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ABSTRACT
The process by which a cell senses and responds to its en-
vironment, as in signal transduction, is often mediated by
a network of protein-protein interactions, in which proteins
combine to form complexes and undergo post-translational
modifications, which regulate their enzymatic and binding
activities. A typical signaling protein contains multiple sites
of protein interaction and modification and may contain cat-
alytic domains. As a result, interactions of signaling pro-
teins have the potential to generate a combinatorially large
number of complexes and modified states, and representing
signal-transduction networks can be challenging. Represen-
tation, in the form of a diagram or model, usually involves
a tradeoff between comprehensibility and precision: com-
prehensible representations tend to be ambiguous or incom-
plete, whereas precise representations, such as a long list
of chemical species and reactions in a network, tend to be
incomprehensible. Here, we develop conventions for repre-
senting signal-transduction networks that are both compre-
hensible and precise. Labeled nodes represent components
of proteins and their states, and edges represent bonds be-
tween components. Binding and enzymatic reactions are
described by reaction rules, in which left graphs define the
properties of reactants and right graphs define the products
that result from transformations of reactants. The reaction
rules can be evaluated to derive a mathematical model.

Categories and Subject Descriptors
I.6.5 [Simulation and Modeling]: Model Development—
modeling methodologies; E.1 [Data Structures]: Graphs
and networks; J.3 [Life and Medical Sciences]: Biology
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1. INTRODUCTION
Many cellular responses to environmental signals are me-

diated by networks of interacting proteins that detect signals
(e.g., ligands of cell-surface receptors) and transduce these
signals into responses, such as the release of stored factors,
changes in gene expression, and cell movement, prolifera-
tion, differentiation, or death. After the introduction of a
signal, the proteins in a signal-transduction network typi-
cally undergo post-translational modifications (e.g., tyrosine
phosphorylation), which affect their binding and enzymatic
activities, and concurrently combine to form a variety of
heterogeneous complexes [1, 2]. These complexes, which are
often transient and prominent in the vicinity of the inner
cell membrane, regulate enzymatic activities, for example,
by serving to co-localize enzymes and substrates, which is
a common mechanism for controlling enzyme specificity [3].
The number of protein complexes and modification states
that potentially can be generated during the response to
a signal is combinatorially large and generally far greater
than the number of proteins involved in signal transduction,
because signaling proteins contain multiple sites of modifi-
cation and may interact with multiple binding partners [4,
5].
There are at least two reasons to account for all the pos-

sible protein states and complexes in a signal-transduction
network, as numerous as these may be. First, most states
and complexes may be unimportant, but in general, it is
impossible to determine intuitively which are the important
ones from knowledge of pairwise protein interactions, which
is the usual level of detail available, even for a well-studied
system. Second, the catalytic activities of signaling proteins
are highly regulated by molecular context. For example, the
activity of a protein tyrosine kinase (PTK) might depend on
the phosphorylation state of its activation loop and its speci-
ficity might depend on the proximity of a specific substrate.
Thus, we desire representations of signal-transduction net-
works that precisely account for the full array of possible
protein states and complexes implied by a given set of pro-
tein interactions. To make practical use of these representa-
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tions, one must be able to translate them into mathematical
and computational models, which can then be used to in-
terpret data, predict the behavior of a system, and design
experiments to test model-based predictions [6, 7, 8].
A precise representation of a signal-transduction network

can be provided by a comprehensive list of the chemical
species and reactions in the network [9]. However, this type
of representation is difficult to comprehend, even for small
systems, in that it obscures the underlying protein interac-
tions that give rise to the chemical species and reactions.
The list may also be quite long. A more comprehensible
type of representation, and one that is commonly used, is
provided by a diagrammatic interaction map in which pro-
teins and their interactions (or the functional consequences
of these interactions) are indicated by labeled cartoons and
arrows. Formal conventions have been proposed for drawing
interaction maps such that they have precise meanings [10,
11, 12, 13]. However, interaction maps tend to suffer from
a tradeoff between precision and comprehensibility. Maps
that are precise enough to have an unambiguous mathemat-
ical interpretation may be no more understandable than a
list of reactions. On the other hand, ad hoc heuristic maps,
which are more the norm, may clearly illustrate certain as-
pects of a system but are ambiguous and lack a mathemat-
ical interpretation.
One way to achieve a precise and understandable rep-

resentation involves the specification of a reaction rule for
each type of protein-protein interaction in a network [5, 8,
14, 15, 16]. In this approach, strings are used to represent
chemical species and regular expressions are used to repre-
sent groups of chemical species with particular attributes.
Reaction rules, or generalized reactions, are written in the
same form as a chemical reaction but regular expressions
are allowed. These string-matching patterns identify groups
of chemical species by indicating the shared attributes of a
group. Thus, the rules can be used to find, through string
matching, the chemical species among a set of species that
qualify as reactants. The rules also define transformations of
reactants into products by providing a rate law and indicat-
ing how strings representing reactants should be modified to
obtain products. Thus, they are generators of reactions and
products, which may include new species. The result of rule
application is a list of chemical species and reactions implied
by the rules and the seed set of species to which the rules
are initially applied. This approach has been used to model
early events in signaling by FcεRI [14, 15], a prototypical
antigen recognition receptor of the immune system, and to
derive preliminary models for an array of other systems [16].
The number of rules that must be specified is comparable to
the number of components of proteins in the network, which
is usually much less than the number of chemical species.
Here, we extend the rule-based approach described above

by defining conventions for using graphs to represent chem-
ical species and groups of chemical species. The introduc-
tion of graphs is a natural generalization of the string rep-
resentation of Blinov et al. [16]. With it, we gain the abil-
ity to explicitly and systematically represent the connec-
tivity of protein components in a complex at the expense
of finding graph isomorphisms, instead of simply matching
strings, when applying reaction rules. Below, we introduce
the conventions of representation, present examples, com-
pare graphical rule-based representation with formal dia-
grammatic representation, and briefly mention the classi-

cal problems of graph isomorphisms that must be solved to
translate a set of rules into a model. The method of Blinov
et al. [16] and ideas presented here will be elaborated in
another publication [17].

2. METHOD OF GRAPHICAL REPRESEN-
TATION

Figure 1 introduces a method of using graphs and graph
rewriting rules, or graphical reaction rules, to represent signal-
transduction networks. We focus on signal transduction and
protein-protein interactions, but the conventions of Fig. 1
can be used to represent other types of cellular systems and
biomolecular interactions, such as genetic regulatory net-
works and protein-DNA or protein-lipid interactions. The
method is also illustrated with examples specific to the model
of Faeder et al. [15] (Figs. 2–5), a model for bivalent ligand
interaction with a bivalent cell-surface receptor (Fig. 6), and
a model considered in the review of Aladjem et al. [13]
(Fig. 7).
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Figure 1: Conventions of the graphical representa-

tion.

The method of representation was developed with the fol-
lowing features of signaling proteins in mind. These pro-
teins are generally comprised of conserved modular domains.
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Some domains are catalytic. A PTK domain, for example,
catalyzes the addition of a phosphate group to a tyrosine
residue of a protein substrate. Some domains are respon-
sible for biomolecular recognition; protein interaction do-
mains recognize specific types of sites in proteins and other
biomolecules [2]. For example, the Src homology 2 (SH2)
domain recognizes phosphorylated tyrosines in protein mo-
tifs, such as the immunoreceptor tyrosine-based activation
motif (ITAM). The activities of protein domains can be reg-
ulated by post-translational modifications, which are cat-
alyzed by signaling proteins. For example, the activity of
a PTK domain can be upregulated by autophosphorylation
of its activation loop, and the affinity of an SH2 domain for
an ITAM can be upregulated by PTK-mediated ITAM phos-
phorylation. These modifications can be reversed (e.g., a ty-
rosine can be dephosphorylated by a protein tyrosine phos-
phatase). Binding events and conformational changes can
also affect the activities of signaling proteins. The challenge
is to account for interactions among molecules, each poten-
tially having multiple components, each potentially having
a binding or catalytic activity that depends on its bound,
conformational, or modification state, which can vary.

2.1 Components, Internal States, and Bonds
The elements of a graph are nodes, labels associated with

the nodes, and undirected and unlabeled edges that con-
nect nodes (Fig. 1). Nodes represent components (e.g., sites
and domains of proteins), which may have multiple inter-
nal states (e.g., phosphorylated or unphosphorylated), la-
bels give the names of components and their internal states,
and edges represent bonds between components. Here, we
limit discussion to edges that are subject to addition or re-
moval in a graph rewriting step, i.e., bonds affected by sig-
naling. Bonds connecting components that are unaffected
by signaling are not represented explicitly. Internal states
are introduced as needed or desired to represent bound, con-
formational, or modification states of a component that are
not represented otherwise. As illustrated in Figs. 1, 2 and
7, when a component is defined, it is assigned a name and
a list of its allowed internal states (if any) is given.
As discussed later, we will sometimes need to specify the

connectivity of a node, for example, to write a reaction rule
in which a particular component of a reactant must be un-
bound. Here, we uniformly use an open (filled) circle for a
node that is unconnected (connected) to an edge. A half-
filled circle is used for a node that may be either connected
or unconnected to an edge. Other ways of specifying con-
nectivity are possible. For example, a special node might be
introduced to represent an empty space and connected to
nodes of components that are unbound.

2.2 Molecules
A molecule is defined as a set of components that can be

treated as a unit (Figs. 1, 2, 6 and 7), such as the com-
ponents of a polypeptide chain or multimeric protein. A
molecule is represented graphically by a box surrounding a
set of nodes that represents each component of the molecule.
Like components, molecules are assigned names, but here,
we usually suppress these names to avoid clutter, because
molecules can be distinguished by the shapes of their boxes
or the names of their components. Names of components
are also suppressed in some cases. Names can be suppressed
because we adopt the convention that the components of a

molecule are represented at fixed relative positions within a
box. These conventions for illustrating a model do not affect
the underlying graph representation of components, bonds,
and molecules. The internal states of a molecule and its
connectivity to external components is determined by the
attributes of the nodes representing its components. In our
examples, every component is part of a molecule.

Molecule definitions

3. Lyn

Unique/SH2

1. Bivalent ligand

Fc

Two components with identical labels that 

represent equivalent binding sites.

A multi-subunit complex, with one extracellular 

binding site and two intracellular 

phosphorylation/binding sites.

4. Syk

L

A

L-Y

L-pY

A-Y

A-pY

Tandem SH2 domains

Linker region

Activation loop

Figure 2: Definition of molecules in the FcεRI

model.

2.3 Chemical Species
A chemical species is either a single molecule having all of

its components fully defined or a set of connected molecules
(i.e., a complex), with each molecule in the set having all
of its components fully defined. A component is fully de-
fined if its internal state is specified and its connection with
other components is specified. If a component is bound to
another component, then the nodes representing the two
components are joined by an edge. An example of a chem-
ical species is illustrated in Fig. 1; others are illustrated in
Fig. 3. In general, a chemical species is represented by a
graph in which nodes are partitioned into molecules, edges
connect the nodes of components that are bound to each
other, and node labels indicate the particular internal states
of those nodes that have multiple allowed states. There is a
chemical species for each unique combination of the possible
component connections and states in a system.

2.4 Groups of Chemical Species
Groups of chemical species with specified shared features

can be defined by graphs that do not completely specify com-
ponent interactions and states, which we call group rules or
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L-Y

A-Y

Free Lyn

Free ligand

Initial chemical species

Free Syk

Extracellular

Cytosol

Plasma 

membrane

Figure 3: A set of particular chemical species in the

FcεRI model.

group graphs. The interactions and states that are specified
define the distinguishing features of a group. An example of
a group rule is shown in Fig. 1 along with a set of chemical
species having features consistent with the rule. In general,
given a set of chemical species, this group rule selects all
chemical species among the set in which component B of
the indicated molecule is in state pY. Because the internal
state of component A and the connectivity of B are unspec-
ified in the rule, chemical species selected by the rule can
have different states of A and different bound states of B as
shown. Additional species, depending on the set of species
being tested, could belong to the group, as would be the
case if component A was attached to a binding partner in
one of the species among the set tested. A second example
of a group graph is shown in Fig. 4.

A-pY

Example of a species group

Active Syk

Figure 4: A group of chemical species.

Formally, a chemical species represented by graph X is
a member of a group represented by group graph G, if and
only if there is a subgraph ofX that is isomorphic to G when
the internal states are removed from the labels of nodes in
X that have unspecified internal states in G. Thus, the
problem of identifying which species belong to a group is
reduced to the problem of determining whether X contains
subgraphs isomorphic to the group graph G, which is known
as the subgraph isomorphism problem. A well-known algo-
rithm for finding isomorphic subgraphs is the method of
Ullmann [18].

2.5 Reaction Rules
Reaction rules are graph rewriting rules that can be used

to generate chemical reactions from a list of chemical species

by identifying sets of reactants and defining how reactants
are transformed into products. Each rule is comprised of
two sets of group graphs (a set of graphs representing reac-
tants and a set of graphs representing products), an arrow
pointing from reactants to products, and a rate law. The
rate law in general can be any function of the properties
of reactants and products, e.g., k[A][B], where k is a rate
constant and [A] and [B] are the concentrations of reactants
in a biomolecular reaction. An example of a reaction rule
is shown in Fig. 1. The bidirectional arrows indicate that
the rule is to be applied in both the forward and reverse
directions.
The first step in applying a reaction rule to a set of chem-

ical species is to identify the group of species corresponding
to each reactant group graph, as described in the previ-
ous section. Next, for each combination of reactant species
drawn from these groups, the rule is applied by replacing
the subgraphs of the reactant species matching the group
graphs of reactants with the corresponding group graphs of
products to define the products. In carrying out this re-
placement, component states that are not specified in the
product group graphs are not changed. This process of re-
placing subgraphs of reactants with product group graphs is
a graph rewriting step [19], i.e., a cut-and-paste operation
(or in some cases, equivalently, a relabeling operation) that
transforms reactant graphs in product graphs. The product
species that result from graph rewriting are then checked
against the current list of chemical species and added to the
list if they are not already present. To facilitate this compar-
ison, graphs must be assigned a unique label that does not
depend on the order of components, graph partitions (i.e.,
molecules), or edges. Such labels can be assigned using the
canonical graph labeling scheme of McKay [20]. Canoni-
cal labels are also useful for checking the generated reaction
against the list of previously generated reactions to identify
overlaps in reaction rules or to prevent duplication of reac-
tions that are related because of symmetry. An example of
application of a reaction rule that would generate two reac-
tions is shown in Fig. 1. The set of rules that generate the
model of Faeder et al. [15] is shown in Fig. 5. Other sets of
rules are shown in Figs. 6 and 7.

2.6 Generation of a Chemical Reaction Net-
work

An initial set of chemical species must be specified as a
starting point for the application of reaction rules and the
generation of a chemical reaction network. A typical starting
point for network generation would be the set of individual
molecules with each component in its resting internal state.
A seed set of initial chemical species is shown in Fig. 3; iter-
ative application of the rules of Fig. 5 to this set of species
generates the reaction network of Faeder et al. [15], which
contains 354 chemical species and 3680 reactions. Itera-
tive application of reaction rules can be carried out until
a termination condition is satisfied or all possible species
and reactions are generated. An exhaustive generation of
all species and reactions accessible from the initial set is a
possible termination condition as long as the reaction rules
give rise to a finite number of species, but may not be desir-
able in the case of very large networks, e.g., if the number
of chemical species containing a particular molecule exceeds
the number of that kind of molecule in a cell. The rules of
Fig. 6 provide an example of a rule set for which exhaustive

136



Reaction Rules

1.  Ligand binding

2.  Ligand-induced aggregation

3.  Binding of Lyn to unphosphorylated receptor

4.  Binding of Lyn to phosphorylated receptor

7.  Binding of Syk to phosphorylated receptor

8.  Transphosphorylation of Syk by Syk

A-Y

A-Y

A-pY

A-pY

9.  Transphosphorylation of Syk by Lyn

10.  Dephosphorylation

L-Y

L-Y

L-pY

L-pY

Figure 5: Graphical rule-based representation of the FcεRI model.

generation of all possible chemical species and reactions is
impossible. In these cases, other termination conditions are
needed. Alternatively, network generation and simulation
can proceed in tandem, such that species and reactions are
generated on-the-fly as needed [5, 21].

2.7 Output functions
It is often useful to associate a mathematical function with

a group of chemical species, such as the sum of concen-
trations of all members of a group, because experimental
observables often correspond to properties of ensembles of
chemical species. A group graph and associated function
can be specified to calculate this sum. For example, the
group rule in Fig. 1 could be used to calculate the con-
centration of the specified protein phosphorylated on its B
domain tyrosine, and the group rule in Fig. 4 could be used
to calculate the concentration of receptor-bound autophos-
phorylated Syk.

3. EXAMPLES

3.1 The FcεRI Network
Figures 2–5 illustrate how the FcεRI signaling model of

Faeder et al. [15] can be representated using the proposed
graphical conventions. This model vividly illustrates combi-
natorial complexity. The four molecules of Fig. 2 combined
with the ten reaction rules of Fig. 5 imply 354 chemical
species, which are connected through 3680 reactions. The
connnectivity of components in complexes is explicit in the

graphical representation, unlike for the string representation
used in earlier work [16].
Are all these species and reactions important? Recent

work indicates that while only a small portion of the FcεRI
network is active for a particular set of model parameters
(concentrations and rate constants), the active portion de-
pends on the parameter values and activity can be shifted
[22]. Reduced models can be found that reproduce predic-
tions of the full model; however, the predictions of these
models, relative to the full model, become inaccurate when
parameter values are varied over moderate ranges. For de-
tails, see [22]. Others are also studying model reduction in
the context of signal transduction [23].

3.2 Ligand-Receptor Aggregation with Chains
and Rings

Dembo and Goldstein [24] and Posner et al. [25] developed
a model for bivalent ligand interaction with a cell-surface bi-
valent receptor, which is represented in Fig. 6. The ligand
is symmetric and its two sites are equivalent. The same
holds for the receptor, which is free to diffuse in the two-
dimensional membrane surface of a cell. This model was
developed to describe ligand-receptor binding and receptor
aggregation for the simplest type of antigen capable of aggre-
gating IgE-FcεRI complexes. A complex of IgE and FcεRI
can be treated as a bivalent receptor because the complex
is long lived and IgE antibody has two antigen-combining
sites. This model is more physiological than the simpler
binding model considered in the example of the previous
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section, which describes bivalent ligand binding to mono-
valent receptor. The representational conventions proposed
here make it easy to combine the two models. The rules
of Fig. 6 simply replace reaction rules 1 and 2 in Fig. 5.
This simple change results in a combinatorial explosion in
the number of possible species and reactions. For example,
there are 1854 dimeric receptor states alone.

Bivalent ligand

Bivalent receptor

equivalent 

binding sites

Ligand capture

Receptor chain elongation

Closure of a ring with one receptor

Molecule definitions

Reaction rules

Closure of a ring with multiple receptors

second receptor is contained 

within the same complex

Figure 6: Representation of a model for bivalent lig-

and interaction with a cell-surface bivalent receptor

with chains and rings of receptors included.

3.3 Comparison with a Diagrammatic Repre-
sentation

Figure 7 shows two representations of a model for the
phosphorylation of the retinoblastoma protein (Rb) by a
cyclin-dependent kinase [13]. The first representation is di-
agrammatic and drawn according to the scheme proposed by
Kohn [10]. Below, the equivalent rule-based representation
is given. Both representations have an unambiguous math-
ematical interpretation, and both suffer from some of the
same drawbacks. For example, both require some invest-
ment of time to master, and both are mechanistic rather
than functional, making it difficult to identify interactions
as stimulatory or inhibitory. A disadvantage of the diagram-
matic approach is the need to represent each complex as a
separate numbered dot, which is problematic when the num-
ber of complexes is large. In contrast, in the rule-based ap-
proach, interactions are specified in the form of rules and the
complexes implied by these rules can then be identified in an
automatic procedure [16, 17]. The rule-based representation
is perhaps easier to follow (at least for those already familiar
with chemical kinetics), but has the drawback that multiple

interactions involving the same component are contained in
separate rules1. From the point of view of someone trying to
develop a mathematical model of the system, the rule-based
representation is probably more natural and permits more
flexibility and precision in the specification of the reaction
network. For example, it is possible to use reaction rules
to specify how the molecular context of a component affects
the rate at which a reaction takes place, whereas context is
difficult to represent in the diagrammatic scheme. We have
added boldfaced numbers to the map in Fig. 7 to illustrate
how the two representations might be combined, such that
reaction rules are used to annotate the arrows of a diagram-
matic interaction map. This type of annotation might help
to improve the clarity of both maps and rules and resolve
ambiguities that often arise in maps by attaching a precise
mathematical description to their arrows.

4. CONCLUSIONS
A rule-based representation scheme is comprehensible and

precise in certain senses. It is comprehensible in that the in-
formation needed to specify or interpret a model is the type
of information often available about a system, knowledge
of modular protein interactions. In our experience, there
is usually a close correspondence between the protein inter-
actions in a system and the reaction rules needed or used
to model the system. Importantly, the number of reaction
rules needed to represent a system is related to the num-
ber of components in the system, which in general is far
less than the number of possible chemical species and reac-
tions. Comprehensibility, of course, depends on the ability
to read a list of reaction rules. A combination of rules and
diagrammatic interaction maps is probably more readable
than either type of representation alone. The method of
representation is precise in that all the chemical species and
reactions implied by specified protein interactions, in the
form of rules, are considered. However, when a reaction
rule is introduced, a class of reactions is defined, and within
this class, the rate of a reaction is sensitive to only spec-
ified aspects of molecular context and there is a risk that
critical details might be overlooked. Nevertheless, this sim-
plication seems like a good starting point for an iterative
cycle of model testing and refinement when one desires to
incorporate detail at the level of protein sites and domains.
We were inspired to use graphs and graph rewriting rules

to represent signal-transduction systems by the use of graphs
and graph rewriting rules to model other types of systems
[26, 27, 28]. The advance allowed by the conventions in-
troduced here, relative to earlier rule-based representation
[16], is the ability to track the connectivity of components
in complexes systematically and explicitly. This ability is
important in part because of the complicated polymer-like
aggregates that can form through interactions among pro-
teins that contain multiple sites of interaction (Fig. 6) [5].
It is also important if one wishes to adjust the rates of sig-
naling reactions based on the stereochemical properties of
reactants. For example, one might wish to make the rate
of a reaction depend on the distance between an enzyme
and a substrate within a complex, where distance might be

1Kitano [12] has proposed a fix to this problem: process di-
agrams, which each represent a sequence of reaction events.
However, multiple process diagrams are needed to account
for all possible routes through a branched reaction network.

138



measured by the number of edges connecting the enzyme
and substrate. The cost of explicitly tracking the connec-
tivity of components is the need to find subgraph isomor-
phisms in graph rewriting steps. Straightforward algorithms
exist for finding subgraph isomorphisms [18], but they can
be computationally expensive. Fortunately, we expect that
most problems will involve small graphs, for which standard
methods are effective and feasible.
The conventions introduced here might be extended in

several ways. For example, we considered only bonds be-
tween components that are affected by signaling (i.e., bonds
that can be formed or broken through the application of a
reaction rule) and with one exception (Fig. 7), only binary
interactions between components. Later, it may be conve-
nient to introduce edge labels to distinguish, for example,
between edges that can and cannot be added or removed
through graph rewriting. This might facilitate represen-
tation of the internal connectivity of the components of a
molecule. It may also be convenient to introduce the con-
cept of valence to facilitate the representation of ternary or
higher-order interactions between components.
We have presented representational tools that, in princi-

ple, can be used to develop an initial mathematical model
for any network of proteins for which knowledge of protein-
protein interactions is available. This type of knowledge is
now being rapidly generated and catalogued in electronic
databases. We believe mathematical modeling, and meth-
ods of representation like the one presented here, will play
an important role in determining how these interactions af-
fect the behavior of a cell. We note that the development of
tools for representing and modeling complex biological sys-
tems is an active area of research and much work has been
done that is related to the work reported here [29, 30, 31,
32].
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Figure 7: A formal diagrammatic map and the cor-

responding set of graphical reaction rules.
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