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The interaction potentials between the six lowest electronic states of 1, and an arbitrary discrete 
charge distribution are calculated approximately using a one-electron model. The model potentials 
are much easier to calculate than ab initio potentials, with the cost of a single energy point scaling 
linearly with the number of solvent molecules, enabling relatively large systems to be studied. 
Application of the model to simulation of electronically excited 1; in liquids and CO, clusters is 
discussed. In a preliminary application, solvent effects are approximated by a uniform electric field. 
If electronically excited (‘II,, t12) 12 un er d g oes dissociation in the presence of a strong electric field, 
the negative charge localizes so as to minimize the total potential energy. However, in a weak field 
the negative charge localizes in the opposite direction, maximizing the potential energy. Based on 
a study of the field-dependent potential surfaces, a solvent-transfer mechanism is proposed for the 
electronic relaxation of *II g, 1,2I;, in contrast to the conventional view of relaxation via electron 
transfer. 

1. INTRODUCTION 

1; exhibits a strong absorption spectrum in the 700-900 
nm region, corresponding to an electronic excitation from the 
bound *Cf U,112 state to the repulsive 211g,1,2 state.’ In view of 
the repulsive shape of the excited state potential, one might 
expect that recombination of excited I; in a solvent would 
occur slowly, if at all. However, photoexcitation experiments 
on 1; and I; in CO, clusters2-5 and liquid&” have detected 
rapid, coherent relaxation of I; to the ground electronic 
state. This has prompted a spate of theoretical 
investigations,5”2-‘6 with the proposed mechanisms hinging 
on the strong Coulombic interaction between the the dihalide 
or trihalide ion (the solute) and the cluster or liquid (collec- 
tively labeled as the solvent). In spite of these studies, the 
relaxation mechanisms, especially the pathways for elec- 
tronic relaxation, have yet to be determined conclusively. 

A major obstacle to the theoretical investigation of sol- 
vated dihalides and trihalides is the determination of the 
solventttsolute interaction potential. Considerable progress 
has been made, based on the premise that the interaction 
potential is dominated by the classical Coulombic interaction 
of the charge distributions of the solvent and solute. Early 
models of solvated I;, Br; , and 1; assumed that the charge 
distribution of the solute ion depended only on the solute 
geometry,‘2-24 while subsequent models included the distor- 
tion of the solute charge distribution by the solvent.5*16q17 

The early models predicted that the excess negative 
charge of the solute is responsible for a fivefold increase in 
the vibrational relaxation rate compared to the corresponding 
neutral species, and distortion effects were later found to 
greatly accelerate the initial vibrational relaxation near the 
top of the vibrational well. However, it is difficult to draw a 
direct comparison between theory and experiment, because 
the simulations were restricted to vibrational relaxation on 

the ground electronic state, whereas the experimental results 
depend on both electronic and vibrational relaxation. Fur- 
thermore, the only study to have treated the distortion effects 
in an entirely self-consistent manner approximated the sol- 
vent by a continuum model,16 which is inapplicable to ex- 
perimental studies of 1, surrounded by less than one solva- 
tion shell of CO2 molecules. 

In order to make a rigorous comparison of theory and 
experiment, the simulations should be extended to include 
electronic relaxation of the photoexcited solute. This requires 
not only the solventc-isolute interaction potentials for all 
states participating in the electronic relaxation, but also the 
rate of nonradiative electronic transitions. This paper focuses 
on the construction of simple but qualitatively correct inter- 
action potentials for all relevant electronic states. The distor- 
tion of the dihalide ion by the solvent is included, and an 
explicit form is given for the matrix elements which deter- 
mine the nonradiative electronic surface hopping probability. 
We shall consider 1; in a cluster of 1 to 22 CO2 molecules, 
since this system has been the subject of extensive experi- 
mental investigation,4*5 though the model to be described can 
be extended to many other systems. 

I; has six low lying potential energy surfaces, each of 
which could conceivably be involved in the photodissocia- 
tion dynamics, so an adequate model must encompass all six. 
While experimentally derived’* potential energy surfaces ex- 
ist for the six lowest states of isolated I;, determination of 
the I;Hsolvent potential from experiment is hampered by 
the broad, unresolved nature of the electronic and vibrational 
spectra. Because clusters have many degrees of freedom, 
theoretical determination of the potential energy surfaces for 
I;(C02),, is a major task and approximations must be made 
if the potential energy and the forces on each molecule are to 
be evaluated at each time step in a molecular dynamics simu- 
lation. 
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A common approach is to approximate the potential en- 
ergy as a sum of pairwise interactions. This is valid for the 
leading cha.rgeHquadrupole term in the I,(C02), interaction 
potential and for the bonding between the iodine atoms. 
However, considering the parallel (axial) polarization e_nergy 
of 1, with polarizability ~t;~ in the net electric field F pro- 
duced by all the CO, molecules, 

fi=c & , 
i=l 

V= )crrrF:, 

one finds that the polarization energy is composed of two- 
body terms involving 1; and one CO;!, and three-body terms 
involving 1, and two CO, molecules, 

n 

v= ; a,,~ F:,+ ; azzE FziFzj * 
i= 1 i#j 

approach was adopted by Benjamin et aLI3 in a study of I; 
in ethanol, and by Papanikolas’7 in a study of 12(C02)n. 
However, Perera and Amar have noted that the empirical 
charge switching function is unsatisfactory,25 and Papaniko- 
las found that molecular dynamics simulations of IF(COJn 
became trapped in a local minimum, with all the CO, mol- 
ecules surrounding a single I- ion. A serious shortcoming of 
these models is that they predict the polarizability of the 
dihalide ion to be either zero or equal to the atomic polariz- 
ability of the neutral halogen atoms, whereas the (adiabatic) 
polarizability actually diverges to infinity as the bond is 
stretched [Eq. (l)]. Papanikolas et al. subsequently improved 
the agreement between experiment and simulation by includ- 
ing the CO, coordinates in a semiempirical charge switching 
function.5*‘7 However, even for the ground electronic state of 
I;, it is exceedingly difficult to fit a multidimensional charge 
switching function, and a less empirical approach is neces- 
sary if all six states are to be considered. The empirical ap- 
proach also provides no information about electronic proper- 
ties other than the energy, such as the nonradiative electronic 
transition rates. 

For a model system where all the Fzi are equal, the three- 
body term is approximately II times larger than the two-body 
term. This is merely a demonstration of the well-known fact 
that electrostatic interactions between permanent multipole 
moments are pairwise additive whereas those involving in- 
duced moments are not. Internally contracted multireference 
configuration interaction (MRCI) calculations” with singles 
and doubles excitations20721 using effective core potentials 
and very small sp basis sets,** show that the ground elec- 
tronic state of 1, has a;,=200 a.u. at equilibrium (6 Bohr) 
and pZ=5000 a.u. at a bond length of 10 Bohr. Owing to 
this enormous polarizability, it is difficult to justify the ne- 
glect of many-body effects in a study of I;(C02)n. Indeed, 
expressing the polarizability as a perturbation expansion over 
all electronic states of isolated (D,,h)I;,23 

(1) 

it is apparent that Q--+M as R+JXJ for the ground (“CL,,,) 
state since the *Zf u.112 and *$,,,2 electronic states become 
degenerate as R-W [Fig. l(a)] while the corresponding tran- 
sition dipole moment &2~~,,2,211,,,/2)-t - R/2 as 
R+a.24 This reflects the fact that, for a sufficiently large 
bond length, an infinitesimal field will alter the I; charge 
distribution from completely delocalized (I-in-I-“*) to 
completely localized (I-I- or I---I). Neither a strictly local- 
ized nor a strictly delocalized description is adequate for the 
range of bond lengths from equilibrium to dissociation. 

For weakly interacting molecules, an alternative to the 
pair-potential approach is to calculate the interaction poten- 
tial from the multipoles and polarizabilities of the isolated 
fragments. This would require the polarizability of each of 
the six states of 12 as a function of bond length in the range 
probed by experiment (equilibrium to dissociation3). How- 
ever, owing to the infinite polarizability of D,,,I; at long 
bond lengths, such a procedure would break down in the 
dissociative limit. The instability arises because several of 
the electronic states of I; become degenerate at long bond 
lengths whereas polarizabilities are based upon nondegener- 
ate perturbation theory [Eq. (l)]. This deficiency can be over- 
come via degenerate perturbation theory, using a 6X6 
Hamiltonian matrix to cope with near degeneracies among 
the six low lying states of I;. Our approach uses this model 
Hamiltonian, described in Sets. II and IV, to extract the 
charge switching behavior from the experimentally derived 
potential energy surfaces for isolated I;. It is essentially an 
extension of the model used by Gertner and Hynes16 who 
implicitly solved for the ground state eigenvalue of a two 
state Hamiltonian which treats degeneracies between the 
ground state and the first excited electronic state of the same 
symmetry. While Gertner and Hynes focused on vibrational 
relaxation on the ground electronic state and used a con- 
tinuum model for the solvent, we are interested in both vi- 
brational and electronic relaxation. We also choose to model 
the molecular composition of the solvent explicitly, rather 
than using a continuum model, so the implementation of the 
two schemes differs considerably. 

The importance of the solventctsolute interaction poten- 
tial has been encountered in a study of Br;(CO*),, by Perera 
and Amar.” They chose the negative charge on each Br atom 
to be an empirical function of the Br; bond length, indepen- 
dent of the positions of the CO, molecules, and treated the 
Bry+-+CO, interaction potential as a Coulombic interaction 
between the point charges on the Br atoms and the perma- 
nent and induced multipoles of the CO2 molecules. A sir&u 

Although our principal goal is to model I; surrounded 
by explicit solvent molecules, I; in a uniform electric field is 
also discussed because the Hamiltonian matrix elements are 
considerably simpler than for more realistic interaction po- 
tentials. One may ask whether the uniform field would pro- 
vide a reasonable model of solvation effects. At first sight it 
appears to be a poor model, since internal electric fields in 
clusters stem from localized charge distributions and more 
closely resemble Coulombic fields than uniform fields. How- 
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FIG. 1. Adiabatic potential energy surfaces for I;. (a) Isolated 1; : Solid curves are the experimentally derived potentials (Ref. 18); dashed curves are the best 
fit of the valence bond model described in Sets. II and IV to the experimentally derived potentials. (b) Potential energy surfaces omirting spin-orbit coupling 
for 1; in an electric field of 0.003 a.u. parallel to the molecular axis. (c). (d) Potential energy surfaces including spin-orbit coupling for 1; in an electric field 
of 0.003 a.“. (c) and 0.006 au. (d). Solid curves represent a= 112 states and dashed curves represent n=3/2 states. A and B  denote the two iodine nuclei. The 
applied field points from A to B. I* indicates iodine in the high spin-orbit energy configuration and I the low spin-orbit energy configuration. 2 and II denote 
“bonding” states, Z* and II* denote “antibonding” states. Z: and II are only good quantum numbers in the absence of spin-orbit coupling (b). a, the 
component of (spin+orbit) angular momentum along the molecular axis, is a good quantum number in all cases and is designated by the subscripts l/2 and 
3/2. The zero of energy has been chosen to coincide with dissociated I, (neutral) in the ground electronic state at zero field. The energy of an ion in an electric 
field depends on the origin of the coordinate system. For (b)-(d), th e origin is at the nuclear center of mass. 

ever, we anticipate that the gross distortion of the excess 
negative charge in I; is insensitive to the details of the in- 
teraction potential, and is largely determined by the potential 
difference between the iodine nuclei (A U). In this case, a 
uniform field (F) of a strength which reproduces the cluster- 
induced potential difference between the iodine nuclei 
should provide a reasonable model of solvation. We have 
obtained a range of typical cluster-induced potential differ- 
ences from earlier molecular dynamics simulations,‘7 and de- 
rived the corresponding field strengths from them via 

F= AU/R, 

where R is the bond length of I;. A similar approach to 
solvation effects is common in studies of bulk liquid sol- 
vents, where the potential energy surface for the system is a 
function of the solute geometry and a one-dimensional “sol- 
vent coordinate.” 

The outline of the paper is as follows. 
The model Hamiltonian which describes the I~*(CO,), 

interaction potential is outlined in Sec. II. It requires the 
matrix elements of the interaction potential in the many- 
electron basis of electronic eigenfunctions of isolated I,. 
However, for the special case where the interaction potential 
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is a weak, uniform electric field it is remarkably easy to 
calculate approximate matrix elements without any knowl- 
edge of the eigenfunctions of 1; [Eq. (2)]. 

While the weak field Hamiltonian does capture the es- 
sence of the model, its extension to include arbitrary electro- 
static interactions requires matrix elements of the electro- 
static interaction with respect to the many-electron 
eigenfunctions of isolated Ii. These eigenfunctions have a 
relatively complicated form, owing to strong spin-orbit cou- 
pling in I,. Furthermore, the weak field Hamiltonian breaks 
down for medium or strong uniform electric fields, because 
the assumption that certain matrix elements are negligibly 
small is no longer valid. For these cases, the electrostatic, 
spin-orbit and bonding interactions must all be treated on an 
equal footing. This is more involved than the weak field case, 
requiring explicit consideration of the wave function for I;, 
and a full description of the interaction Hamiltonian is de- 
ferred to Sec. IV. 

nonpolarizable charge distribution which is approximated by 
five fixed point charges. The point charges reproduce the 
quadrupole and hexadecapole of CO,.26 To obtain the elec- 
tronic Hamiltonian for I;(C02),, , the matrix elements of the 
I;+-+(CO,), interaction potential are added to the zeroth- 
order Hamiltonian matrix. The basis functions used to evalu- 
ate the matrix elements are the six electronic eigenfunctions 
of isolated I;. (To provide an adequate description of the 
interaction potential at short range, intermolecular 1/R12 re- 
pulsive terms must be added to the potential. However, since 
these depend only on the nuclear coordinates they can be 
treated separately from the electronic Hamiltonian.) Either 
the experimentally determined’* or ab initio Born- 
Oppenheimer surfaces for isolated 1, can be used for the 
diagonal elements of the electronic Hamiltonian and any 
electrostatic perturbation can be treated provided the matrix 
elements of the perturbation are known. 

Uses and limitations of the model are discussed in Sec. 
III, and a comparison is made with ab initio results. 

The symmetry labels for both isolated and solvated I; 
are summarized in Sec. IV A, while the experimentally 
derived’* potential energy surfaces for isolated I; are re- 
viewed in Sec. IV B. The details of the model, including the 
basis functions, fitted parameters and fitting procedure, are 
contained in Sets. IV C-IV E. 

For the special case of I; in a uniform field F parallel to 
the molecular axis (z), an approximate Hamiltonian can be 
constructed using only the bond length R and six potential 
energy surfaces E,(R) for isolated I; [Fig. l(a)]. This is best 
illustrated by considering the two lowest eigenfunctions of 
I;, which are formed from the degenerate basis functions 
II--I) and II-I-). Each basis function has the negative 
charge localized in one of the three valence 5p atomic orbit- 
als, and the corresponding atomic orbital on the other iodine 
atom is empty. Although the basis functions are not orthogo- 
nal, the results of crude, semiempirical calculations are usu- 
ally insensitive to the overlap and it is commonly 
neglected.” The Hamiltonian matrix for isolated 1; in this 
localized basis is 

The Hamiltonian for I; in the presence of an arbitrary 
discrete charge distribution is given by Eq. (20). It requires 
the matrix elements of the Coulombic interaction potential 
with respect to a one-electron atomic orbital basis centered 
on the iodine nuclei. The Hamiltonian for the important spe- 
cial case of I; subject to a uniform field, including weak, 
medium and strong electric fields, is given explicitly in Eq. 
(23). The uniform field Hamiltonian is easy to construct, 

ff P  
with the matrix elements being linear in the electric field and i i P  ff 
linear and exponential functions of the bond length, and is 
valid for a much wider range of electric field strengths than 
the weak field Hamiltonian [Eq. (2)]. 

Section IV F addresses the application of the model to 
molecular dynamics simulations of I;(COJ,, , including for- 
mulas for the forces and electronic surface hopping prob- 
abilities. 

Potential energy surfaces and a charge switching func- 
tion for I; subject to a uniform electric field are presented in 
Sec. V, together with a discussion of nonadiabatic relaxation 
mechanisms for electronically excited I; in a I;(CO,), clus- 
ter. While no quantitative conclusions can be drawn about 
nonadiabatic relaxation rates in I,(COJn from the uniform 
field calculations, this preliminary study does suggest several 
plausible relaxation mechanisms which we hope to investi- 
gate via molecular dynamics simulations of the entire cluster. 

where a(R) and fi( R) represent the diagonal and off- 
diagonal matrix elements of the Hamiltonian operator. The 
two diagonal matrix elements are equal by symmetry. In the 
presence of an electric field F? the basis functions II--I) and 
II-I-) are no longer degenerate and, as observed by 
Mulliken,24 the diagonal matrix elements of i are equal to 
tR/2 , the position of the negative charge in the localized 
basis functions relative to the center of mass. The Hamil- 
tonian matrix for I; in a uniform field then becomes 

a- FRl2 P 
P CY+ FRf2 

II. MODEL HAMILTONIAN FOR I; IN A WEAKLY 
INTERACTING SOLVENT 

where the off-diagonal matrix element of Fz” is zero by sym- 
metry, since z^ is clearly odd in z, whereas (I--I(z)]I-I-(z)) 
is even. To make full use of the symmetry of the system we 
transform to a delocalized basis, 

The simplest approach to the Iy*(COJn interaction is 
to treat it as a perturbation to isolated I;. The zeroth order 
Hamiltonian matrix contains the Born-Oppenheimer poten- 
tial energies of the six low-lying states of isolated I; as the 
diagonal elements. Each CO, molecule is regarded as a rigid, 

; (II--1)t]1-II)). 

The Hamiltonian matrix in the delocalized basis is, 
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At zero field the Hamiltonian matrix is diagonal, with the 
diagonal elements corresponding to the eigenvalues of iso- 
lated I;. The eigenvalues of isolated 12 are customarily la- 
beled E, and E,, where ulg specify the ungeradelgerade 
symmetry of the state. In this notation the Hamiltonian ma- 
trix is” 

H(R)- 

-FR E2=+ - 
84,112 2 

-FR E2 
2 

n x.112 

-FR 
E2%,l,2 - 2 

-FR - E2Z+ 
2 x.112 

E2flx,3/2 

-FR 
2 

-FR 
2 

E2n”.3/2 

The above procedure is readily extended to include all six 
states of I;, with each of the three 5p atomic orbitals on the 
two iodine nuclei contributing a g/u pair of states, 

(2) 

The 2 and II labels attached to the six potential surfaces 
of isolated I; are not good symmetry labels. Owing to 
(strong) spin-orbit mixing, the only rigorous symmetry label 
is the quantum number a= (l/2,3/2), which denotes the com- 
ponent of (spin+electronic) angular momentum along the 
molecular axis. At long bond lengths and zero field the two 
Cl= II2 blocks correspond to the high and low spin-orbit 
states of iodine, with the E2n, ,,2and Ezx+ 8,112 

states being near 
degenerate and separated from the near degenerate E22+ 

and Eq, 
4112 

x.112 states by the atomic spin-orbit splitting. In this 
limit the eigenvalues are much more sensitive to field- 
dependent terms coupling the near degenerate Ei's within 
each 2X2 block than to field-dependent terms between the 
fi= l/2 blocks, and the terms coupling different blocks can 
be neglected provided the field is weak. Physically, the field- 
dependent terms coupling the two Q= l/2 blocks can be ne- 
glected providing the singly occupied molecular orbital in 
each eigenfunction is well described by a linear combination 
of two identical Hund’s case (c) atomic orbitals, one on each 
iodine nucleus. 

The approximations used to derive the field-dependent 
matrix elements for Eq. (2) (the weak field Hamiltonian) are 
expected to break down if bonding or electric field effects are 
of similar magnitude to the atomic spin-orbit splitting 
of 0.94 eV. The breakdown of the weak field Hamiltonian 
when bonding effects outweigh spin-orbit coupling 

readily 
~(2~;,,21m 

demonstrated. The matrix element 
g,112), which correlates with F(2Zf,~Iz1211,) 

when spin-orbit effects are negligible, is zero by symmetry 
in the Hund’s case (a) limit. However, in Eq. (2) this matrix 
element has the value -FR/2, regardless of the relative 
strength of bonding and spin-orbit coupling. Since the bind- 
ing energy of the ground electronic state of I; (1.1 eV) is 
comparable to the atomic spin-orbit splitting energy (0.94 
eV), Eq. (2) is expected to provide a poor description of 
electric field effects for the equilibrium geometry. In addi- 
tion, an applied electric field can tune into resonance atomic 
orbitals on opposite iodine nuclei which are not degenerate at 
zero field, and this effect is not described by Eq. (2). These 
field-induced resonances are the focus of Sec. V. 

To broaden the applicability of the model Hamiltonian a 
more accurate expression for the R-dependent matrix ele- 
ments of the electrostatic interaction is necessary. Unfortu- 
nately, this is difficult to derive because the basis functions 
(the eigenfunctions for isolated I;) are complicated functions 
of R, owing to the competition between spin-orbit and bond- 
ing effects. The 211,,,,2 state [Fig. 1 (a)] provides an excellent 
example, with the character of the wave function ranging 
from almost pure I’I at short bond lengths (R4 R,) to 1/3II 
and 2/3Z at longer bond lengths [Eq. (lo)]. For a general 
electrostatic perturbation a further complication arises be- 
cause each component of the six degenerate eigenfunctions 
is coupled to both components of the other five degenerate 
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functions. Although these additional matrix elements do not 
remove the double degeneracy of the six eigenvalues (Sec. 
IV A), the Hamiltonian no longer factors into two 6X6 
blocks, and a 12X 12 matrix must be constructed. 

fixed bond length. The model charge switching functions and 
field dependent potential energy surfaces for the excited elec- 
tronic states, described in Sec. V, are quite unusual and may 
have ramifications for the rate of I*+1 relaxation in I;. 

To minimize these problems we construct the Hamil- 
tonian in the simpler Hund’s case (a) basis. The method is 
briefly outlined here, and the details are given in Sec. IV. The 
zeroth-order Hamiltonian corresponds to isolated I;, omit- 
ting spin-orbit effects (Sec. IV E). It consists of two identi- 
cal, diagonal 6X6 blocks, with the basis functions in one 
block having LY spin and those in the other block having 6 
spin. Both spin-orbit coupling [Eq. (22)] and the electro- 
static interaction [Eqs. (14) and (24)] are described by ap- 
proximate matrix elements in the 12X 12 electronic Hamil- 
tonian [Eqs. (20) and (23)]. Only the spin-orbit operator has 
matrix elements connecting basis functions of CY spin with 
basis functions of p spin. 

While treatment of I; in a nonuniform field requires an 
explicit choice of basis functions for the Hamiltonian matrix, 
many properties are insensitive to the precise form of the 
basis functions. The most important property to reproduce 
correctly is the quadrupole of the valence p orbital of atomic 
iodine, since it can interact with an external field gradient 
and occurs in the next term in the expansion of the 1,+-&O, 
interaction potential after the charge-field term. 

The model displays the correct limiting behavior when 
either spin-orbit coupling or I***1 bonding effects are domi- 
nant and it also describes field-induced resonances. The 
model provides a less accurate description of the wave func- 
tion for I; at short I+**1 bond lengths, because the atomic 
orbital basis includes only valence 5p functions and neglects 
polarization functions (5s,5d...). It is not exactly equivalent 
to the procedure defined by Eq. (2), since the spin-orbit 
matrix elements are only evaluated approximately. Equation 
(2) above for I; in a weak uniform field does capture the 
essence of the model, with the caveat that the field- 
dependent matrix elements are too approximate for many 
applications and cannot easily be extended to describe non- 
uniform fields and other solvent effects. 

The chief virtues of our model are its simplicity and 
generality. As described in Sec. IV E, it actually contains 
fewer fitted parameters than the surfaces originally fitted to 
experiment, l8 and it requires only trivial computations. Pro- 
vided the polarizability of the solvent (CO,) molecules is 
ignored, the cost of construction of the 12 X 12 Hamiltonian 
matrix scales linearly with the number of solvent molecules, 
while the cost of the forces and surface hopping matrix ele- 
ments scales quadratically. Analytic derivatives can be used 
to minimize the execution time, allowing quite a large num- 
ber of solvent molecules to be modeled. 

III. ACCURACY AND LIMITATIONS OF THE MODEL 

We now turn to a discussion of the accuracy and limita- 
tions of the model. All the results in this paper, including 
those for 1, in a uniform field, are based on the method 
described in Sec. IV [Eqs. (20) and (23)], rather than on 
Eq. (2). 

The model requires zero&order potential energy sur- 
faces for I; which omit the effects of spin-orbit coupling, so 
it is ideally suited to use with ab initio calculations (which 
often omit spin-orbit coupling).28 A useful result, given in 
Sec. IV E, is that the parameters which describe the zeroth- 
order potential energy surfaces can be fitted one at a time to 
experimental potential energy surfaces which include the ef- 
fects of spin-orbit coupling. This avoids the instability asso- 
ciated with multidimensional fitting. 

I; is just one electron short of the noble gas configura- 
tion Xe,, and the one hole nature of the wave function can be 
exploited to make approximate predictions of a variety of 
properties. These include solvent effects on the electronic 
spectrum of 1, and electronic surface hopping matrix ele- 
ments (Sec. IV D). In particular the model enables the use of 
a consistent set of forces, charges and surface-hopping ma- 
trix elements (Sets. IV E and IV F) for molecular dynamics 
simulations of I;(C02), . This is an improvement over ear- 
lier models3’13712 which set the polarizability of I; to be 
zero” when calculating the forces between I; and the CO2 
molecules. These previous models also approximated the 
electronic charge distribution of I; by point charges on each 
nucleus. In addition, they either ignored electronic surface 
hopping or assumed that it occurs with unit probability at a 

The model has been fitted to small basis ab initio MRCI 
calculations,” with spin-orbit coupling omitted from both 
the ab initio calculations and the model. It reproduces the ab 
initio parallel polarizability to within 10% and the ab initio 
(Mulliken) charges2’ on each atom to within 2% for electric 
fields in the experimental range (O+O.Ol a.u.) for the ‘C: 
and 211s states. The agreement seems surprisingly good, 
given that the parameters are fitted at zero field, though it 
may be an artifact of the small basis set used in the ab initio 
calculation and the omission of spin-orbit coupling from 
both the ab initio calculation and the model. However, the 
model also reproduces large basis (VTZ SPDFLSPD) all- 
electron CAS-SCF19 calculations for the “2: and 211g states 
of Cl; to a similar accuracy. The close agreement between 
the ab initio and model atomic charges on each iodine atom 
in the presence of a uniform electric field is a consequence of 
the very large parallel polarizability of I; relative to 12. Prop- 
erties of 1; which are chiefly determined by the drift of 
charge along the molecular axis are easily reproduced by a 
crude wave function. Both Mulliken24 and Demkov3132 have 
successfully used analytic methods to study charge switching 
in similar systems. The 10% error in the model polarizabil- 
ities is mainly due to the neglect of the polatizability of the 
iodine cores. 

The model is unlikely to perform so well for properties 
which are sensitive to the finer details of the wave function 
such as electron drift perpendicular to the molecular axis or 
polarization of the iodine core orbitals. Electronic surface 
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TABLE I. Descent in symmetry for elecfronic states of iodine and I;. The term symbols for atomic iodine are 
listed. For the group C,, and its subgroups 1; has two states of the same symmetry for each state of atomic 
iodine. For the point group D,, the states of I; occur in geradektngerade pairs. 

Orbital Spin Total Symmetry 
Group symmetry @  symmetry cf symmetry operators” 

K  P(=D,) DIR Dd%z J, J, , t ime reversal 
c 5” c+fm E m  El/Z8(El/28E3/2) J, , t ime reversal 
C* A’B(A’@A”) El, 3E1, t ime reversal 
Cl 3A 2B1/2 681, t ime reversal 

*Symmetry operators of me total Hamiltonian, including the spin-orbit Hamiltonian. J, is the projection of the 
(spin+electronic) angular momentum along the molecular axis, with eigenvalues a. For the isolated atom the 
total (spin+electronic) angular momentum J, is also conserved. 
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hopping between R= l/2 and sZ=3/2 states depends on both 
of these properties, so it will not be predicted accurately. 
Coupling of the low lying electronic states of isolated 1, to 
the highly excited states by the I,+-C02 interaction, which 
accounts for the polarization of the iodine cores, occurs at 
the next order of perturbation theory and is not treated here. 
Truncation at the lower order is justified provided the pertur- 
bation does not strongly couple the six nearly degenerate 
states to the highly excited states.“” Since the first electroni- 
cally excited state of I; is very close to the ionization limit, 
strong solvent coupling of the low-lying states to the other 
states would be expected to cause significant delocalization 
of the outermost electron into the solvent. Experiments on I- 
in CO2 clusters indicate that only a small amount of delocal- 
ization occurs,34 so omission of these effects is probably a 
reasonable approximation. 

Throughout this paper, the polarizability of the CO, sol- 
vent is ignored, even though it does affect the electronic 
structure of I;. This has been done in the interests of sim- 
plicity. While the polarizability of the solvent has been in- 
cluded in molecular dynamics simulations of Br;(C02)n ,12 it 
is considerably harder to include the solvent-solute polariz- 
ability interactions in a consistent manner. Several authors, 
notably Kim and Hynes35 and Gertner and Hynes,16 have 
successfully treated solvent-solute polarizability interactions 
in related systems and we are currently working on this. If 
one treats the solvent-solute interaction using Van Vleck de- 
generate perturbation theory,33 with the zeroth-order Hamil- 
tonian corresponding to the isolated solute, the model pre- 
sented here considers all terms to first order, while solvent 
polarization effects enter at second order. (The latter point is 
related to the definition of polarizability as the second de- 
rivative of the Born-Oppenheimer energy with respect to 
electric field.) 

Since each CO2 molecule is approximated by a finite 
number of point charges or multipoles, the model Hamil- 
tonian also neglects chemical bonding interactions between 
I; and C02. This is a major limitation of the model and yet 
it is precisely this approximation which makes it feasible to 
extend the calculations to larger clusters of experimental in- 
terest. For the case of I;(CO,), , bonding between 1; and the 
CO2 molecules is expected to be very weak because CO, has 
a negative electron affinity while I- has an ionization poten- 
tial of 3.14 eV. Also, assuming CO, is more likely to bond to 
I- than to neutral I, the impact of bonding on electronic 

relaxation may be small because I- is closed shell and can 
only cause electronic transitions indirectly by its influence on 
open shell iodine. Nevertheless, at first sight it seems a gross 
approximation to neglect bonding interactions during a col- 
lision of a CO, molecule with 1,. However, the enormous 
difference in the ionization potentials of 12 (3.06 eV)18 and 
CO, (13.769 eV),36 together with the negative electron affin- 
ity of C02, suggest that the valence orbitals of 1, are too 
diffuse to undergo chemical bonding with the valence orbit- 
als of C02, even at close range. The short range repulsive 
potential between I; and C02, which we presume to be due 
to interactions of the CO2 valence orbitals with I; core or- 
bitals of similar energy, is described empirically by adding a 
I/R12 repulsive term to the Hamiltonian. For cases where 
bonding forces between I; and a solvent are significant it 
may prove feasible to construct a wave function for the entire 
cluster from the wave functions for each diatomic frag- 
ment using the semiempirical diatomics-in-molecules 
approach.37,38 

IV. DETAILS OF THE MODEL HAMILTONIAN 

A. Symmetry labels for I; 

The six model potential energy surfaces for I; described 
in the Sec. IV E are applicable to I; in a uniform or nonuni- 
form electric field or in a solvent, and the electronic symme- 
try labels for each situation are summarized below. 

The symmetry labels for the ground 5s25p5 configura- 
tion of atomic iodine, which is one electron short of the 
noble gas configuration of xenon, can be deduced by treating 
it as a one hole system, so the term symbols are the same as 
for the hydrogen atom. The term symbols for I; classified in 
the C,, point group can be obtained easily3’ by forming the 
direct product of the term symbols for I with those of I-. 
Since the ground electronic state of I- is totally symmetric in 
the C,, group, the term symbols for I; are identical to those 
of atomic iodine classified according to C,, . In the 5s25p5 
configuration of iodine the hole can occupy any one of the 
three p orbitals and can have a or /3 spin, giving a total of six 
states. For each state of atomic iodine one can form two 
states of I; with the same term symbol from the linear com- 
binations (I--1+1-1-). When classified according to the 
Dmh group these 12 states also possess inversion symmetry; 
six states are gerade and six are ungerade.3gP40 The symmetry 
labels for the spatial and spin functions for 17 and atomic 
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iodine are summarized in Table I. Owing to the strength of 
spin-orbit mixing it is appropriate to use the symmetry of 
the total spacexspin wave function rather than the symmetry 
of the spatial function alone and this has also been included. 
The subscripts l/2 and 3/2 in the term symbols for the total 
wave functions indicate the component of (electronic + spin) 
angular momentum along the molecular axis. Spin-orbit 
coupling can only mix functions of the same total symmetry. 
In iodine the 12c+a) and 1211(h=+ 1)p) configurations are 
strongly mixed and the spin-orbit splitting in atomic iodine 
is -1 eV. The 12 states of 12 in a vacuum are customarily 
labeled 

B. Empirical potential energy surfaces for isolated I; 

2+ 2n c &l/2 8,312 2rI 2rI 2rI 2 + 
8,112 u,3/2 u,1/2 c 8,112 9 

where it is understood that each state is doubly degenerate 
and that Z/II are merely convenient labels, not good quan- 
tum numbers. 

The six .s2p5 potential energy curves of isolated 1; as 
determined from experimental data by Chen and 
Wentworth” are reproduced in Fig. l(a). At long bond 
lengths the four low energy spin-orbit states (I) are dis- 
placed from the two high energy spin-orbit states (I*) by the 
atomic spin-orbit splitting, while at shorter bond lengths 
a= l/2 configurations from the I and I* states are mixed by 
bonding between the iodine nuclei. The competing effects of 
bonding and spin-orbit coupling cause the excited electronic 
states to respond in an unusual fashion to electric fields, as 
discussed in Sec. V. Although the states are usually identified 
by Hund’s case (a) labels, our model calculations suggest 
that spin-orbit coupling causes nearly complete mixing of 
a= l/2 2 and II states except in the highly repulsive region 
below 6 Bohr. In contrast, the fl=3/2 TI states are not mixed 
with Z states by spin-orbit coupling, so the II label is appli- 
cable. 

Nonadiabatic electronic transitions in 1, are induced by 
movement of the nuclei or by movement of neighboring nu- 
clei and this is reflected in a lowering of the symmetry 
group. Rotation of I; removes the cylindrical symmetry, so 
the component of (electronic+orbital) angular momentum 
along the molecular axis, Q, is no longer conserved. 
Electronic-rotation Coriolis coupling (A doubling) is usually 
weak and the rovibrational states occur in nearly degenerate 
pairs of opposite parity, with the two states having the same 
direction of nuclear rotation but opposite directions of elec- 
tron rotation about the molecular axis (II,). 

Chen and Wentworth’ fitted the available experimental 
data for 1; to six Morse potentials. While the fits for the two 
high spin-orbit energy I* states were not uniquely deter- 
mined by the available data, the lower four states were each 
fitted to three or four independent pieces of data. The unde- 
termined parameters for the upper states were set by com- 
parison with the values for the dihalide ions F, , Cl,, and 
Br; . 

C. Basis functions for the model Hamiltonian 

In the point group C, the ground electronic configuration 
spans 12B 1,2, so it appears that the electronic states are no 
longer degenerate. However, even in this case the B,,2 states 
occur in degenerate pairs, because the electronic (and total) 
Schrijdinger equation is invariant under time reversal. Kram- 
er’s theorem4”42 states that, because the Schrodinger equa- 
tion for a system unperturbed by external magnetic fields is 
invariant under time reversal, every energy level of such a 
system with an odd number of electrons is at least doubly 
degenerate. Internal magnetic fields produced by molecular 
rotation, etc., do not split this degeneracy.43 The degeneracy 
is most easily seen for a simple system such as the hydrogen 
atom. For each state, say 11 SLY), there is a degenerate state of 
opposite spin (1 IS@). Spin-orbit coupling mixes basis 
functions of LY and p spin, so that the degeneracy is not so 
obvious; here, Kramers’ theorem tells us that for each state 
we can obtain a linearly independent, degenerate state by 
reversing the momenta of all particles (including both space 
and spin coordinates). This enduring degeneracy reduces the 
number of electronic eigenvalues which must be considered 
from 12 to 6. 

The basis used to describe the model wave function is 
very simple, consisting of the three 5p atomic orbitals on 
each iodine atom. A full-configuration interaction calculation 
for the six degenerate states of I;(C02)n is performed in this 
basis, with I***1 bonding matrix elements approximated by 
semiempirical parameters. Ii has 11 electrons in the 5p va- 
lence shell, while the basis consists of only 12 spin-orbitals, 
so the full-CL wave functions are linear combinations of just 
12 Hartree-Fock type determinants, each with a hole in a 
different spin-orbital. In order to fully specify the phase 
conventions adopted in the model, the following subsections 
contain explicit phases for the basis functions and definitions 
of the necessary coordinate transformations. 
1. Atomic orbitals 

The phases for the atomic orbitals are chosen such that 
the positive lobes of the real Cartesian p orbitals are directed 
along the positive Cartesian axes. The p orbitals can be 
aligned parallel to the space-fixed (XYZ) or molecule-fixed 
(xyz) axes. 

Parity is always a good quantum number for an isolated 
system, regardless of the point group symmetry of the sys- 
tem, though states of -+ parity do not usually occur in pairs 
for nonlinear systems. However, because parity, the inver- 
sion of nuclear and electronic spatial coordinates through the 
origin of the space fixed axis system, relates the value of the 
electronic wave function at one nuclear configuration to that 
at another nuclear configuration, it is of little use when solv- 
ing the electronic Schrodinger equation for clamped nuclei. 

While the electronic wave functions for isolated 1, are 
most naturally defined in a molecule-fixed axis system, mo- 
lecular dynamics calculations are usually referred to space- 
fixed axes. To make a consistent choice of the positive direc- 
tion for the molecular axis throughout a molecular dynamics 
simulation, we label the iodine nuclei I,,, and I,, with coor- 
dinates RA and R,. The molecular axis is defined to be 
(b-W 

The molecule-fixed axes can be obtained by rotating the 
space-fixed axes through the Euler angles (4,&O), 
[Oc&27r,OG 6~1. We have followed the Euler angle con- 
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vention defined by Zare.44 Cartesian p orbitals aligned along 
the molecule-fixed axes, px ,py ,pz , are related to Cartesian p 
orbitals aligned along the space-fixed axes, px ,p y ,pz , by 
the well-known direction cosine matrix @(8,#, 

PX 
PY 
PZ 

Px 
=@‘(e,+) PY . i 1 Pz 

(3) 

For many purposes it is more convenient to use a space-fixed 
spherical basis, p + ,po ,p - , 

i 

Px 
PY 
Pz 

T= 

-1 i 
zz” 

0 0 1 

\ 

1 i 
zz” 

(4) 

Molecule fixed (xyz) spherical basis functions are related to 
space fixed (XYZ) spherical basis functions by the rotation 
matrices of angular momentum theory45 

(5) 

where 

(64 
(I+COS e) -VT sin 8 (1 --OS e) 

fisinB cos0 -v?sin8 . 
(l-cos e) v7sinB (ifcose) 

(W 

The Cartesian and spherical transformations are related by T, 

cP= T+&T. (7) 

Twelve atomic spin-orbitals are produced from the six 
atomic orbitals and the two spin functions (cr,,@, and they 
form the one-electron basis for the electronic wave function 
of I;(co,), . The relations between molecule-fixed and 
space-fixed basis functions, and between Cartesian and 
spherical basis functions, are summarized by the matrix 
equations, 

AO( molecule fixed Cartesian spatial orbitals, 

space fixed spin) 

= WAO( space fixed Cartesian spatial orbitals, 

space fixed spin) 

= T’8”AO( space fixed spherical spatial orbitals, 

space fixed spin), (8) 
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where T, 8i, and cf, are now 12X 12 matrices with compo- 
nents given by Eqs. (4), (6), and (7). 

An explicit form for the pz atomic orbital was obtained 
from an SCF calculation” on atomic iodine omitting spin- 
orbit coupling, using a palladium effective core potential and 
a small sp basis of Cartesian Gaussians.‘9,22 The px and py 
orbitals differ from the pz orbital only by a rotation. No 
allowance has been made for the distortion of the atomic 
orbitals which occurs as the iodine nuclei approach each 
other, and the p orbitals of I- are assumed to be identical to 
those of neutral iodine. Polarization functions for the atomic 
orbitals (s,d...) have been omitted for simplicity; the main 
objective of the model is to reproduce the gross charge drift 
along the z axis. 

p + , po, and p - , Gigned relative to the space fixed axes, 
are eigenfunctions of E, , 

i7pp,= +p+, izpo=o. 

They also satisfy the Condon and Shortley phase 
convention,46 

i-p+=~po, i-po=dp-) @b) 

where i- =ix- if,. The same equations hold for molecule 
fixedp+,po,andp-,with~x,iy,and~zreplacedby!~,~y, 
and I,. The spin functions also satisfy the Condon and Short- 
ley phase convention, 

i-CY=p 

where s^-=s^x-is^y. 

(9c) 

It would be possible to use the molecule-fixed Hund’s 
case (c) atomic orbitals [jsZ) appropriate for strong spin-orbit 
coupling, 

13/2,3/2)=p+, 

13/2,1/2)= &i?po+ mjj+, 

11/2,1/2)=fippo-&i$+, 

where both the spin and spatial functions are aligned relative 
to the molecule fixed axes. These functions satisfy the Con- 
don and Shortley phase convention for the total (spin 
+orbital) angular momentum,47 

j”-13/2,3/2)=fi/313/2,1/2), (3/2,1/2~s^,~1/2,1/2)>0, 

where J ‘- = s^- + i- . They are eigenfunctions of j^, . However, 
the solvent-solute Hamiltonian is more easily constructed 
with respect to the simpler Hund’s case (a) atomic orbitals. 
For this reason, we have endeavored to convert the 
Chen-Wentworth” parametrization of the true [Hund’s case 
(c)] potential energy surfaces for 1, to a Hund’s case (a) 
parametrization, as discussed in Sec. IV E. While the Hund’s 
case (c) atomic orbitals are not required for the construction 
of the Hamiltonian matrix, they are needed for calculating 
some properties of the electronic eigenfunctions such as the 
expectation value of jX. 
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2. Molecular orbitals for isolated r; 

If spin-orbit coupling is neglected, the molecular orbital 
coefficients of the 12 Cartesian, molecule-fixed atomic spin- 
orbit& are determined by symmetry, 

MOi,ulg =(AOA,i+AOB,i)lJ2(1 ~(AO~,ilAO~,i)>, 
(114 

in the same column in both determinants. This can alter the 
sign of the off-diagonal matrix elements of i. If the molecu- 
lar spin-orbitals are ordered according to Eq. (12), the off- 
diagonal matrix elements have the sign, 

(i/A/j)= -(holejlLIholei) 

where i denotes a particular Cartesian component (x, y, or z) 
and a particular spin (a or p). The 12X 12 matrix of molecu- 
lar orbital coefficients C is defined as, 

(if holei and holej have the same spin), 
(134 

(ililj)= +(holejILlholei) 

MO= C’AO( molecule fixed Cartesian spatial orbitals, 

space fixed spin). (1 lb) 

(if hole; and holej have opposite spin). 
(134 

3. Eleven electron determinants 

Each 11 -electron determinant is constructed from 11 of 
the 12 molecular spin-orbitals. The relative phases of the 
determinants are defined by specifying the column ordering 

- 

(zu),tzdl(zg)~~ 02) 

where (z) is short hand for MO,,, , the ungerade molecular 
orbital with p spin constructed from PA,x and pB,x. 

Each determinant is labeled by the unpaired electron and 
the spatial symmetry (2’ or II). Thus 

-- 

We now turn to the derivation of explicit expressions for 
the matrix elements of the one electron operators required by 
the model. In cases where the one electron matrix elements 
are derived in the atomic orbital basis, Eqs. (8) and (11) can 
be used to transform them to the molecular orbital basis re- 
quired by Eq. (13). Approximate expressions for the many 
electron integral (Is-b II$J are obtained by exploiting the 
fact that I;- has a closed-shell wave function. 

1. Spin- orbit interaction 

The spin-orbit Hamiltonian is approximated by a one 
electron operator,48 

D. Approximate Hamiltonian matrix elements for one 
electron operators 

Matrix elements of several one electron operators are 
required by the model. In the current approximation, the 
I;++C02 interaction and the spin-orbit interaction are one 
electron operators. Calculation of nonadiabatic effects re- 
quires the matrix elements of the one electron operator 
-iv,, where X refers to all the nuclear degrees of freedom 
in I,(C02), . It is useful to know the projection of the (spin 
+electronic) angular momentum of the cluster along the I-I 
molecular axis, 3,) which is also a one electron operator. 
Explicit matrix elements for these operators are given below. 
Intramolecular bonding in I; is also modeled by a one- 
electron operator, as described in Sec. IV E. 

Making use of the usual rule: for matrix elements of a 
Hermitian one electron operator A between determinants Ii) 
one obtains, 

(i\6~j)=(hole~~~~holeJ (i#:j), (134 
(il~li)+(holeilLIholei)=(I~-IAII:-). (13b) 

Thus, 

Hso=Ci{iZS”Z+ +(i+;- +k;+)}. 

In a further approximation, integrals between atomic orbitals 
on different nuclei are assumed to be zero because &, which 
is only a function of the spatial coordinates, decays rapidly 
( llr3) as the electron moves away from the nucleus. Only the 
one center, one electron atomic orbital integrals are calcu- 
lated, and the spin-orbit operator for each one center integral 
is taken to be that for the isolated atom. 

Spin-orbit effects cancel for doubly occupied orbitals, 
so the matrix element involving I;- is zero. The integrals 
over space fixed spherical atomic spin-orbitals can be re- 
duced to integrals over spatial functions alone by making use 
of the properties of angular momentum eigenfunctions [Eq. 
(9)lv 

(P+W=~P+)= +%~+l4~+), 

(ii-lH%-)= + %p-kl~-). 

(P+IHS“lji+)= - %P+I~P+), 

(P-IH~~~P-)=-+(P-I~~P-), 

1 

(ilili)=(I;-IAII;-)-(holeilA]holei), (13c) 

where the determinant Ii) has a hole in the molecular spin- 
orbital IholeJ. 

The rules for evaluating matrix elements of determinants 
require that the determinants first be rearranged such that 
molecular spin-orbitals common to both determinants occur 

(iiolHSol~-)= + qj (PO\~~PO>~ 

(PoIH=‘IF+)= + j!+ (PO~;~PO)~ (~olH~“l~o)=O. 

The matrix elements over spatial functions are set equal to 
the spin-orbit coupling constant for atomic iodine.48 The 
operator a^ is positive everywhere,48 so we set 

(p+lC;lp+)=(p0l~lp0)=(p-~~lp-)=+5068 cm-‘. 
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2. 6 in a uniform electric field 

If the field F is parallel to the molecular (z) axis and the 
origin is taken to be the center of mass (z,,), 

fi= F(i-z,.,.), 

(I:-I~II~-)=O (by symmetry). 

The nonvanishing one electron integrals, expressed in the 
molecule fixed Cartesian atomic orbital basis, are 

(Pe,iI~IPB,i)= + @R (i=w,z), 

where R is the I-I bond length, and similarly for atomic 
spin-orbitals with spin /3. 

3. General 1; H (Cod” interaction 

For the general case of I; surrounded by an arbitrary 
number (n) of CO, molecules represented by charges Qk at 
positions X, , the I;tt(COz), interaction Hamiltonian is 

(14) 

where r is the electronic coordinate. The operator is readily 
generalized to include point multipoles of arbitrary order. 
Each Hamiltonian matrix element (ilZ;= t (Qkllr-Xkl)b) can 
be written as a sum of n terms of the form Q,(i~l/~r-Xk~~). 
Using Eq. (13) these integrals are expressed in terms of the 
one electron integrals (holejlI/lr-XklIholei) and the many 
electron integral (I:-11/h--X,111$-). The former is just the 
familiar nuclear attraction integra13’ commonly encountered 
in ab initio calculations. It is evaluated exactly via standard 
methods in the space fied Cartesian (Gaussian) atomic or- 
bital basis, using an explicit form for the atomic orbitals. The 
integral (I~-[l/~r-X,~~I~-) is the electrostatic potential of Ii- 
at position Xk. If X, is outside the I$- charge cloud, it is 
simply the coulomb repulsion energy between a unit charge 
(a.u.) at position X, , and charges of - 1 coincident with the 
iodine nuclei. (This assumes that the wave function for If- is 
simply the product of the wave functions for isolated Ii and 
Ii, which is consistent with the neglect of orbital polariza- 
tion for I;). If charge Qk penetrates the I;- charge cloud of 
atom I,, then the charge on IA is reduced to the charge en- 
closed in a sphere centered at A touching X,. Thus matrix 
elements of arbitrary electrostatic potentials require the ra- 
dial potential function for isolated (spherical) I-; this has 
been calculated at the SCF level.” In practice the CO2 mol- 
ecules can only penetrate a small distance into the 1; charge 
cloud before encountering a short range repulsive (Lennard- 
Jones) potential, described in the Appendix, and neglect of 
penetration effects has only a marginal effect on the 
Ii++(CO,), interaction potential. 
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4. Nonadiabatic interaction 

The semi-classical description of electronic surface hop- 
ping requires the matrix elements of the gradient operator 
(Sec. IV F), 

I;= -iVx, 

where X spans all 3N nuclear coordinates. 6 represents the 
momentum of the nuclei and hence is Hermitian. It follows 
that Vx is skew-Henrmitian. In the following we consider a 
single component, P = dldX. 

For any normalized function $ it is easy to show that 
( (lildldX$) is a pure imaginary number by differentiating 
the normalization condition, (+j$)= 1. If fi is real then the 
expectation value of dldX is zero. For complex @ the pure 
imaginary term (+ldldX @) determines how the phase of + 
varies as nuclear coordinate X is displaced, and we are free 
to choose the phase such that 

(+ldldX qh)=O for all q. 

In particular, 

(I;-/dldX I;-)=O. 

The one electron matrix elements are most easily evalu- 
ated in the spacefied Cartesian atomic orbital basis, with 
the transformation to molecular orbitals defined by Eqs. (7), 
6% and (111, 

MO=C’T’B”T*AO 

(space fixed Cartesian spatial orbitals, 

space fixed spin). 

Evaluation of dMOldX requires dCldX, dTldX, d0’ldX 
and dAO/dX. T is a constant matrix [Eq. (4)], so dT/dX=O. 
The derivatives of the atomic orbitals, dAO/dX, give rise to 
small but spurious nonadiabatic transitions for an isolated 
particle moving at constant velocity, and it is common prac- 
tice to set them equal to zero, as discussed in Sec. IV F. C 
depends only upon the I-I bond length R [Eq. (1 l)], so 

dC dCdR -=-- 
dX dRdX’ 

dC/dR reduces to the derivative of the overlap of (molecule 
fixed) atomic orbitals centered on IA and I,. The atomic 
orbital overlap is approximately exponential in R, and a 
single exponential has been fitted to the ab initio overlap, as 
described in Sec. IV E. Similarly, 

d0’( 0,+) de’ d6’ d@d+ -- 
dX =dBdX+ d+ dX’ 

The derivatives of 8t are obtained from Eq. (6). d t?/dX, 
d&dX, and dRldX are obtained by differentiating Eq. (3) 
for the special case, 
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(E) =( ;), 
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the Euler angles is restricted to that appropriate for integral 
angular momentum then, owing to the fact that a rotation of 
29~ changes the sign of (Y and p, 

where XA and X, are the X coordinates of nuclei IA and I, 
and @ (B,+) is given explicitly in Eq. (7). The derivatives 
dCl’/dX, which are only nonzero if the nuclear coordinate X 
belongs to one of the iodine nuclei, describe Coriolis 
(electron-nuclear rotation) coupling in I;. 

and all the molecular orbitals may be in error by the same 
phase factor of - 1. However, the erroneous phase factor is 
the same for all the molecular orbitals, so it has no effect on 
matrix elements. 

5. Angular momentum matrix elements 

The component of (spin + electronic) angular momentum 
along the molecular axis, j^, , is a good quantum number for 
isolated 12, with allowed values t1/2, +3/2 for the lowest 
six electronic states. The expectation value of 3, for the elec- 
tronic wave function of IT(COJ” provides a useful measure 
of the strength of the cluster-induced i/2+-+3/2 mixing. 

The matrix elements of j^, are readily evaluated in the 
molecule fired Hund’s case (c) atomic orbital basis [Eq. 
(lo)], reducing to simple atomic orbital overlaps, since these 
orbitals are eigenfunctions of j^, . 

Transformation from the atomic orbital basis to the mo- 
lecular orbital basis requires a transformation of both the 
spatial functions and the spin functions. The transformation 
of the (molecule fixed) spatial functions from a spherical 
basis to a Cartesian basis is readily performed with reference 
to Eqs. (4), (g), and (ll), 

MO= C’T’AO 

E. Fitted parameters for the I; potential 

1. Definition of the bonding parameters 

If the intramolecular I.e.1 bonding interaction in I; is 
assumed to be a one electron operator, Hbonding, then the fit- 
ting equations for the bonding parameters take a very simple 
form. The ansatz that Hbonding is a one electron operator can 
be motivated by comparison with the Fock operator which 
defines the Hartree-Fock wave function and is a pseudo one 
electron operator. The bonding Hamiltonian Hbonding is de- 
fined to be the total electronic Hamiltonian for I;, omitting 
spin-orbit coupling. The spin-orbit Hamiltonian matrix ele- 
ments are calculated separately, as described in Sec. IV D. 

Referring to Eq. (13) for matrix elements of one electron 
operators with respect to the 11 electron determinants Ii) and 
Id7 

(i]HbOndi”a]j)= -(holej~Hbondi”s~holei) (i#j), 

(molecule fixed spherical spatial orbitals, 

space fixed spin). 

Transformation from the space-fixed (XYZ) spin basis to the 
molecule-fixed (xyz) spin basis45 closely resembles the 
transformation of spherical p orbitals [Eqs. (5) and (6)], 

(y XYZ 
( 1 

(y XYZ 
P =W2’(e,+) p , ( 1 (154 

where 

(4Hbnding 1 i) = (I~-~Hbo”di”~~I~-)-(hole~~Hbo”di”a~hole~), 
(16) 

where determinant Ii) has a hole in molecular spin-orbital 
[hole,). 

0 ~~~,(e,~)=exp(+i~~)d~~~,(B), 

d”2( e) = 
COS( e/2) 
sin( e/2) 

Thus, 

MO= C’T’8”2*A0 

Wb) 

(I5c) 

Hbonding is totally symmetric in the Doch point group, and 
no two of the 12 molecular spin-orbirals [Eq. (1 l)] have 
both the same spin and the same spatial point group symme- 
try, so all the off-diagonal matrix elements are zero. This 
greatly reduces the number of parameters required to de- 
scribe bonding in I;. The 11 electron functions Ii) are the 
electronic eigenfunctions of Hbonding with Born- 
Oppenheimer energies Ei , 

(molecule fixed spherical spatial orbitals, 

~~=(il&‘o”di”gli). (17) 

Comparison of Eqs. (16) and (17) shows that each surface Ei 
is described by just two integrals, (I~-IHbondinglI~-) and 
(holeiIHbondi”slholei). We now describe a procedure for fitting 
the integrals either to ab initio or to experimental potential 
energy surfaces. 

molecule fixed spin), 

where au2 is now a 12X 12 matrix with components given 
by Eq. (15). Finally, the transformation of these atomic or- 
bitals to the (molecule fixed) Hund’s case (c) atomic orbitals 
is given by Eq. (10). 

Because (Y and p have half-integral spin, the domain of 19 
and 4 is doubled, to 27r and 47r respectively. If the domain of 

The many-electron matrix element (I~-IHbonding]I:-) is 
the same for all diagonal elements of the 12X 12 Hamiltonian 
matrix, so it merely shifts the origin of the energy and has no 
effect on the relative energies of the 12 states at a particular 
bond length R. In the following, we first consider the ener- 
gies relative to the ground state, which depend only on the 
one electron integrals (holeiIHbonding]holei), and then add a 
single (R-dependent) correction term to all 12 diagonal ele- 
ments to reproduce the absolute energies. 

J. Chem. Phys., Vol. 101, No. 7, 1 October 1994 

Downloaded 20 Dec 2001 to 128.165.156.80. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Maslen et a/.: Solvation of electronically excited I; 5743 

It is common practice to parametrize the molecular or- 
bital integrals (holei~Hbo”di”g~holei) in the atomic orbital ba- 
sis, because it achieves a partitioning of the energy into two 
center chemical bonding energies and one center atomic en- 

ergies. Each diagonal one electron matrix element over mo- 
lecular orbitals can be expanded in the molecule jixed Cur- 
t&an atomic orbital basis via Eq. (ll), 

(18) 

Because Hbondi”s is only a function of the spatial coordinates, 
the matrix elements are independent of spin. 

I; is a homonuclear diatomic, so the two one-center 
atomic orbital integrals are equal by symmetry. For the pur- 
pose of calculating the relative energies of the pair of deter- 
minants 1i.u) and ji,g) (i=~c,lTI*,~Iy) at a particular R we 
are free to choose the origin of energy such that the one- 
center integrals are zero. Defining the bonding parameter pi 
and the overlap Si , 

and solving Eqs. (16), (17), and (18) for pi in terms of the 
Born-Oppenheimer energies of states li,u) and li,g) one 
obtains. 

Pz= 
1-s; 
-y- (Eq-Eqg+h 

1-s; 
Pn = -y- &-I,- Eq$, 

Wa> 

(19b) 

where the equations for i = II, and i = II, are identical since 
the II states are degenerate. If the atomic p orbitals A 0, and 
AOB have their positive lobes oriented parallel rather than 
anti-parallel, S, and & are negative while Sn and & are 
positive. The defining equation for & contains an additional 
factor (1 -S$) compared to the parametrization of 
(E2x + - E2x +) directly in the molecular orbital basis via Eqs. 
(16) kd (17j. This factor is frequently absorbed into the p’s, 
in which case the atomic and molecular orbital parametriza- 
tions of I; are identical. We have elected to retain the 
(1 -Si) term because it does improve the fit at R-R, . How- 
ever, previous studies of Hiickel theory have found that in- 
clusion of this term does not lead to a significant improve- 
ment in the overall quality of results.” 

In order to specify the relative energies of the four 
Hund’s case (a) Born-Oppenheimer surfaces “c,’ , ‘xi, *I&, , 
and *II8 , three bonding parameters are required. In addition 
to k(R) and /h(R) we define (an-ax)(R), 

I 

(an - q) = 3 Ezng + “4 - 3( E2q + Ezz;) 

(an-cuz) is the difference between the average Il state en- 
ergy and the average 2 state energy. 

The two overlap functions, Ss(R) and Sn(R), are fitted 
to the overlap of the 5p, and 5p, orbitals of atomic iodine 
described in Sec. IV C. The three bonding parameters k(R), 
/In< R) and (on-- a~,)( R), which completely specify the en- 
ergies of the excited states of I; relative to the ground state 
for a particular R, are fitted to the 2 and II Hund’s case (a) 
potential energy surfaces. In order to specify absolute ener- 
gies, the one-dimensional ground state (‘c,‘) potential en- 
ergy surface for Hbonding is also required. An advantage of 
choosing the bonding parameters to describe relative ener- 
gies rather than absolute energies is that, for R Z R, , & , /In, 
(qI-- Q&L ss 9 and Sn are each well described by a single 
exponential in R. In contrast, fitting the ground state energy 
requires a sum of Morse potential terms. 

Fitting the bonding parameters to ub initio potential en- 
ergy surfaces which omit spin-orbit coupling [Eq. (19)] is 
straightforward. Unfortunately no high quality ab initio po- 
tential energy surfaces for the ground and excited states of 1; 
have yet been published. The best available surfaces are the 
six experimentally derived surfaces of Chen and 
Wentworth,” which include the effects of spin-orbit cou- 
pling. In order to fit the bonding parameters to these potential 
energy surfaces, the explicit Hamiltonian matrix including 
spin-orbit coupling is required. 

2. The Hamiltonian matrix for I;(COJ” 
The 12X 12 Hamiltonian matrix which describes the six 

doubly degenerate states of I,(COz), is most conveniently 
expressed as a sum of four terms, 

H=H~O”~~“~+HSO+HCO~+ES~SO~U~~(R)I .  (20) 
Here Hbondins represents the I***1 bonding interaction in I; 
omitting spin-orbit coupling, Hso describes the spin-orbit 
interaction and HCo2 describes the I;H(CO~)~ interaction. 
The Hamiltonian matrix (H bondi”g+Hso) reproduces the ener- 
gies of the excited states of I; relative to the ground state at 
a particular R, and E abso’“te(R) is added to the 12 diagonal 
matrix elements to reproduce the experimentally determined 
ground state energy (Ezx: ,,2 of isolated I;. 

The ordering of the ll-electron basis functions in the 
Hamiltonian matrix is, (2: ,ci ,~x,g,I-Iy,gr~x,u,ITy,uj, 
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followed by the six basis functions with /I spin (2: etc.) in 
the same order. Only Hso has off-diagonal matrix elements 
connecting the LY spin and p spin blocks. Hbonding, Hco2, and 
(Eabsolute( R) I) each consist of two identical 6X6 blocks, one 
for each spin. For I;(CO,), , the 6X6 matrix HC02 is calcu- 
lated numerically as described in Sec. IV D The one-electron 
integrals, initially calculated in the atomic orbital basis, are 

converted to the II-electron basis using the transformations 
defined by Eqs. (8), (ll), and (13). The numerical integration 
is by far the most computationally demanding step 
in the construction of H. Real basis functions (II,,,) are cho- 
sen in favor of complex angular momentum eigenfunctions 
(II, 2 ill,) to minimize the number of computations. 

Hbonding is diagonal in this basis, 

x,+ x: 
X,+/O 

ks 11,, n,” l-&u 

(21) 

I 

where the energies relative to the ground state, (Ei - EL+), 

are expressed in terms of the bonding parameters &, j$, E~,(R)-Ez:(R)=(E~,-E~+)+ 
WrdR> 

u 
and (an- %yz) and the atomic orbital overlaps Sx and Sn , 

-%;WEz:(R)= - 12:;:;;, , 
2 

E~,(R)-E~:(R)=~(EP+-Ez:)+(~~-~B)(R) 

/k(R) - 
l-S;(R)’ 

1 -S;(R). 

The spin-orbit matrix is constructed from the matrix el- 
ements in the atomic orbital basis (Sec. IV D), using the 
basis transformations defined by Eqs. (8), (ll), and (13). For 
the special case of parallel space-fixed and molecule-fixed 
axes (19= Cp=O), 

a q n., *lh# l-k- %,” e q x.J 9,s a,, I&,, 
x,+ 0 -E ig 
xii 0 B  4 

L 0 -i$ -6 
Ii “1 ig 0 -ii 

l-I =,* 0 -if -6 

2H” = &I+ if 0 -is 

c -6 is 0 

E: -& ii) 0 

L 6 0 ii 

Qt.9 -i-j -ifi 0 

no 

6: 

6 0 

-i& -if if 0 

(22) 
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where 

A=(l+S& B=(l-sn), 

C=J(l+Sz)(l+Sn), D=&l-&)(1-S,) 

and 5, the spin-orbit splitting parameter for atomic iodine, is 
5068 cm-1.48 

The correction term Eabsolute(R) is the difference 
between the experimentally derived ground state energy 
(Ezz; ,,j of isolated 1, and the lowest eigenvalue Eo(R) 

of (HLdina+HW), 

To determine E,,(R), we note that the 12X 12 Hamiltonian 
for (Hbonding+Hso) is block diagonal owing to the point group 
symmetry of isolated I;, and the lowest eigenvalue can be 
obtained from the 3X3 block spanned by the basis functions 
X:, ii,,, , and f$,, . The 3 X 3 block can be further reduced 
to a 2X2 (a= l/2) block and a 1 X 1 (a= -3/2) block, where 
R is the projection of (spin+electronic) angular momentum 
on the molecular axis, by taking the linear combinations 

lYIzvu= 171x,u+ XIy,, . 

The experimentally determined ground state has n=1/2, so 
E,(R) is the lower eigenvalue of the 2x2 matrix, 

0 -5~41 fW1 +%I) 

-uJu+wu+w t&p%;) 

Although time reversal symmetry causes the 12 eigen- 
values of H to occur as six degenerate pairs, this symmetry 
operation cannot be used to block diagonalize the Hamil- 
tonian matrix in the usual way because it is not a unitary 
operator.41-43 Time reversal does reduce the number of inde- 
pendent matrix elements in H, but in the absence of a simple 
block diagonalization we elect to diagonalize the full 12X 12 
matrix via standard methods. This is feasible even for mo- 
lecular dynamics simulations where H must be diagonalized 
for approximately lo5 different geometries of I,(COJ,, . 

3. The Hamiltonian matrix for G in a uniform field 

For the special case of 1; in a uniform electric field 
parallel to the molecular axis, fi is a good quantum number 
and H can be reduced to two identical 6X6 blocks. 

In order to block diagonalize H, the basis functions 
{II, ,I$} are replaced with II k = III,+ iHI,, which are 
eigenfunctions of 3,) the molecule fixed projection of the 
(spin+electronic) angular momentum. The matrix elements 
of the electric field operator (Hfierd=FZ) in the atomic orbital 
basis are either +FR/2 or 0 (Sec. IV D), and they are readily 
transformed to the 1 l-electron basis using Eqs. (8). (1 l), and 
(13). Since the field is aligned parallel to the molecular axis, 
there is no need to distinguish between molecule and space 
fixed axes, and the Euler angles relating them can be set to 
zero provided 1; does not rotate. The total Hamiltonian for 
I; in a uniform field is obtained by replacing Hco2 with Hfield 
in Eq. (20), 

(23) 

E abso’“te is the same as for I;(CO.J,, , and 

n En. - -Q t,u - +f 
-&I 

II +.# -FIX -6 

rr,, -&I 

IL” -Fit En. - EE.’ 
-5 

(24) 
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where 

A=2( 1 +S,), B=2(1 -Sn), 

C=J2(1+Sz)(1+Srr), D=JZ(l-Sz)(l-Sn), 

and 5 and the Ei’S are the same as for I;(COJ, . Construc- 
tion of the Hamiltonian matrix is trivial, requiring only the 
value of the electric field in addition to the bonding and 
overlap parameters. 

If the electric field has a component perpendicular to the 
molecular axis, as will generally be the case when the field is 
nonuniform, then fl is no longer a good quantum number 
and field dependent matrix elements couple the 4X4 (a 
= l/2) block to the 2X2 (0=3/2) block. The size of the 
largest block in the Hamiltonian matrix for 12 surrounded by 
charge distributions of various symmetries is summarized in 
Table II. 

4. Fitting procedure for the bonding parameters 
A major benefit of setting up the Hamiltonian matrix in 

this fashion is that the three parameters &, &, and 

(CQ-ax) can be fitted one at a time, eliminating the insta- 
bilities associated with multidimensional fitting. This applies 
even if the parameters are fitted to experimentally derived 
potential energy surfaces, as demonstrated below. In practice 
we have obtained the atomic orbital overlaps Sz and Sn us- 
ing the 5p valence atomic orbitals for iodine due to Dolg** 
and the radial potential energy function for I- via an SCF’9 
calculation with the same basis set. The three bonding pa- 
rameters were fitted to the six experimentally derived Chen- 
Wentwortb potential energy surfaces” and EZZ+ was taken 

u,llZ 

to be the ground state Chen-Wentworth potential energy sur- 
face (*Z&,,). Since there are only three parameters to fit but 
six potential energy surfaces, the fit can be performed in 
several ways. The easiest is to set the trace of H equal to the 
sum of the experimental energies. Since at zero field the 
Hamiltonian [Eq. (24)] consists of two 2X2 blocks and two 
l-element blocks, taking the trace gives four equations (of 
which only three are independent). Solving these four linear 
equations for the three unknowns one obtains, 

1 
h(R)= - (l-$#W 2 WI u,3,2(R) -J%I~,~,~(R) - l$:;;, 9 

n I 

me *J&JD and *2&12 states are not so well determined 
experimentally, ‘* so it is desirable to eliminate them from the 
fitting equations. This can be achieved using the two addi- 

TABLE II. Size of the largest block in the Born-Oppenheimer Hamiltonian 
matrix for I; subject to external electrostatic potentials of various syrnrne- 
tries. 

Swnetry 
Biggest block 

in Hami1toniar-P 

D m* 2 
c m” 4 
c, 12 
Cl 12 

“Even if the system has no point symmetry, the 12 eigenvalues occur as six 
degenerate pairs, owing to the enduring time-reversal symmetry (Sec. 
IV A). Because time-reversal is an antrlinear operator, the representation 
matrices for the group containing the time reversal operator are not homo- 
morphic to the corresponding operators. As a consequence, time-reversal 
cannot be used to block diagonalize the Hamiltonian matrix. However, for 
molecules such as Cl; where spin-orbit coupling can be neglected, the 
Hamiltonian can be reduced at least to two 6X6 blocks, one with basis 
functions having a spin and one with p spin. 

tional independent equations which result from setting the, 
determinant of each symmetry block of H equal to the prod- 
uct of the corresponding experimental energies. These two 
additional equations are quadratic in the energy, and the al- 
gebra is somewhat more complicated than for the linear case, 
so a symbolic manipulation package49 was used to solve the 
equations and perform the fit. 

To minimize the number of fitted variables the same ex- 
ponent was used for Su and &, when fitting these two expo- 
nential functions to the experimental potential energy sur- 
faces and the ab initio overlap, and similarly for Sz an&&. 
This approach is quite common in Hiickel type calculations, 
despite the fact that the true exponents are generally substan- 
tially different, because the results are usually insensitive to 
the overlap function.27 The exponent is chosen to provide an 
accurate fit for p and a relatively inaccurate fit for S. Be- 
cause the defining equation for each p parameter (25a) and 
(25b) is dependent on the corresponding overlap function, p 
and S must be fitted simultaneously. However, the coupling 
is very weak so the iterative fitting procedure converges rap- 
idly. The fitted parameters are listed in Table III. The empiri- 
cal I;*COz short range repulsive potential and the point 
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TABLE III. Bonding parameters for I;. The parameters are defined in Sec. 
IV E. The energy of the ground electronic state is taken to be the experi- 
mentally derived Chen-Wentworth (Ref. 18) 28:1,2 potential energy sur- 
face [Fig. l(a)]. The iodine atomic spin-orbit spiking parameter 5=5068 
cm-’ (Ref. 48). (Units: Bohr and eV.) 

Parameter 

%I 
Al 
sx 
& 
(%-%I 

Value 

39.8 exp(-0.901R) 
2.63XS, 
-7.17 exp(-0530R) 
3.49X& 
19.6Xexp(-0506R) 
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water” have concluded that the electronic relaxation occurs 
in less than 300 fs. While molecular dynamics studies5 have 
confirmed that rapid vibrational relaxation of 1; does occur, 
the electronic relaxation was assumed to happen with unit 
probability at a bond length of 12 Bohr. The mechanism for 
the nonradiative electronic decay of 1; remains a subject of 
debate and we are extending the molecular dynamics simu- 
lations of Papanikolas et ~1.~ to include these transitions via 
the semiclassical surface hopping method of Tull~.~’ 

In this section we outline the calculation of surface- 
hopping properties of the electronic wave function required 
for the molecular dynamics simulation. Results of the simu- 
lations and details of the molecular dynamics algorithm will 
be reported in the future.51 charges which describe the multipoles of CO2 are described 

in the Appendix. While they are required for molecular dy- 
namics simulations of I;(CO,), , they are not needed to de- 
scribe 1; in a uniform electric field. 

5. Accuracy of the fit 
1. Summary of surface hopping theory 

The total Hamiltonian for the cluster can be written as 
The six states produced from the model Hamiltonian 

[Eq. (24)] are compared with the corresponding Chen- 
Wentworth potential energy surfaces in Fig. l(a). For the 
four fitted surfaces, the main discrepancy in the fit occurs in 
the region of the short range repulsive wall. This is to be 
expected because many highly excited electronic configura- 
tions mix strongly with the six lowest energy configurations 
in this region, so a six configuration description of the wave 
function is inadequate. This is not regarded as a serious short 
coming because many properties of interest are expected to 
be insensitive to the precise shape of the short range part of 
the potential. (For example, very little surface hopping can 
occur at short range because the surfaces are too far apart.) 
The two upper electronic states, which were not used in the 
fitting procedure, are not so accurately reproduced by the 
model. In particular, the model surfaces exhibit a shallow 
minimum (-0.09 eV) whereas the Chen-Wentworth poten- 
tials are purely repulsive. One of these states, 2CL1,2, is de- 
scribed by two Hund’s case (a) basis functions (2,’ and 
ff+,J h’ h w ic are brought into resonance by spin-orbit cou- 

H cluster=~2T~+H(r;X)+V~~2,~~2(X)~ 

where r represents the electronic coordinate, X the nuclear 
coordinates, h2Tx the kinetic energy of the nuclei, H the 
electronic Hamiltonian [Eq. (20)], and Vco2,co2 the 
CO,+-+CO, interaction potential. 

Each CO, molecule in the I;(CO,), cluster is modeled 
as a rigid body26,‘7 and its quadrupole and hexadecapole mo- 
ments fitted to five point charges as described in the Appen- 
dix. Vco2,co2 is approximated as a sum of pair-wise interac- 
tion potentials.26 All coordinates refer to axes parallel to 
space fixed axes with origin at the nuclear center of mass of 
the cluster. X is assumed to be a function of time, with the 
trajectory to be determined by numerical integration of the 
nuclear equations of motion. The time-dependent wave func- 
tion for the electronic coordinate is expanded in the basis of 
the six doubly degenerate eigenfunctions of H, dl, with ei- 
genvalues E[(X), 

pling. As a result of this resonance the model potential is 
very sensitive to the choice of parameters and a moderate 
error is to be expected. The ‘IIa,,,, state is similarly affected. 
In contrast, the well depth for the 2IIU,112 state is relatively 
insensitive to changes in the fitted parameters. The well is 
produced by spin-orbit mixing of the antibonding n+ 1( and 
bonding CL Hund’s case (a) configurations. It is difficult to 
distinguish between fitting errors intrinsic to the model and 
fitting errors related to inaccuracies in the experimental po- 
tential energy surfaces since the upper two states are not 
uniquely determined experimentally. However, the excellent 
fit to crude ab initio calculations (discussed in Sec. III) lends 
credence to the model. 

Wr,X,r) = 2 cl(r)&(r;X). 
I=1 

(26) 

The complex coefficients cl(t) are evaluated by substituting 
(26) into the time-dependent Schrijdinger equation, 

d’P 
[h2Tx+H+Vco2,co2]W=i~ dt. 

Multiplying on the left by &(r;X), integrating over r and 
making use of the chain-rule for dldt, 

F. Application of the model Hamiltonian: Nonradiative one obtains an equation for the evolution of the coefficients 
electronic transitions in I;(CO,), c, 

Experimental studies of electronically excited 1; in a 
cluster of CO, molecules3,5 suggest that the CO, solvent in- 
duces a rapid (-2 ps) nonradiative electronic and vibrational 
relaxation of 1;. Experiments on 1, * m liquid ethanol and 

ih~,=c,(E,+VC02.c02)+~ c~{~-(hA-i~VAh) 
1 

+MtwTxl~l)l. (27) 
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The term Vcol,coZ does not affect the relative phases of the 
c’s and can be omitted, provided the CO2 molecules are as- 
sumed to be nonpolar&able. If the term involving tL2Tx on 
the right-hand side of Eq. (27) is omitted, one obtains the 
classical path equation52 used in Tully’s surface hopping 
theory. At each time step in a molecular dynamics simulation 
the coupled differential equations [Fq. (27)] neglecting the 
h2Tx term can be integrated numerically to obtain the ampli- 
tudes cl(t) of each electronic state. Electronic surface hop- 
pings between states 4, and 4, occur with a probability 
proportional to the off-diagonal elements of the term 
Jw%rl-~fiVXl~~l)r and the forces on the nuclei are deter- 
mined from the gradient of one of the six potential energy 
surfaces l I . The Tully surface hopping algorithm prescribes 
which forces should be used at each time step. 

Since h2Tx is neglected in most implementations of sur- 
face hopping theory, A doubling (electronic-nuclear rotation 
coupling) and other nonadiabatic effects are omitted from the 
energy and forces. Nevertheless, surface hopping induced by 
electronic-nuclear rotation coupling (Coriolis coupling) or 
any other nonadiabatic coupling is included, because -ihV, 
spans all 3N components of nuclear momenta, including ro- 
tation of the entire system. The validity of the classical path 
method for rovibronic transitions has been tested by Parlant 
and Alexanders3 who found good agreement between quan- 
tum and classical path rovibronic transition probabilities for 
the collision of helium with CN(2111,/, and 2113,2). Tullyso has 
noted that the chief problem with the classical path method 
lies in reproducing interference effects stemming from the 
wave function for nuclear motion, though it is believed that 
such effects are most important in systems with few degrees 
of freedom. 

While the gradient operator Vx refers to the 3N space 
fixed Cartesian coordinates of the N nuclei, most applica- 
tions to date have used translational and rotational invariance 
to reduce the number of derivatives to be evaluated from 3N 
to 3N-6. For a system containing three atoms this reduces 
the number of derivatives to be computed at each time step 
from nine to three.54’55 For larger systems the use of internal 
coordinates complicates the integration of Newton’s equa- 
tions of motion for the nuclei and it is easier to use all 3N 
coordinates. We have used all 3N space fixed Cartesian de- 
rivatives for molecular dynamics studies of I; in a cluster of 
CO2 molecules, while for studies of isolated I; in an electric 
field the independent coordinates were taken to be the 1; 
bond length and the field strength. 

2. Calculation of forces and surface hopping matrix 
elements 

For simplicity we set fi= 1 in this section. At each time 
step in the molecular dynamics simulation the 12 electronic 
eigenfunctions of the cluster, 4, are expanded in the basis of 
1 l-electron determinants Ii), 

c$(r;X)=P(X)ji(r;R)), (28) 
where R is the bond length of I;. The basis functions Ii) are 
the eigenfunctions for isolat$d 1; omitting spin-orbit cou- 
pling [Eq. (17)]. The forces F on the nuclei, 

FI= - Vxe,(X> - VxVco2,co2, 
and the surface hopping matrix elements d, 

knl=MnlVx~r>~ 
are required at each time step. As discussed in Sec. IV D, d is 
a skew-Hermitian matrix. It describes the change in the wave 
functions 4 as the nuclei are displaced, 

v,q3=i’tp. (29) 
It is well known from Rayleigh-Schriidinger perturbation 
theory that, if the wave function is expanded in a Taylor 
series in the perturbation A, 

@+cCI(%~p+... 

then the first-order wave function 4” may be chosen to be 
orthogonal to the unperturbed wave function, 

This choic_e is equivalent to setting to zero tb_e diagonal ele- 
ments of d and each off-diagonal element dlrr coupling a 
degenerate pair of states { +1 , +[t}, 

($[ :y.)=(: :)- 
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(30) 

For I;(CO,), the wave functions 4, occur in degenerate 
pairs related by the time reversal operator 0, 

411 = Wl - 
Both $ and d’ involve V,cf~, which can be expanded in 

terms of V,r and Vx(i) via Eq. (28). The derivative of the 
C.I. coefficients, Vxr, can be eliminated by application of 
the defining equations for the eigenfunctions 4, 

Hr= we, 

r%r = I, 

where 
(31) 

End = Enl &l 9 

ffij=(ilHlj>, 

and 

S,=(ilj). (32) 
Denoting the matrix representation of Vx in the Ii) basis by 
D, 

tiij=(ilV~), (33) 
i and V+ are evaluated using the formula,38 

[E,;i]-vxE=-r+(vX~)r+~e,r+(~-~t)r] 

+ gO(vXs)r+r+(vXs)r~], (34) 
where 

[,,i]=&iie 

E is a diagonal matrix, so the commutator matrices [e,d] and 
[c,lTt(D-6t)r] are easy to evaluate and their diagonal ele- 
ments are zero. Consequently, the diagonal elements of Eq. 
(34) determine Vxc in terms of F, 6, VxS, and VxH. The 
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off-diagonal elements of Vxe are zero, since e is diago_nal, 
and the OF-diagonal elements of Eq. (34) determine d in 
terms of D, r, e, VxS, and VxH. A further simplification 
arises because the basis Ii) is orthonormal so S=I and 
v,s=o. 

The matrix VxH is the derivative of the Hamiltonian 
matrix expressed in the Ii) basis [Sec. IV E and Eqs. (20)- 
(22)]. H contains I-I bonding terms, spin-orbit terms and 
I;t+C02 interaction terms. Each I-I bonding and spin-orbit 
matrix element is a simple function of the I-I bond length 
and is readily differentiated [Eqs. (21) and (22)]. The 
I;*CO, interaction matrix elements are each sums of one- 
electron nuclear attraction integrals over Cartesian (p) Gaus- 
sians, and differentiation of these integrals is a standard pro- 
cedure in quantum chemistry programs which calculate the 
analytic gradient of the Hartree:Fock energy. 

Evaluation of the matrix D is detailed in Sec. IV D. 
Since Vx is a one-electron operator, the usual rules for ma- 
trix elements of one-electron operators between determi_nants 
Ii) have been applied. The resulting expression for D in- 
volves the derivatives of the molecular orbital coefficients C 
I%. (1111, th e d erivatives of the Euler angles (B,& defining 
the orientation of 1; in the space fixed frame, and the deriva- 
tives of the (space fixed) atomic orbitals. The molecular or- 
bital coefficients and Euler angles are simple functions of the 
coordinates of the two iodine nuclei, and are readily differ- 
entiated. Physically, the Euler angle derivatives describe Co- 
riolis (electron-nuclear rotation) coupling in I;. The deriva- 
tives of the atomic orbitals, (AO,IV,AO&, are neglected. 
Jepsen and Hirschfelders6 found that the contribution of the 
atomic orbital derivatives to i is very sensitive to the details 
of the wave function while Tully3* and Thorsen57 have noted 
that these terms can give rise to small but spurious surface 
hopping probabilities. The later point is easily demonstrated 
for an isolated hydrogen atom in the ground electronic state 
traveling in the 2 direction. The integral (2pzl(dldZ) 1 s) is 
nonzero, so classical path theory would erroneously predict 
that translational motion of the isolated atom induces elec- 
tronic transitions between the 1 s and 2pz states. It is thought 
that omission of this term is a relatively minor approximation 
because nonadiabatic transitions usually occur-when E,CJ el, 
in which case the dominant contribution to d,, [Eq. (34)] 
comes from (dldZ)H which is multi@ed +by the factor 
I/( e,, - eI). Because-the contribution of D to d _occurs in the 
symmetrized form (D-D+), approximations to D such as the 
omission of the atomic orbi+ derivatives do not affect the 
skew-Hermitian character $f d. 

The phase choice for d [Eq. (30)] constrains the evolu- 
tion of degenerate pairs of wave functions, 4, and 4p, as the 
nuclei of the cluster move about on a potential energy sur- 
face [Eq. (29)]. In practice, a random phase is introduced at 
each time step when the I$‘S are calculated by numerical 
diagonalization of H. To derive a correction for the random 
phase we calculate V,c$ via Eq. (29) for $e degenerate pair 
4, and 4p, subject to the constraints on d [Q. (30)], 

VX+=h$=o, 

where it is understood that the equation only applies in the 
subspace spanned by 4, and 4,l. 4 can be expanded via Eq. 
(28) to give, 

(V,F)li)= -lT,li). 

Integrating over (i], taking the transpose and making use of 
Eqs. (32) and (33) one obtains, 

s(vxr)= -6r. 
If the nuclear displasement during the course of one time 
step is denoted by SX, 

&=X(r+ 1)-X(t) 

then the finite difference approximation to the gradient of I’, 

&.v,r-rr(t+i)-r(t) 
can be inserted to yield, 

s[r(f+l)-r(f)]--S~.~r(tj. 
Multiplying by l?(t + 1) and making use of the orthonormal- 
ity of the eigenvectors [Eq. (31)] a constraint condition for 
I’(t + 1) is obtained, 

r+(t)(s+ si.iipyt+ 1)=1, (35) 

where it is understood that the equation only applies to de- 
generate sets of es. The Ii) basis is orthonormal, so S=I. S 
has been retained in the above expressions because it is com- 
mon practice to use nonorthogonal sets of valence-bond ba- 
sis functions. To make the expression as symmetric_as pos- 
sible we use a central difference expression for D at the 
mid-point (t+ l/2) of the time step, and also enforce the 
skew-Hermitian property of D, 

ii(t+ l/2)= 
&ii(t)-6+(r)] gii<t+ I)-ii+@+ l)] 

2 
+ 

2 

If at time (t+ 1) the’matrix diagonalization introduces a ran- 
dom phase into br( I + 1) and 4p (t + 1 ), represented by the 
2X2 unitary matrix U(t+l), 

ryt+ i)=r(t+ i)u(t+ 1). 
Then from Eq. (35), 

u(t+ l)=r+(t)(s+ si.iiyyt+ 1) 
U(t + 1) is readily calculated from_ the eigenvectors r and 
surface hopping matrix elements D in the 11-electron basis 
Ii). The phase constrained eigenvectors F(t + 1) are 

r(t+ i)=ryt+ i)u+(t+ 1). 
U is only exactly unitary for an infinitesimal time step, and 
in practice U is multiplied by a normalization factor at each 
time step. For a two-fold degeneracy the normalization factor 
is + 1 / I det[ U( t + 1 )] I. If the eigenvectors are real and non- 
degenerate, U reduces to a phase factor of + 1. However, for 
I;(CO,), the wave functions are complex and doubly degen- 
erate, so U is a random (complex) 2X2 unitary matrix. 
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V. CHARGE SWITCHING AND NONADIABATIC 
TRANSITIONS IN I; Electric Field 

Molecular dynamics simulations of photodissociation of 
I; in I;(C02)* have found that the CO2 cage distorts to 
create an appreciable potential difference between the iodine 
nuclei during the course of photodissociation.4’5T’7 The forces 
between 1; and the CO2 molecules are much stronger than 
for an uncharged system and the effect of the dominant cou- 
lombic interaction term on the electronic structure of I; can 
be modeled as an applied electric field. The field strength is 
taken to be the potential difference between the two iodine 
nuclei divided by the bond length. Papanikolas et al. have 
found that fields derived in this manner from molecular dy- 
namics simulations are typically -0.003 a.u. and may be as 
high as 0.01 a.u. In reality the field produced by the cluster is 
not uniform but we expect that the polarization of 1; along 
the molecular axis will be dominated by the potential differ- 
ence between the iodine nuclei, with the finer details of the 
potential having only a small effect. 

*t&---@ --t+ -Hf”-rt ++ 
IA 1*I3 - =A IB 

FIG. 2. Field induced resonance in I;. The atomic orbitals on each atom are 
split by spin-orbit coupling and resonance occurs when the potential differ- 
ence between the iodine nuclei due to the applied electric field==the spin- 
orbit splitting energy, enabling a charge transfer transition. I* indicates io- 
dine in the high spin-orbit energy configuration and I the low spin-orbit 
energy configuration. The energy origin is at the center of mass of I;. A and 
B denote the two iodine nuclei. The hollow circle denotes a “hole.” 

A. I; in a uniform electric field 

The response of 1; to an electric field is complicated by 
spin-orbit coupling and is most easily understood by com- 
parison with a molecule which has negligible spin-orbit cou- 
pling. Figure l(b) shows the four potential energy surfaces 
for a hypothetical 1, molecule with no spin-orbit coupling, 
XT, subject to an electric field F of 0.003 a.u. parallel to the 
molecular axis. The electric field points from nucleus X, 
toward nucleus X, , with nucleus X, at higher potential (up- 
field). The surfaces were calculated using the model Hamil- 
tonian for 12 [Eq. (20)], omitting the spin-orbit contribution 
Hso [Eq. (22)]. The surfaces are typical of an ion such as Hl , 
F; , or Cl; which can be represented by a one-electron p ’ or 
a one-hole p5 wave function. To make the comparison con- 
crete, the lower two surfaces correspond to the 2 and Il 
bonding states of a one-hole function (XT), while the upper 
two surfaces correspond to the 2* and II* antibonding 
states. In the absence of spin-orbit coupling II states consist 
of degenerate fi= II2 and R=3/2 pairs, so there are only 
four distinct surfaces as opposed to six for I;. At long bond 
lengths (R) the bonding (2~ (T) ’ and (2p rr) ’ states converge 
and can be represented as Xi -X, with Xi at -R/2 and X, 
at +R/2 relative to the origin at the center of mass. The 
potential energy relative to the center of mass at long bond 
lengths is simply -FR/2, since the charge is localized at 
-R/2. The two antibonding states correspond to X,-X, 
with Xi at +-RI2 and asymptotic energy +FR/2. It may 
seem surprising that the antibonding wave functions undergo 
charge localization in the “wrong” direction. However, in 
the one-hole picture it can readily be seen that, if the bonding 
state Cc, is expanded in terms of identical atomic orbitals pA 
and pe on atoms A and B, 

which clearly localizes on the opposite atom as S-to. The 
“charge switching” function for X; in an electric field, de- 
fined as the Mulliken charge3’ on atom A for a given elec- 
tronic state, varies monotonically with field strength from 
-l/2 to -1 for the bonding states and -l/2 to 0 for the 
antibonding states. Because the bonding potential energy sur- 
faces are well separated from the antibonding surfaces in the 
presence of an electric field we expect that nonadiabatic 
bonding++antibonding (electron transfer) transitions will not 
occur. 

The situation is more complicated for a molecule with 
spin-orbit coupling because the spin-orbit interaction [Eq. 
(22)] mixes bonding and anti-bonding Hund’s case (a) states. 
Fig. I(a) shows the potential energy surfaces for 1; including 
spin-orbit coupling at zero field while Figs. l(c) and l(d) 
show the corresponding surfaces at fields of 0.003 and 0.006 
a.u. KI, the projection of (spin+orbital) angular momentum 
on the molecular axis, is a good quantum number. When a 
field is applied there are four distinct surfaces at large R, as 
opposed to two for X;. The four surfaces correspond to 
Ii-IB and Ii-I;, which are bonding, and IA-Ii and 
I,*-& , which are antibonding. I* indicates the high spin- 
orbit energy configuration of atomic iodine and I the low 
energy spin-orbit configuration. At long bond lengths a clear 
distinction can be made between potential energy surfaces 
which are similar to the Hund’s case (a) bonding potential 
energy surfaces of Fig. l(b) and potential energy surfaces 
which are similar to antibonding surfaces. In the strong field 
limit (0.006 a.u.) the bonding surfaces are well separated 
from the antibonding surfaces, in keeping with the behavior 
of potential energy surfaces omitting spin-orbit coupling 
[Fig. l(b)]. However, the potential energy surfaces at me- 
dium field (0.003 a.u.) are very different, featuring a strong 
charge transfer resonance at 12 Bohr between the second and 
third n=1/2 states, IA-Ii (anti-bonding) and &-I$ (bond- 
ing). This resonance, illustrated in Fig. 2, occurs when the 
atomic spin-orbit splitting energy approximately equals the 
potential difference between the two iodine nuclei created by 
the electric field. Simulations by Papanikolas17 suggest that 
fields strengths of this magnitude occur in (217,,,,2) photo- 
excited I;(CO,), when the I.e.1 bond length is in the range 9 
to 12 Bohr. At weak fields the crossing occurs at very long 
bond lengths, precluding a charge transfer transition. As the 
field strength increases the distance of closest approach 
moves to shorter bond lengths and the crossing distance be- 

(jl=[mP,4+~PBlr (364 

then, neglecting atomic orbital overlap, the orthogonal anti- 
bonding state is 

$*=[~PA- mpi?19 W4 
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Anomalous Charge Localisation 

Normal Charae Localisation 

; 7 9 11 13 15 
I 

Bond Length (Bohr) 

FIG. 3. Charge localization for the second a= 112 (‘II,,t,s) adiabatic state 
of I; as a function of bond length and electric field. Field (F) in au. The 
applied field points from A  to B. The negative charge localizes on one 
iodine nucleus (A) if 1; dissociates in the presence of a strong electric field 
(;rO.O04 au.) and on the other nucleus (B) in the presence of a weak 
electric field (SO.002 a.u.). For intermediate fields the charge moves in 
opposite directions on either side of the avoided crossing, with the crossing 
occurring at -12 Bohr for a field of 0.003 au. 

tween the surfaces increases until the strong field limit is 
reached where the energy ordering of the I,--& and 1; -1: 
configurations is reversed relative to the weak field limit for 
all bond lengths and the resonance is eliminated. Chemically 
interesting resonances occur only for field strengths in the 
approximate range 0.003+0.005 a.u. The field-induced 
avoided crossing leads to unusual charge switching functions 
for the excited adiabatic states and also has implications for 
nonadiabatic behavior. 

The charge switching function for the second R=1/2 
adiabatic state, which is one of the two states involved in the 
resonance, is shown in Fig. 3 for several values of the elec- 
tric field. At weak fields (0.002 a.u.) the negative charge 
localizes on the down-field atom (B) as the bond is stretched 
while at strong fields (0.010 a.u.) it localizes on the up-field 
atom (A). At a field strength of 0.003 a.u. the charge first 
shifts toward atom B as the bond is stretched and then, as the 
molecule passes adiabatically through the avoided crossing 
region, the character of the wave function alters suddenly 
and the charge shift reverses, finally localizing entirely on 
atom A. 

The strength and location of the resonance is chiefly de- 
pendent on the magnitude of the atomic spin-orbit splitting 
and is quite insensitive to variation of the fitted bonding 
parameters. The resonance can be reproduced by a 2X2 
Hamiltonian expressed in terms of the two Hund’s case (c) 
functions [Eq. (lo)] involved in the resonance. However, the 
algebra provides little insight beyond that to be derived from 
Fig. 2. 

It is interesting to note that, for the second a= l/2 adia- 
batic state at a field strength of 0.003 a.u., the wave function 
at R-7 Bohr corresponds to the low spin-orbit energy 
IA-Ii configuration while at dissociation the wave function 

Bond Length (Bohr) 

FIG. 4. Non-adiabatic transition probability for I; in an electric field of 
0.003 a.“. The y axis is the Massey parameter [Eq. (37)] divided by the 
relative velocity of the iodine nuclei. The probability of nonadiabatic tran- 
sitions is closely related to the Massey parameter (see Sec. V  for details). 

is dominated by the high spin-orbit energy Ii-I,* configu- 
ration. One may ask under what conditions I; is likely to 
travel adiabatically along this surface. Nonadiabatic elec- 
tronic transitions between adiabatic states i and j are prob- 
able if the Massey parameters8 Pii is of order unity, 

nrid, 
pi,= - I I Ei- Ej 21. (37) 

[Ei and Ej are the energies of the adiabatic potential energy 
surfaces, dii is the transition matrix element defined in Eq. 
(34) and R is the relative velocity of the iodine nuclei.] Since 
the transition matrix element dij also varies as l/(Ei- Ej) 
[Eq. (34)] the maximum value of the Massey parameter is an 
extremely sensitive function of the energy gap (Ei- Ej) be- 
tween the surfaces. The formula requires the velocity R, and 
a molecular dynamics simulation of I;(CO,), will be re- 
quired to characterize its distribution. If the nuclei travel suf- 
ficiently slowly, the electronic wave function has plenty of 
time to adjust and the nuclei follow the Born-Oppenheimer 
potential energy surfaces. If the nuclei travel quickly through 
an avoided crossing region where the adiabatic electronic 
wave function varies rapidly with bond length, the electrons 
may not have time to relax and a nonadiabatic transition can 
occur. Figure 4 gives the Massey parameter divided by the 
nuclear velocity, IhdijlEi- Ejl, for the two adiabatic states 
involved in the resonance at a field of 0.003 a.u. The Massey 
parameter peaks at the avoided crossing (at 12 Bohr) and has 
a width at half the peak height of about 1 Bohr. If 1, has 0.3 
eV of kinetic energy, probably a typical value for photodis- 
sociation experiments, one obtains Pz3=0.29 using Eq. (37). 
Since this is significantly less than unity, adiabatic motion 
linking the IA-Ii and 1; -1: configurations is highly prob- 
able in a field of 0.003 a.u. 
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B. Possible mechanisms for electronic relaxation of 
I; in a CO2 cluster 

In this section the field-dependent potential energy sur- 
faces for I; described in Sec. V A are applied to the problem 
of electronic relaxation of 1; in a cluster of n CO;? mol- 
ecules. 

In the experiments of Papanikolas et ~l.,~*~ I; in a COs 
cluster is photoexcited by a 720 run pump pulse from the 
ground “Cu’,,,, electronic state to the repulsive *II,, ,I* state. 
The clusters are size selected, with a maximum of 22 CO2 
molecules. Excited I; dissociates promptly, with the kinetic 
energy being dissipated by the CO2 molecules. A substantial 
proportion of the I; molecules recombine and are subse- 
quently excited with a probe pulse of the same frequency as 
the pump pulse. The time-resolved absorption intensity is 
observed to vary greatly with cluster size. Molecular dynam- 
ics simulations have demonstrated that, following recombi- 
nation, the large polarizability of I; in the ground electronic 
state leads to rapid vibrational relaxation in clusters’ and 
liquids.16 However, the mechanism by which I; relaxes to 
the ground electronic state is still unclear.2-‘1~‘3~‘4*‘7 

strongly attracted to the negative charge, they cannot trap it 
to form solvated I-, because it will localize anomalously for 
any asymmetric solvent configuration, at least for short to 
medium I-I bond lengths. Anomalous charge localization is 
an inherently quantum effect, with the negative charge mov- 
ing to the position of highest potential energy. As a conse- 
quence, antibonding states resist localization in a solvent 
more strongly than bonding states. The attractive force be- 
tween the negative charge in the repulsive antibonding state 
and the CO, molecules retards the disintegration of 1; and 
promotes recombination, providing a rare chance to ObSeNe 
the spectroscopic effects of anomalous charge localization. 

Modeling of the time-dependent features of the absorp- 
tion intensity will require molecular dynamics simulations of 
the cluster incorporating nonadiabatic electronic transitions. 
However, some clues as to likely electronic relaxation 
mechanisms can be deduced from the field-dependent poten- 
tial energy surfaces and charge switching functions. The pro- 
posed mechanisms are merely suggestive, and we are cur- 
rently examining the mechanisms and rates of electronic and 
vibrational relaxation via molecular dynamics simulations.” 

Previous molecular dynamics studies of the photodisso- 
ciation of I;(CO.J, omitted anomalous charge switching,’ so 
estimates of the solvent induced potential difference experi- 
enced by I; during photodissociation are unreliable. In the 
following, we consider the expected nonadiabatic behavior 
of dissociating I; as the solvent induced potential difference 
is varied. Specifically, we consider three cases of different 
magnitudes of the potential difference occurring at medium 
bond lengths during the photodissociation of antibonding 
*I-I g,1,21;. It is likely that the actual potential difference in a 
I;(CO.& cluster varies significantly with the number of CO2 
molecules, so more than one case may be relevant. 

7. Negligible field (e.g., a large number of CO, 
molecules, uniformly distripted about G) 

The global minimum of the ground state potential energy 
surface for I;(C02)n has been determined by Papanikolas” 
for clusters containing 1 to 16 CO2 molecuIes. If the solva- 
tion shell is full (n = 16) or nearly empty (n <5) the CO2 
molecules are distributed symmetrically about I;, with the 
two iodine nuclei at approximately equal potential. For a half 
empty solvation shell the solvent prefers to localize around 
one iodine nucleus. The solvent induced potential difference 
between the nuclei is greatest for nine CO2 molecules, cor- 
responding to an applied field of 0.005 a.u. with 70% of the 
negative charge localized on the solvated atom. There are 
two equivalent minima, with a barrier of 0.3 eV to migration 
of the solvent between the minima. At long bond lengths, 
where I.e.1 bonding effects are negligible, the minimum en- 
ergy configuration is always localized, with the COa mol- 
ecules solvating the I- ion. 

Based on these results one might expect that photo- 
excited I;(CO,&, would dissociate to form I---I-, with the 
cluster solvating the I- ion. Because I;(CO& is partially 
localized prior to photoexcitation, it would be expected to 
complete the localization process at shorter I-I bond lengths 
than I;(CO&. However, such an analysis ignores the ef- 
fects of anomalous charge localization [Eq. (36)]. The 
ground *C:,,,z and photoexcited 2118,112 states of I; corre- 
spond to the bonding and antibonding combinations of the 
atomic orbitals pcrA and pa, . During photoexcitation of 
I;(CO,), to the antibonding state, the negative charge is ex- 
pected to shift from the solvated iodine nucleus toward the 
unsolvated nucleus.59 Although the CO2 molecules are 

In this case the symmetric cluster configuration of the 
antibonding state is expected to remain stable until very long 
bond lengths. Nonadiabatic transitions from the symmetric 
configuration of the excited state to the ground state seem 
highly probable at long bond lengths, because the two states 
are nearly degenerate [Fig. l(a)]. The ground state would 
then be expected to localize rapidly to form solvated I-. 
Alternatively, the excited state may undergo charge localiza- 
tion at long bond lengths, stimulated by random fluctuations 
of the solvent or a solvent-solute collision. Following charge 
localization, the solvent will be attracted toward the I- ion 
by strong Coulombic forces. Owing to the long bond length, 
electron migration to the other iodine nucleus is unlikely 
prior to recombination of I;. The electronic structure prior to 
recombination can be represented as CO,~~~I-~**I, indicating 
that the solvent is clustered around I-. This configuration 
corresponds to the ground state surface 1; +I, shown in 
Figs. l(c) and l(d). Interestingly, solvent migration may pro- 
vide an alternative to charge transfer for relaxation to the 
ground electronic state. 

2. Moderate field (e.g., three-quarters of a soivation 
shell of CO, molecules clustered mainly about 
one iodine nucleus) 

A moderate to large solvent induced potential difference 
will cause localization of the negative charge at medium to 
short bond lengths. The avoided crossing involving the 
*I-I *, , ,s state [Fig. 1 (c)] moves to shorter bond lengths and 1, 
is more likely to pass through the crossing region adiabati- 
cally as the potential difference is increased (Sec. V A). If 
the crossing occurs at sufficiently long bond lengths then 1; 
is expected to dissociate to IA +I;, otherwise it is expected to 
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dissociate to IA + 1: [Fig. 1 (d)]. A “moderate” potential dif- 
ference is defined as one which results in the dissociation 
product I, + Ii, while a “large” potential difference leads to 
I,- + 1; . 

We presume that the moderate potential difference arises 
from an asymmetric solvent configuration clustered around 
iodine nucleus A. Intriguingly, this causes the antibonding 
2Q l/2 state to localize as C02~~~IA~~~I~ at long bond 
lengths, with more solvent clustered around neutral iodine 
than around the iodide ion. This configuration is much higher 
in energy than the ground state configuration C02***Ii *.*I, , 
so a nonadiabatic electronic transition directly to the ground 
state is unlikely. However, the solvent is attracted to the io- 
dide ion by strong Coulombic forces. At long I.**1 bond 
lengths, where charge transfer from nucleus B to nucleus A 
is not feasible, a net solvent migration from one iodine 
nucleus to the other would achieve relaxation to the ground 
state configuration IA.**& **C02. 

The potential energy surfaces for I;(COJn can be 
viewed as functions of the I-I bond length and a solvent 
coordinate. In the presence of a solvent-induced potential 
difference the C02.*.IA..*Ii and C02.**Ii ...IB configura- 
tions are well separated energetically so an electronic surface 
hop is not possible. However, at long I.e.1 bond lengths, an 
equivalent transition can occur via a smooth, continuous 
change of the classical solvent coordinate. Since the solvent 
migration reverses the potential difference experienced by 
I;, the potential difference must pass through zero. Thus 
solvent migration for 1, subject to a moderate potential dif- 
ference is an extension of solvent migration for 1; subject to 
a negligible potential difference. Along the seam of zero po- 
tential difference the configurations IA *..I; and 12 ..*I, are in 
resonance, so a concerted solvent migration and electron 
transfer cannot be ruled out. The solvent migration mecha- 
nisms for electronic relaxation in a negligible or moderate 
potential difference are illustrated in Figs. 5(a) and 5(b). 

3. Large field (e.g., a half-empty solvation shell of 
highly polar solvent molecules clustered 
entirely about one iodine nucleus) 

In this case the dissociation product is expected to be 
co2 **.I; ***I: , as discussed in (2). However, I* is not ob- 
served experimentally. We can see no obvious relaxation 
pathway to the ground state configuration C02***I~***I,. 
Collisional I*-+1 relaxation is extremely slow in atomic 
iodine,60 so we speculate that large potential differences are 
either transient or do not occur. The adiabatic surface appro- 
priate for a large potential difference is nevertheless of some 
interest. It links the 1; * . * 1; configuration at dissociation 
with the 1,-I; configuration at short bond lengths [Fig. 
l(d)]. Thus if I; were excited to the upper I* spin-orbit 
manifold [Fig. l(a)], fast relaxation to the lower manifold 
during recombination would be possible if the solvent in- 
duced potential difference were large. Relaxation within the 
lower manifold could subsequently occur if the potential dif- 
ference decreased to a moderate or negligible value. There is 
considerable uncertainty concerning the state to which I; in 
a CO2 cluster is excited by the probe pulse. Previous studies4 
assumed that the upper spin-orbit manifold was not involved 
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PIG. 5. Possible cluster-induced electronic relaxation mechanisms for elec- 
tronicahy excited (‘II,,,,,) 1; in a CO, cluster. (a) For a symmetric solvent 
configuration the electronically excited state (‘II,.,,,) becomes degenerate 
with the ground state (“ci,,,,) at long I**.1 bond lengths [Fig. l(a)]. As the 
I...1 bond length increases the delocalized electronic charge distribution 
I-‘“...I-‘n becomes unstable, eventually localizing randomly on one of the 
iodine nuclei. The solvent is strongly attracted to the resulting I- ion and 
migrates towards the ground state I.e.1 -.=COz configuration, (b) The same 
as (a) except that the cluster is initially asymmetric. The initial configuration 
displays anomalous localization of the electronic charge, a feature of anti- 
bonding electronic states [IQ (36)]. (c) Nonadiabatic relaxation from the 
upper I* spin-orbit manifold of I; to the lower I manifold. The CO2 cluster 
provides a potential difference which brings the charge-transfer relaxation 
mechanism into resonance. The resonance is illustrated in Fig. 2. 

because relaxation to the ground electronic state could not 
occur on the experimentally observed time scale (<30 ps). 
However, the preceding considerations of the polarizability 
of 1; cast some doubt on this assumption. The suggested 
mechanism for solvent induced I*-+1 relaxation in 1: is sum- 
marized in Figs. 2 and 5(c). 

The role of the two fl=3/2 states in electronic relaxation 
has not been considered so far. It has previously been 
proposed4 that I; prepared in the second a= l/2 state 
(‘I&,, ii2) inside a CO, cluster could undergo rapid relaxation 
to the lowest 0=3/2 state (2II,,s,2 ) at long bond lengths via 
collisions with COa molecules. This mechanism seems plau- 
sible at zero field [Fig. l(a)] because the two states are de- 
generate at long bond lengths. Suppose, at long I-***1 bond 
lengths, a CO, molecule approaches the iodine atom perpen- 
dicular to the 1, axis. It exerts a torque on the quadrupole of 
atomic iodine but has no effect on the spin coordinates of the 
electrons, leading to a rearrangement of the spin and orbital 
angular momenta corresponding to a l/2--+3/2 transition.61 
However Fig. l(c) demonstrates that the lowest fi=3/2 state 
is not degenerate with any of the excited a= I/2 states in the 
presence of an electric field, so a cluster-induced potential 
difference will inhibit relaxation to this state. 

In summary, considerations of the response of 1, to a 
solvent induced potential difference suggest that electronic 
relaxation may occur at long I*+.1 bond lengths via a net drift 
of the solvent toward the I- ion. This is in contrast to the 
conventional view of an electron-transfer (surface hopping) 
mechanism. Furthermore, rapid I*+1 relaxation may be pos- 
sible if the solvent induced potential difference between the 
iodine nuclei exceeds the atomic spin-orbit splitting energy 
(0.94 eV). Unlike I *-+I relaxation, electronic relaxation by 
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TABLE IV. 1; Parameters for short range repulsive I;++COs and 
COs+COs potentials. l and u are defined in Eq. (Al) (Bohr and eV). 

Parameter 

co 
4-C 

q-0 

*l-C 

Value 

0.0100 
0.009 12 
6.661 
7.015 

solvent migration should be equally important in dihalide 
ions lacking spin-orbit coupling. 

These results take into account only the gross charge 
drift along the I-I bond in response to an applied potential 
difference, ignoring the nonuniform nature of the field. 
While current molecular dynamics simulations include non- 
uniform field effects5’ they are based upon the simple one 
hole wave function described in Sets. II and IV. The model 
will be inadequate if electronic relaxation is sensitive to finer 
details of the wave function, such as polarization of the 
atomic orbitals by a collision with a CO2 molecule. How- 
ever, electronic relaxation in 1; is rapid,4*5*1* which leads us 
to suspect that the dominant charge-field interaction is re- 
sponsible for the relaxation. 

VI. CONCLUSION 

A one-hole model has been devised to treat the interac- 
tion of the six lowest electronic states of I; with an arbitrary 
distribution of point charges and multipoles. The model has 
been used to study the effect of a uniform electric field par- 
allel to the molecular axis on these six states. The field per- 
turbs the negative ion strongly, causing a resonant interaction 
between two states which are separated by approximately 1 
eV in isolated I;. Spin-orbit coupling significantly affects 
the response of the excited states to an electric field, with the 
polarizability of the “I$,,, adiabatic state varying in both 
sign and magnitude as the 1, bond is stretched and the field 
strength varied. 

The field-dependent potential energy surfaces have been 
used to investigate mechanisms for nonadiabatic relaxation 
of electronically excited I; in a CO2 cluster, with the effects 
of the CO, molecules approximated by a uniform electric 
field parallel to the molecular axis of I;. While molecular 
dynamics simulations will be required to determine theoreti- 
cal reaction rates, a study of the field-dependent potential 
energy surfaces suggests that more channels exist for nona- 
diabatic relaxation than previously suspected. In the presence 
of an electric field of 0.003 a.u. a state from the lower 
(IA-Ii) spin-orbit manifold of Fig. l(a) undergoes an 
avoided crossing with a state from the upper (Ii - I;) mani- 
fold at approximately 12 Bohr, which suggests that I*-+1 
(electron-transfer) relaxation in 1; may be facilitated by the 
cluster. It is also possible that relaxation from the 211g,1,2 
state to the ground state at very long I-I bond lengths could 
proceed purely by migration of a few CO* molecules rather 
than by electron transfer. It is hoped that molecular dynamics 
studie?l incorporating cluster-dependent potential energy 

Oii l2 
Vii(T)=4Eij r . 

i i 
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surfaces and nonadiabatic electronic transitions will unravel 
the mechanisms responsible for the coherent nonadiabatic 
motion of 12. 
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APPENDIX: I;++COp AND C02+C02 INTERACTION 
PARAMETERS 

The pairwise C02+C02 interaction potential and the 
five point-charge fit to the quadrupole and hexadecapole for 
CO2 required to determine the 1,+&O, interaction Hamil- 
tonian [Eq. (14)] were both formulated by M~rthy.~~ 

The 1; -CO2 short range repulsive potential is approxi- 
mated by a sum of pairwise interactions between the nuclei, 
each 1+&O, interaction being the sum of three terms of the 
form 

The pairwise interaction parameters’7 E and (+ are given in 
Table IV. 
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