)m/2|C|1/2, this can be re-written as

ρ(∆z) = (2π)−m/2|Λ|−1/2 e−
1
2
∆̃zΛ−1∆z

=
m∏
i=1

1√
2πλi

e−(∆zi)
2/2λi

=
m∏
i=1

ρ(∆zi) ,

or just the product of probabilities of the individual variables ∆zi.

6.4 Structural alignment

We conclude our discussion of ensembles at the beginning. The first step of ensemble analysis
is structural alignment, which removes rotational and translational degrees of freedom from
the ensemble. The reason for doing this is that we don’t want the relative positions of en-
semble members to influence our analysis. All that we are interested in is how the structures
in our ensemble vary in shape, not how they vary in spatial location or orientation.

Let’s take a second to explore aligning structures using the Kabsch method [1, 2]. Nobody
really knows how this works anymore, because there is software that does it for you in any
language that you use. Even when there isn’t software, the method is generally laid out as an
algorithm rather than a mathematically sound solution for optimimally aligning structures.
But you should still see it somewhere, and it might as well be here.

Consider the 3×N matrices A0 and B0, the columns of which contain the Cα coordinates
for an N residue protein. The structures differ by some amount, either because of different
orientations in space or because of some small changes in residue positions relative to one
another. Our goal is to align the structures such that we minimize the RMSD between them.
In terms of normal modes, we seek to remove any differences in the structures that can be
accounted for by zero modes. We are allowed to move the structures along these modes, as
such changes carry no energetic cost.

The first step is to eliminate translations between the two structures by making sure that
their centers of mass coincide. This is easily accomplished by calculating the center of mass
of A0, with components

aCMi =
1

N

N∑
k=1

A0
ik ,

and subtracting it from each column of A0,

Aij = A0
ij − aCMi ,

and then doing likewise for B0. Now A and B both have their mass centers at the origin,
leaving us with only the task of finding the rotation that will minimize the RMSD between
them. For this purpose, we will assume that B is fixed and that A will be rotated to a
position A′ = RA that minimizes its RMSD with B. The rotation is accomplished with the
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3 × 3 matrix R, the components of which we seek to determine. Calling f the RMSD, we
have

f =
N∑
i=1

3∑
j=1

[
Bji − A′ji

]2
(6.8)

as our function to minimize. Differentiating with respect to each element of R, we find

∂f

∂Rαβ

= −2
N∑
i=1

3∑
j=1

[
Bji − A′ji

] ∂A′ij
∂Rαβ

= −2
N∑
i=1

3∑
j=1

[
Bji − A′ji

]
δjαAβi

= −2
N∑
i=1

[Bαi − A′αi]Aβi

= −2(BÃ)αβ + 2(RAÃ)αβ .

Setting this equal to zero (which we really shouldn’t do, for reasons that will be explained
shortly), we find

BÃ = RAÃ , (6.9)

or
R = BÃ(AÃ)−1 . (6.10)

A detail that has been skipped over is that R is not just any matrix, but strictly a
rotation. It therefore must satisfy the orthogonality condition RR̃ = R̃R = 1. We may
have imposed this constraint using Lagrangian multipliers, but instead we just found a closed
form of the unconstrained R. Let’s impose the constraint now so that we can get R into a
form that enables easy manipulation by a computer. First, we will define the matrix

C ≡ BÃ ,

which contains covariances of positions in A and B. Then Eq. 6.10 becomes

R = C(AÃ)−1 .

Imposing the orthogonality constraint R̃R = 1 yields

1 = (AÃ)−1C̃C(AÃ)−1 ,

where we used the matrix identity (AT )−1 = (A−1)T . Multiplying from both sides by AÃ
gives

(AÃ)2 = C̃C .

Putting this back into Eq. 6.4 gives

R = C(C̃C)−1/2 . (6.11)
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Writing the optimal rotation as a function of C ≡ BÃ alone enables us to further simplify
it using SVD. If we decompose C as C = UΣṼ, Eq. 6.11 becomes R = UṼ. In numerical
implementation, usually an extra step is taken to ensure the proper handedness of the co-
ordinate system. This is required to remove the ambiguity associated with the sign of each
eigenvector.

Problem 6.4. What happens if the system is left-handed?

Problem 6.5. Show that R = C(C̃C)−1/2 reduces to R = UṼ, where the columns of U
and V are, respectively, the left and right singular vectors of C.

This same technique is applied whether two or multiple structures are aligned. In the
case of multiple structures, all structures are iteratively aligned until convergence. To align
multiple structures, one is first selected as the key, and all other structures are pairwise
aligned to it using the method described above. After aligning all structures, the average
structure is calculated from the entire ensemble. In the next iteration, all structures are
pairwise aligned to this ensemble average, and a new average is calculated. The two-step
process of aligning all structures to the ensemble average followed by updating the ensem-
ble average continues until the average does not change by some small amount. Multiple
structure alignments are important in studies of structural ensembles.
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Appendix A

Gaussian Distributions

If there’s one distribution that everyone should know, it is the Gaussian distribution. Its
bell-shaped curve is found throughout science, often as a result of the central limit theorem.
Here we are interested in the Gaussian distribution mostly because we are looking at pairwise
interactions. This will hopefully become clear momentarily.

A.1 The one-dimensional Gaussian distribution

In one dimension, the probability density at point x given the Gaussian distribution with
mean µ and standard deviation σ is

ρ(x|µ, σ) =
1√

2πσ2
exp

{
−(x− µ)2

2σ2

}
. (A.1)

You should memorize this equation, because Gaussian distributions are ubiquitious in this
life. The quantity p(x|µ, σ)dx is the probability that a point randomly drawn from this
distribution will fall in an interval of width dx centered at x. Note that Eq. A.1 is normalized:

1 =

∫ ∞
−∞

dx ρ(x|µ, σ) . (A.2)

This is fun to show mathematically. Functions that give the probability density of a point
given a distribution are appropriately called probability density functions, or PDFs. Often
the dependencies on µ and σ will be dropped from PDFs for simplicity. There are many
fascinating properties of Gaussian distributions, but here we will make use of the fact that
they are characterized by two values, µ and σ.

Problem A.1. Perform the integral in Eq. A.2. This can be done by defining distributions
in two dimensions, x and y, and then changing to cylindrical coordinates.
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Figure A.1: The Gaussian distribution.

A.1.1 Moments of the Gaussian distribution

We have just asserted that the Gaussian distribution of Eq. A.1 has mean µ and variance
σ2(or standard deviation σ), so we should show these explicitly. First the mean:

〈x〉 =

∫ ∞
−∞

dxρ(x)x

=
1√

2πσ2

∫ ∞
−∞

dx e−
(x−µ)2

2σ2 x .

Changing variables inside the integral to y = x− µ,

〈x〉 =
1√

2πσ2

∫ ∞
−∞

dy e−
y2

2σ2 (y + µ)

=
1√

2πσ2

∫ ∞
−∞

dy e−
y2

2σ2 y +
1√

2πσ2

∫ ∞
−∞

dy e−
y2

2σ2 µ .

The first integral is over an odd function of y (meaning that f(−y) = −f(y)), so the integral
from −∞ to zero cancels the integral from zero to +∞. We are left only with the second
integral, which, from Eq. A.2, evaluates to the constant

〈x〉 = µ . (A.3)
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Moving on to 〈x2〉, we can try the same y = x− µ substitution,

〈x2〉 =

∫
dx ρ(x)x2

=
1√

2πσ2

∫ ∞
−∞

dx e−
(x−µ)2

2σ2 x2

=
1√

2πσ2

∫ ∞
−∞

dy e−
y2

2σ2 (y + µ)2

=
1√

2πσ2

∫ ∞
−∞

dy e−
y2

2σ2 (y2 + µ2 + 2yµ)

= µ2 +
1√

2πσ2

∫ ∞
−∞

dy e−
y2

2σ2 y2 +
2µ√
2πσ2

∫ ∞
−∞

dy e−
y2

2σ2 y (A.4)

= µ2 +
1√

2πσ2

∫ ∞
−∞

dy e−
y2

2σ2 y2 , (A.5)

where we have found the integral over the odd function of y to be zero. The remaining
integral is even in y and does not simply disappear. We will use an old physics trick of
adding to the exponential a field, h that is linear in y. We define the generating function

Z(h) =

∫ ∞
−∞

dy e−
y2

2σ2
+hy . (A.6)

Differentiating Z(h) with respect to h allows us to pull down powers of y from the exponent.
Because h is only being used for the purpose of taking derivatives, it can take any value we
wish, including zero. At the end of our calculations, we’ll set h = 0 to remove the influence
of the field from the end result; however, this in no way prevents us differentiating with
respect to it. First we look for a closed form of Eq. A.6. This can be found by completing
the square in the exponent and making the substitution z = y − σh. Now

Z(h) = eh
2/2σ2

∫ ∞
−∞

dz e−z
2/2σ2

=
1√

2πσ2
eh

2/2σ2

,

where we have used Eq. A.1 in the second line. Using the second derivative with respect to
h, we can find

〈y2〉 =
1

Z(h)

∂2

∂2h
Z(h)

∣∣∣∣
h=0

= σ2 .

Along with Eqs. A.3 and A.5, this leads us to

σ2 = 〈x2〉 − 〈x〉2 . (A.7)
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The equations for µ and σ2 are usually just memorized, but it is always fun to work through
the steps. A fine point here is that the mean and variance of any distribution are referred
to as µ and σ2, respectively, so our result may seem trivial and the derivation unnecessary.
Keep in mind that µ and σ are parameters in the Gaussian distribution, so we have just
provided them with meaning beyond simply constants in an equation. We can very quickly
write down the mean and variance of any distribution that has the form of Eq. A.1, without
performing any calculations.

A.2 The multivariate Gaussian distribution

The above can be extended to multiple dimensions. In n dimensions, the mean is a vector
µ = (µ1 . . . µn)T and the variance is a matrix, called the variance-covariance matrix, or just
the covariance matrix,

C =

 C11 · · · C1n
...

. . .
...

Cn1 · · · Cnn

 .

Here the diagonal element Cii denotes the variance of component i, which can also be denoted
as σ2

i . The off-diagonal element Cij is the co-variance between components i and j. This
matrix is real, symmetric and positive semi-definite.

A multivariate Gaussian distribution in n dimensions is defined by an n-component mean
vector µ and a symmetric n× n covariance matrix C. Its PDF takes the form

ρ(x) = (2π)−n/2|C|−1/2e−
1
2

(x̃−µ)C−1(x−µ) . (A.8)

The normalization factor (2π)−n/2|C|−1/2 plays the same role as the σ
√

2π in the univariate
case. We can see this by integrating our multivariate distribution over the n-dimensional
space. This little exercise will also show us how the symmetric form of C makes this easy. In
fact, we will just use the multivariate forms of the same tricks that we used in the previous
section.

First, we will introduce some shorthand for the integral over all n dimensions:∫
dnx =

∫ ∞
−∞

dx1 . . .

∫ ∞
−∞

dxn .

This just allows us to save space by treating the individual variables and the limits of
integration implicitly. Now we define y = x−µ. Note that dny = dnx. We will also replace
(2π)−n/2|C|−1/2 with 1/Z, so we can surprise ourselves at the end of the calculation.∫

dnx ρ(x) =
1

Z

∫
dnx e−

1
2

(x̃−µ)C−1(x−µ)

=
1

Z

∫
dny e−

1
2
ỹC−1y .
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To proceed, we will change coordinates to a basis in which C−1 is diagonal, turning the
integrand into a product of univariate Gaussians. The covariance matrix is decomposed
using an orthogonal transformation, as shown in Eq. 1.3,

C = VΛṼ . (A.9)

More details about the significance of this decomposition will follow, but for now it will
suffice that Eq. A.9 implies that

C−1 = VΛ−1Ṽ .

Note that |V| = ±1, which will appear below as the Jacobian for changing coordinates from
y to z = Ṽy. Now to find Z:∫

dnx ρ(x) =
1

Z

∫
dny exp

{
−1

2
ỹVΛ−1Ṽy

}
=

1

Z

∫
dnz |V| exp

{
−1

2
z̃Λ−1z

}
.

Expanding the product in the exponent into a sum over components,∫
dnx ρ(x) =

1

Z

∫
dnz exp

{
−1

2

n∑
i,j=1

δij
zizj
λi

}

=
1

Z

∫
dnz exp

{
−1

2

n∑
i=1

z2
i

λi

}

=
1

Z

n∏
i=1

∫
dzi exp

{
− z2

i

2λi

}
,

we find that the integral in n dimensions reduces to the product of n one-dimensional inte-
grals. Finding the solution from Eqs. A.1 and A.2 gives∫

dnx ρ(x) =
1

Z

n∏
i=1

√
2πλi

=
1

Z
(2π)n/2 |C|1/2 ,

where we have made use of the fact that the determinant of a matrix is invariant under
orthogonal transformations (i.e., |Λ| = |C|. Finally,

Z = (2π)n/2 |C|1/2 , (A.10)

agreeing with Eq. A.8. This calculation made use of a nice feature of multivariate Gaussian
distributions: They are just products of univariate Gaussian distributions and can be inte-
grated easily by separation of variables using eigendecomposition of the covariance matrix.
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Figure A.2: A two dimensional Gaussian distribution with contours showing that surfaces of
equal probability are elliptical. The principal componenents (eigenvectors) of the distribution
point along the major and minor axes of the contour ellipses.

A.2.1 Moments of the multivariate Gaussian distribution

We can now calculate some expectation values from the multivariate Gaussian distribution.
We’ll start by looking for the expected value of one of its variables,

〈xi〉 ≡
∫

dnx ρ(x)xi

= (2π)−n/2|C|−1/2

∫
dnx e−

1
2

(x̃−µ)C−1(x−µ)xi

= (2π)−n/2|C|−1/2

∫
dny e−

1
2

(ỹ)C−1y(yi + µi)

= (2π)−n/2|C|−1/2

[∫
dny e−

1
2

(ỹ)C−1yyi +

∫
dny e−

1
2

(ỹ)C−1yµi

]
.

Just like in the 1D case, we end up with two integrals: One containing a yi and the other
containing a µi. The integral over yi vanishes because it is odd, leaving only the constant
µi, or

〈xi〉 = µi . (A.11)

Covariances can be calculated using the same “field” trick that we used for the one-
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dimensional case. Explicitly,

〈xixj〉 =

∫
dnx ρ(x)xixj

=
1√

(2π)n|C|

∫
dnx e−

1
2

(x̃−µ)C−1(x−µ)xixj

=
1√

(2π)n|C|

∫
dny e−

1
2
ỹC−1y(yi + µi)(yj + µj)

=
1√

(2π)n|C|

∫
dny e−

1
2
ỹC−1y(yiyj + µiµj + yiµj + yjµi)

= µiµj +
1√

(2π)n|C|

∫
dny e−

1
2
ỹC−1yyiyj . (A.12)

The integral can be solved by defining the generating function

Z(J) =

∫
dny e−

1
2
ỹC−1y+J̃y , (A.13)

which contains the vector field, J. It works just like the field h worked in the calculation of
〈x2〉 from the 1D Gaussian. We say z = y −CJ, and

Z(J) = e
1
2
J̃CJ

∫
dnz e−

1
2
z̃C−1z

= (2π)
n
2

√
|C| e

1
2
J̃CJ ,

yielding

〈yiyj〉 =
1

Z(J)

∂2

∂Ji∂Jj
Z(J)

∣∣∣∣
J=0

= Cij .

Along with Eqs. A.11 and A.12, this leads us to

Cij = 〈xixj〉 − 〈xi〉〈xj〉 . (A.14)

The covariance between variables i and j is the difference between their average product and
the product of their averages. In Gaussian distributions, these covariances are hard-coded
into the covariance matrix that appears in the exponent.

If we transform to the coordinate system Z = ṼX, then motions along the basis vectors
are uncorrelated. Or, defining ∆z ≡ z− Ṽµ,

ρ(∆z) = (2π)−n/2|Λ|−1/2 exp

{
−1

2
∆̃zΛ−1∆z

}
= (2π)−n/2|Λ|−1/2

n∏
i=1

exp

{
−(∆zi)

2

2λi

}
.

The distribution is independently Gaussian in each coordinate.



Appendix B

Geometric Series

Where did Eq. 2.11 come from? It is just the simplification of a geometric series that can be
derived easily as follows: We write the series for a higher power, expand it, rearrange terms,
cancel, and viola!

n∑
k=0

k3 =
n∑
k=0

(k + 1)3 − (n+ 1)3

=
n∑
k=0

k3 + 3
n∑
k=0

k2 + 3
n∑
k=0

k +
n∑
k=0

1− (n+ 1)3

3
n∑
k=0

k2 = (n+ 1)3 − 3
n∑
k=0

k −
n∑
k=0

1

= n3 + 3n2 + 3n+ 1− 3n(n+ 1)

2
− n− 1

= n3 +
3n2

2
+
n

2
n∑
k=0

k2 =
n

6
(n+ 1)(2n+ 1)

n−1∑
k=1

k2 =
n

6
(n− 1)(2n− 1)
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