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Abstract

We consider a model of early events in signaling by the epidermal growth factor (EGF) receptor (EGFR). The model includes
EGF, EGFR, the adapter proteins Grb2 and Shc, and the guanine nucleotide exchange factor Sos, which is activated through EGF-
induced formation of EGFR–Grb2–Sos and EGFR–Shc–Grb2–Sos assemblies at the plasma membrane. The protein interactions
involved in signaling can potentially generate a diversity of protein complexes and phosphoforms; however, this diversity has been
largely ignored in models of EGFR signaling. Here, we develop a model that accounts more fully for potential molecular diversity
by specifying rules for protein interactions and then using these rules to generate a reaction network that includes all chemical
species and reactions implied by the protein interactions. We obtain a model that predicts the dynamics of 356 molecular species,
which are connected through 3749 unidirectional reactions. This network model is compared with a previously developed model
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that includes only 18 chemical species but incorporates the same scope of protein interactions. The predictions of this
reproduced by the network model, which also yields new predictions. For example, the network model predicts distinct
patterns of autophosphorylation for different tyrosine residues of EGFR. A comparison of the two models suggests ex
that could lead to mechanistic insights about competition among adapter proteins for EGFR binding sites and the role
monomers in signal transduction.
© 2005 Elsevier Ireland Ltd. All rights reserved.
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1. Introduction

Processes by which a cell senses and responds to
its environment are often marked by combinatorial
complexity (Hlavacek et al., 2003). Cellular signaling
(Hunter, 2000) generally involves protein–protein inter-
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actions and enzymatic activities that imply a diversit
potential protein complexes and phosphoforms, w
are difficult to simply enumerate let alone assay or un
stand. For example, the number of possible phos
forms of a protein is 2n, wheren is the number of amin
acid residues that are subject to phosphorylation
dephosphorylation by kinases and phosphatases, a
nine tyrosines in the case of epidermal growth fa
(EGF) receptor (EGFR) (Jorissen et al., 2003). Addi-
tional molecular diversity can arise from the multi
lent character of protein–protein interactions. A pro

0303-2647/$ – see front matter © 2005 Elsevier Ireland Ltd. All rights reserved.
doi:10.1016/j.biosystems.2005.06.014



M.L. Blinov et al. / BioSystems 83 (2006) 136–151 137

involved in signaling typically consists of multiple pro-
tein interaction domains (Pawson and Nash, 2003), such
as the Src homology 2 (SH2) and 3 (SH3) domains of the
Grb2 adapter protein. Each of these domains may inter-
act with a partner that also contains multiple domains.
As a result, proteins can combine in a variety of ways to
form a spectrum of heterogeneous complexes. Proteomic
studies confirm that diverse molecular species arise dur-
ing signal transduction (Husi et al., 2000; Bunnell et al.,
2002; Blagoev et al., 2003, 2004).

Given the protein–protein interactions and enzymatic
activities involved in the cellular response to a sig-
nal, how do we catalog the potential molecular species
implied by these interactions and activities? How do we
predict which of the possible molecular species might
actually arise during signaling? How do we determine
the functional implications of these molecular species or
the relative importance of processes that influence them?
How can we best use large-scale proteomic measure-
ments to obtain mechanistic insights? These questions
are being asked in the emerging field of systems biol-
ogy, and mathematical models have an important role
to play in addressing such questions (Bhalla and Iyen-
gar, 1999; Endy and Brent, 2001; Wiley et al., 2003;
Hlavacek et al., 2003; Goldstein et al., 2004). A math-
ematical model requires an explicit statement of our
understanding (or assumptions) about how a signal trans-
duction system operates in a form that allows, through
computational analysis, the behavior of the system to be
predicted and compared with experimental observations.
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and competition among cytosolic proteins for receptor
binding) that significantly limit, a priori, the number of
molecular species that can arise during signaling. We will
call the model ofKholodenko et al. (1999)the pathway-
like model because it represents the signaling system as a
set of reaction sequences rather than as a highly branched
reaction network.

The rest of this report is organized as follows. First,
we describe how the network model is constructed based
on the proteins, interactions, and model parameters con-
sidered in the work ofKholodenko et al. (1999). Notably,
the network model involves no more parameters than the
pathway-like model. We then compare the predictions
of the two models with the experimental observations
of Kholodenko et al. (1999). We find both models are
equally consistent. We also present new predictions of
the network model and testable predictions that dis-
tinguish the two models. A comparison of the models
allows us to evaluate the simplifying assumptions of
Kholodenko et al. (1999). These assumptions have not
been tested so far, even though this model has served
as the starting point for a number of modeling studies
of EGFR signaling (Schoeberl et al., 2002; Gong and
Zhao, 2003; Hatakeyama et al., 2003; Resat et al., 2003;
Conzelmann et al., 2004; Liu et al., 2005). We suggest
experiments that could lead to insights into the mech-
anisms of signaling and determine which of the two
models better represents signaling. Finally, we use the
network model to predict the dynamics of the protein
complexes and protein phosphorylation states that are
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We develop and analyze a mathematical mode
arly events in signaling by EGFR, which is a w
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as been the subject of numerous model-based
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he network model, provides a description of EG
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he guanine nucleotide exchange factor Sos. These
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s based on assumptions (simultaneous phosphory
nd dephosphorylation of receptor tyrosines, inab
f phosphorylated receptors in a dimer to dissoc
generated during signaling. These predictions prov
picture of molecular diversity that is more detailed t
could be currently obtained using the most sophistic
proteomic assays. For example, the model predicts w
molecular species containing membrane-proximal
are prevalent at different time points. The model co
also be used to predict how the population of th
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tions of components. As proteomic technologies ma
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2. The network model

2.1. Basis of the model

The network model (Fig. 1) is based on the sam
proteins, enzymatic activities and protein–protein in
actions considered in the model ofKholodenko et a
(1999). The focus of this model is the cascade of
naling events that lead to recruitment of cytosolic So
the inner cell membrane (Fig. 1A and B), which can b
described as follows. EGF binds to EGFR, which le
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Fig. 1. Kinetic scheme for the early events in EGFR signaling. (A) Reactions involving receptors. Only EGFR tyrosine resides that are required for
interactions with PLC�, Grb2, and Shc are included. EGF–EGFR binding and receptor dimerization reactions are illustrated inside Box 1. Although
only two reactions are illustrated, EGF may bind a receptor in any cytoplasmic state, and any two EGF-bound receptors can aggregate or dissociate
at any time. After receptor aggregation different receptor phosphoforms may be formed as a result of receptor tyrosine kinase activity. Three of the
possible phosphoforms are illustrated and named inside Box 2. Cytoplasmic binding reactions related to Sos recruitment and PLC� activation are
shown inside Boxes 3 and 4, respectively. Each reaction is an example of many possible reactions. (B) Cytosolic reactions not involving receptors.
In panels A and B, numbers next to each reaction refer to signaling steps and reaction classes described inTable 1. (C) Example of a species omitted
from consideration in the model ofKholodenko et al. (1999). (D) Illustration of 20 possible reactions the dimeric species of panel C may undergo in
the network model. In this panel, reactions which are relevant only to PLC� activation are represented inside the dashed boxes and are not included
in the model for Sos activation.
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to the formation of signaling-competent receptor dimers
(Garrett et al., 2002; Ogiso et al., 2002; Ferguson et al.,
2003; Burgess et al., 2003). A receptor in a dimer then
can be transphoshorylated by the tyrosine kinase domain
of the neighboring receptor (Schlessinger, 2000; Joris-
sen et al., 2003). The cytosolic adapter proteins Grb2 and
Shc are recruited to phosphorylated receptor tyrosines
Y1068 and Y1148/73 (Batzer et al., 1994; Okabayashi et
al., 1994). Shc is known to bind at two tyrosine residues,
Y1148 via its SH2 domain and Y1173 via its phospho-
tyrosine binding (PTB) domain (Batzer et al., 1994).
When Shc is bound to a receptor, it can be phospho-
rylated by EGFR (Pelicci et al., 1992). The phospho-
rylated form of Shc interacts with Grb2 (Lowenstein et
al., 1992; Rozakis-Adcock et al., 1992; Sasaoka et al.,
1994), which interacts constitutively with Sos (Egan et
al., 1993; Rozakis-Adcock et al., 1993; Li et al., 1993).
Translocation of Sos from the cytosol to the membrane is
required for activation of the GTPase Ras (Boguski and
McCormick, 1993) and downstream signaling events.
The model ofKholodenko et al. (1999)accounts for 25
species, including 18 involved in Sos recruitment.1

Some aspects of the model ofKholodenko et al.
(1999)are controversial and might be subject to future
investigation and refinement. For example, the model
assumes that phosphorylation of Shc leads to a signifi-
cant reduction in its affinity for EGFR, which is primar-
ily responsible for the predicted damping of the initial
response to EGF. Although recent molecular dynamics
simulations support a lower affinity of phosphorylated
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We derive the network model without making the fol-
lowing assumptions, upon which the pathway-like model
is based: (1) all receptor tyrosines of both receptors in a
dimer are phosphorylated and dephosphorylated simul-
taneously, (2) dimeric receptors that are phosphorylated
or associated with a cytosolic protein cannot dissociate,
and (3) binding of cytosolic proteins to dimeric recep-
tors is competitive, with only one cytosolic protein being
allowed to associate with a dimer at a time. Without these
assumptions, many more molecular species and reac-
tions must be considered.Fig. 1C illustrates one of the
molecular species considered only in the network model,
andFig. 1D illustrates the reactions in which this recep-
tor dimer can participate. The network model is derived
by applying a rule-based modeling approach (Hlavacek
et al., 2003; Goldstein et al., 2004). Rules are speci-
fied based on the interactions and activities of protein
domains. Each rule defines a reaction class that is com-
posed of multiple reactions that are parameterized by
identical rate constants (Tables 1 and 2). This approach
to parameterization is based on the assumption that pro-
tein domains and sites are modular. In other words, we
assume that the activity of, say, the binding site on EGFR
for Grb2 is independent of other sites on EGFR. A rep-
resentative of each reaction class is illustrated inFig. 1A
for reactions involving EGFR and inFig. 1B for cytoso-
lic reactions. Each representative reaction corresponds
with a “step” in the signaling cascade and with an indi-
vidual reaction considered in the model ofKholodenko
et al. (1999).
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hat Shc recruitment and phosphorylation negatively
lates signaling is problematic in light of earlier exp
ental work on EGFR signaling (Sasaoka et al., 1994).

n addition, pre-formed dimers of EGFR (Jorissen e
l., 2003) and other complicating features of ligan

nduced receptor dimerization that may influence sig
ng (Wofsy et al., 1992; Klein et al., 2004) are omitted
n the model ofKholodenko et al. (1999)and its exten
ions. Our main focus here, however, is to evaluate
ffects of simplifying assumptions made in develop

he pathway-like model, and we therefore keep both
asic reaction processes and their accompanying
onstants in the network model so that we can m
controlled comparison of the two models.

1 The model also includes the sequence of events leading to
ation (phosphorylation) of phospholipase C� (PLC�), which binds
o phosphorylated Y992 and becomes transphosporylated by re
yrosine kinase.
r

In Box 1 of Fig. 1A, Step 1 is EGF binding t
monomeric EGFR, and Step 2 is dimerization of E
bound receptors. In the network model, we allow m
ified receptors in dimers to dissociate, and as a re
there are multiple forms of monomeric EGFR availa
to bind EGF once signaling begins (but not before E
stimulation). In contrast, in the pathway-like model, o
receptors without modification participate in Steps 1
2, at all times. In fact, monomeric EGFR that is phosp
rylated or associated with a cytosolic protein is not c
sidered at all in the pathway-like model. To paramete
ligand–receptor and receptor–receptor interactions
network model, we assume that the cytoplasmic
of a receptor does not affect ligand–receptor bindin
ligand-stimulated receptor dimerization. Thus, we
the same rate constants estimated byKholodenko et a
(1999) for all reactions involving the various possi
states of receptors that can participate in Steps 1 a
Similar assumptions are made to parameterize the
steps in the signaling cascade (Tables 1 and 2). This
approach to parameterization of the network mod
the same approach taken to model early events in
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Table 1
Reaction classes and parameter estimates associated with Sos recruitment

Step Reaction class Parameter values Number of reactions

1 Ligand–receptor binding k1 = 0.003;k−1 = 0.06 48
2 Receptor dimerization k2 = 0.01;k−2 = 0.1 600
3 Receptor tyrosine phosphorylation ak3 = 0.5;bk−3 = 4.505 96 + 144c

4 Receptor tyrosine dephosphorylation bk−3 = 4.505 104 + 156c

9 Binding of Grb2 to pY1068
ak9 = 0.0015;k−9 = 0.05 24 + 288d

10 Binding of Sos to pY1068–Grb2 k10 = 0.01;k−10 = 0.06 24 + 288d

11 Binding of Sos–Grb2 to pY1068
ak11 = 0.00225;k−11 = 0.03 24 + 288d

12 Cytosolic binding of Grb2 and Sos k12 = 0.0001;k−12 = 0.0015 2
13 Binding of Shc to pY1148–1173

ak13 = 0.045;k−13 = 0.6 16 + 192d

14 Phosphorylation of Shc ak14 = 3; ak−14 = 0.03 8 + 192d

15 Binding of ShcP to pY1148–1173
ak15 = 0.00045;k−15 = 0.3 16 + 192d

16 Cytosolic ShcP dephosphorylation bk−16 = 0.005 1
17 Binding of Grb2 to pY1148–1173–ShcP k17 = 0.003;k−17 = 0.1 16 + 192d

18 Binding of ShcP–Grb2 to pY1148–1173
ak18 = 0.00045;k−18 = 0.3 16 + 192d

19 Binding of Sos to pY1148–1173–ShcP–Grb2 k19 = 0.01;k−19 = 0.0214 16 + 192d

20 ShcP–Grb2–Sos binding to pY1148–1173
ak20 = 0.00012;k−20 = 0.12 16 + 192d

21 Cytosolic binding Grb2 to ShcP k21 = 0.003;k−21 = 0.1 2
22 Cytosolic binding Sos to ShcP–Grb2 k22 = 0.03;k−22 = 0.064 2
23 Cytosolic binding Grb2–Sos to ShcP k23 = 0.021;k−23 = 0.1 2
24 Binding of Grb2–Sos to pY1148–1173–ShcP k24 = 0.009;k−24 = 0.0429 16 + 192d

Total 20 Reaction classes 37 Parameters 3749 Reactions

Signaling steps are illustrated inFig. 1. Initial concentrations are [EGFR]total = 100 nM, [EGF]total = 680 nM, [Grb2]total = 58 nM,
[Grb2–Sos]total = 27 nM, [Shc]total = 150 nM, [Sos]total = 7 nM. Parameter values are taken fromKholodenko et al. (1999). Some of these parameters
are based on experimental measurements, but most are estimates obtained through a fitting procedure. Binding and phosphorylation reaction rate
constants are denoted askn and dissociation and dephosphorylation reaction rate constants are denoted ask−n. First- and second-order rate constants
are expressed in units of s−1 and nM−1 s−1, respectively. Modifications of particular rate constants made in this study are marked with footnotes.

a This rate constant is scaled by a factor of 0.5 to account for the different stoichiometry of binding sites in the model ofKholodenko et al. (1999)
and the network model (one binding site per dimer in the pathway-like model vs. one binding site per receptor in the network model).

b This rate constant is that for a first-order reaction with a rate law of the formkC. This rate law replaces the Michaelis–Menten rate law in the
original model ofKholodenko et al. (1999). This simplification, which does not affect results, is discussed in Section2.2.

c The number of reactions involving Y1068 plus the number of reactions involving Y1148/73, respectively.
d The number of reactions involving receptor monomers plus the number of reactions involving receptor dimers, respectively.

Table 2
Reaction classes and parameter estimates associated with PLC� activation

Step Reaction class Parameter values Number of reactions

1 Ligand–receptor binding k1 = 0.003;k−1 = 0.06 8
2 Receptor dimerization k2 = 0.01;k−2 = 0.01 20
3 Receptor tyrosine phosphorylation ak3 = 0.5;bk−3 = 4.505 4
4 Receptor tyrosine dephosphorylation bk−3 = 4.505 6
5 Binding of PLC� to Y992

ak5 = 0.03;k−5 = 0.2 12
6 Transphosphorylation of PLC� ak6 = 0.5;ak−6 = 0.025 10
7 Binding of PLC�P to Y992

ak7 = 0.003;k−1 = 0.3 12
8 Dephosphorylation of PLC� ak−8 = 0.01 1
25 Inactivation of PLC�P k25 = 1; k−25 = 0.03 2

Total 9 Reaction classes 15 Parameters 75 Reactions

Reaction steps are illustrated inFig. 1. Initial concentrations are [EGFR]total = 100 nM, [EGF]total = 680 nM, [PLC�]total = 105 nM. Parameter values
are taken fromKholodenko et al. (1999). Nomenclature of rate constants and units are the same as inTable 1.

a This rate constant is scaled by a factor of 0.5 to account for the different stoichiometry of binding sites in the model ofKholodenko et al. (1999)
and the network model (one binding site per dimer in the pathway-like model versus one binding site per receptor in the network model).

b This rate constant is that for a first-order reaction with a rate law of the formkC. This rate law replaces the Michaelis–Menten rate law in the
original model ofKholodenko et al. (1999). This simplification, which does not affect results, is discussed in Section2.2.
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naling by the immunoreceptor Fc�RI (Goldstein et al.,
2002; Faeder et al., 2003; Goldstein et al., 2004).

The next steps in the intracellular signaling cascade
are transphosphorylation of a receptor in a dimer by
the tyrosine kinase domain of the neighboring EGFR
(Step 3) and dephosphorylation (Step 4), which is carried
out by phosphatases that are considered implicitly, as in
the model ofKholodenko et al. (1999). In the pathway-
like model, all receptor tyrosines of dimeric EGFR are
lumped together, and Step 3 is considered to result in
a single form of dimeric EGFR, designated,RP that
encompasses, for example, the distinct receptor phos-
phoforms illustrated in Box 2 ofFig. 1A.

In contrast, we treat the phosphorylation sites of
EGFR independently, and assume that there is no inter-
action among proteins binding to the different sites,
which allows us to capture in the network model the full
stoichiometric range of EGFR complexes without intro-
ducing any new rate parameters. We consider EGFR to
contain one docking site for phospholipase C� (PLC�),
which is localized around Y992 and active when Y992
is phosphorylated, one docking site for Grb2, which
is localized around Y1068 and active when Y1068 is
phosphorylated, and one docking site for Shc, which
is localized around Y1148 and Y1173 and active when
tyrosines Y1148 and Y1173, which we lump together,
are phosphorylated. These docking sites are assumed
to be phosphorylated in separate reactions (via a non-
processive mechanism), and association of PLC�, Grb2,
and Shc with EGFR is assumed to depend only on the
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Steps 9–24 inFig. 1A and B are related to the
dynamics of Grb2, Shc, and Sos. Each of these steps is
described briefly inTable 1. Translocation of Sos from
the cytosol to the membrane is accomplished as fol-
lows. The cytosolic adapter proteins Grb2 and Shc are
recruited to autophosphorylated receptor tyrosines. Grb2
binds at Y1068 via its Src homology 2 (SH2) domain,
and Shc binds at Y1148 via is SH2 domain and Y1173
via is phosphotyrosine binding (PTB) domain (Batzer et
al., 1994; Okabayashi et al., 1994). Note that, just as we
lump tyrosines Y1148 and Y1173 of EGFR together, we
lump the SH2 and PTB domains of Shc together, treating
Shc as if it has a single EGFR binding domain. When
Shc is bound to a receptor, it can be phosphorylated by
EGFR (Pelicci et al., 1992). The phosphorylated form of
Shc interacts with the SH2 domain of Grb2 (Lowenstein
et al., 1992; Rozakis-Adcock et al., 1992; Sasaoka et
al., 1994), which interacts constitutively via its two SH3
domains with Sos (Egan et al., 1993; Rozakis-Adcock
et al., 1993; Li et al., 1993). The reactions that take
place in the cytosol (Steps 12, 16, and 21–23 ofFig. 1B)
are the same in the network and pathway-like mod-
els. The left-hand side of Box 4 inFig. 1A illustrates
reactions involving EGFR that affect Shc-dependent
recruitment of Sos to the membrane, and the right-
hand side of Box 4 illustrates reactions involving EGFR
that affect Shc-independent recruitment of Sos to the
membrane.
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ion of Sos. Because we assume docking sites on E
re independent (see above), interaction of EGFR
LC� is unaffected by Grb2, Shc, or Sos. As a res

he models for activation (i.e., phosphorylation) of PL�
nd recruitment of Sos can be derived independent2

2 The model for activation of PLC�, based on Boxes 1–3 inFig. 1A
nd Steps 8 and 25 inFig. 1B, accounts for 22 molecular species
onsists of an equal number of ordinary differential equations (O
escribing the mass-action kinetics of these species. These spe
numerated as follows. Monomeric EGFR can be either free or b

o EGF. The PLC� docking site on EGFR can be free, phosphoryla
ound to PLC�, or bound to phosphorylated PLC�. Thus, there ar
× 4 = 8 possible forms of monomeric EGFR, four possible form
2.2. Automatic generation of the reaction network

One can now enumerate the 356 molecular sp
considered in the network model for EGFR-media
activation of Sos. The extracellular domain of EGFR
be free or bound to EGF. The Grb2 docking site of EG
can be free, phosphorylated, bound to Grb2, or bou
Grb2 and Sos in complex. The Shc docking site of EG
can be free, phosphorylated, bound to Shc, boun
phosphorylated Shc, bound to Shc and Grb2 in com
or bound to Shc, Grb2, and Sos in complex. Thus, t
are 2× 4× 6 = 48 forms of monomeric EGFR, 24 form
of symmetric receptor dimers (each receptor in a dim

symmetric receptor dimers (each receptor in a dimer is bound to E
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)
= 6 possible forms of asymmetric receptor dimers. T

are four additional possible species unassociated with EGFR,
are the same as those considered in the model ofKholodenko et a
(1999): (1) free EGF, (2) cytosolic resting PLC�, (3) phosphorylate
PLC� in the cytosol (PLC�P), and (4) cytosolic PLC� that has bee
inactivated and is no longer capable of interacting with EGFR (PL�-
I). Parameters of this model are summarized inTable 2.
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bound to EGF), and

(
24
2

)
= 276 forms of asymmetric

receptor dimers. There are eight additional species unas-
sociated with EGFR: (1) free EGF, (2) cytosolic Grb2,
(3) cytosolic Sos, (4) cytosolic Grb2 in complex with Sos
(Grb2–Sos), (5) cytosolic Shc, (6) phosphorylated Shc
in the cytosol (ShcP), (7) cytosolic Shc in complex with
Grb2 (ShcP–Grb2), and (8) cytosolic Shc in complex
with Grb2 and Sos (ShcP–Grb2–Sos).

Fig. 1D illustrates 20 possible reactions a partic-
ular dimer can undergo: it can break up into two
receptor-monomers; unprotected phosphotyrosines can
be dephosphorylated; phosphotyrosines can bind differ-
ent cytosolic protein complexes; proteins can bind to
proteins already associated with a receptor; some pro-
tein complexes may dissociate from receptor or from
receptor-bound proteins. This example is typical.Table 1
gives the number of reactions of each reaction type
included in the model. For example, a ligand can poten-
tially bind to any receptor-monomer without a ligand,
which gives rise to 48 unidirectional reactions; any two
ligand-associated receptors can aggregate into a dimer,
which gives rise to 600 potential dimerization reactions,
etc. In the end, we consider 3749 unidirectional reac-
tions among the 356 species in the network model of
Sos activation.

A computational model that describes interactions
among these species typically includes an ordinary dif-
ferential equation (ODE) for each chemical species.
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tational efficiency is likely to be a major concern, and
novel methods of simulation, in which rule evaluation is
embedded in the method of simulation, may be needed
(Lok and Brent, 2005; Faeder et al., 2005a).

Values of parameters in the network models for
Sos and PLC� activation (i.e., rate constants for each
of the reaction classes and concentrations for EGF,
EGFR, Grb2, Shc, Sos, and PLC�) are summarized in
Tables 1 and 2. These values correspond to parameter
estimates ofKholodenko et al. (1999)with the follow-
ing exceptions. Rate constants for reactions in which a
cytosolic protein binds a docking site on EGFR have
each been scaled by a factor of 0.5. This adjustment was
made to account for the different stoichiometry of the
two models: the pathway-like model accounts for only
one docking site per receptor dimer, whereas the network
model accounts for one docking site per receptor, or two
docking sites per receptor dimer. Also, as a simplifica-
tion, we have replaced Michaelis–Menten rate laws for
phosphatase-catalyzed reactions with rate laws of the
form kC, wherek is a rate constant andC is the con-
centration of a phosphotyrosine-containing molecule.
In each case, we have set the value ofk equal to the
value of the corresponding ratioVM/KM, which can be
obtained from the estimates ofKholodenko et al. (1999).
Note thatVM is the maximum velocity of a reaction,
andKM is the Michaelis–Menten constant. This simpli-
fication, which we have made in all the models that we
consider, has an insignificant effect on results (results
not shown).Schoeberl et al. (2002)also made this
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3. Results

3.1. Similar predictions of the pathway-like and
network models

The pathway-like model was parameterized so
its predictions would match certain dynamic respon
to EGF that were assayed byKholodenko et al. (1999.
In Fig. 2A–E, the experimental results ofKholodenko
et al. (1999)are compared with predictions of the n
work model and two forms of the pathway-like mod
one with PLC� included, as in the original model, an
reduced form with PLC� omitted. We consider these tw
forms of the pathway-like model to illustrate that co
petitive binding of PLC�, which is omitted in the networ
model, has a minimal effect on activation of Sos. As
be seen, for the quantities measured byKholodenko et a
(1999), the network and two pathway-like models m
similar predictions, especially at steady-state. The
ferent models are more-or-less equally consistent
Each equation contains a term on the right-hand s
for every reaction that influences the concentration
the species that corresponds to the ODE. To acco
for hundreds to thousands of species, one must aban
the approach of writing equations manually. An auto
matic procedure and software called BioNetGen (Blinov
et al., 2004; Faeder et al., 2005a) was used to gener-
ate the chemical reaction network (and correspondi
system of coupled ODEs) based on the reaction clas
defined inTables 1 and 2and illustrated inFig. 1. The
software and models used in our studies are availa
at our website (http://cellsignaling.lanl.gov). Given the
relatively large size of the network model compared
most models of signal-transduction systems reported
the literature, it is reasonable to be concerned about
computational costs of a rule-based approach to mod
ing. The computational cost of integrating a system
356 ODEs is manageable: computations using a stand
method appropriate for stiff systems take at most a fe
minutes on a single processor. On the other hand,
larger systems, such as some of the simple extension
the network model we have considered, which have te
of thousands of ODEs (unpublished material), comp

http://cellsignaling.lanl.gov/
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Fig. 2. Predictions of the model ofKholodenko et al. (1999)(dotted line), the version of this model with PLC� removed (broken line) and the network
model (solid line). Experimental data ofKholodenko et al. (1999)are shown in each plot. (A) Grb2 bound to EGFR. (B) Total phosphorylated PLC�.
(C) Grb2 coprecipitated with Shc. (D) Total phosphorylated Shc. (E) Number of receptors with at least one phosphorylated tyrosine.

the measured time courses of direct Grb2 association
with EGFR (Fig. 2A), PLC� phosphorylation (Fig. 2B),
indirect Grb2 association with EGFR via Shc (Fig. 2C),
Shc phosphorylation (Fig. 2D), and receptor phospho-
rylation (Fig. 2E). The differences at early times in
Fig. 2A–D are explained by the assumption that cytoso-
lic proteins compete for receptor binding in both forms
of the pathway-like model, and the differences ofFig. 2E
are explained by the assumption of the pathway-like
model that all receptor phosphotyrosines are protected
from phosphatase activity if a single cytosolic protein
is associated with a receptor dimer. After the transient,
the models agree, largely because Shc and PLC� are
found mostly in their phosphorylated cytosolic forms
at steady-state (not shown), and these forms have low
affinity for docking sites on EGFR (Kholodenko et al.,
1999, Tables 1 and 2). Also, the dynamics of cytosolic
reactions are identical in the network and pathway-like
models. Because binding of cytosolic proteins to EGFR
is non-competitive in the network model, the predictions

of the network model shown inFig. 2 are independent
of whether PLC� is considered or omitted.

3.2. New predictions of the network model

The network model, because it incorporates more
molecular details than the pathway-like model, can pre-
dict the results of experiments that are beyond the scope
of the pathway-like model (Fig. 3). Fig. 3A shows
that individual tyrosines of EGFR are predicted by the
network model to display distinct dynamics during a
response to EGF, even though the rise and fall of total
receptor phosphorylation is predicted by the network
and pathway-like models alike. Comparison ofFig. 3A
with Fig. 2E reveals that the pattern of total receptor
phosphorylation can be attributed to phosphorylation
of Y1148/73, binding of Shc at pY1148/73, where it
protects pY1148/73 from phosphatase activity, phospho-
rylation of Shc, and return of phosphorylated Shc to the
cytosol, where it concentrates in its phosphorylated form
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Fig. 3. Some new predictions of the network model. (A) Different levels of phosphorylation for tyrosine residues that serve as binding sites for
Grb2 (solid line) and Shc (broken line). (B) The amount of dimeric receptor species containing two phosphorylated Shc proteins. (C) Amount of Sos
bound to monomeric receptors (right axis) and the total amount of Sos bound to receptors (left axis). The solid lines are derived from the network
model; the broken line is derived from the version of the pathway-like model with PLC� excluded. (D) Total number of receptor species containing
98% of the receptor mass as predicted by the network model (solid line) and the version of the pathway-like model with PLC� excluded (broken
line).

because of the low affinity of phosphorylated Shc for
EFGR and the slow rate of cytosolic Shc dephosphory-
lation in the model (Kholodenko et al., 1999; Table 1).

The remaining panels ofFig. 3illustrate that the net-
work model predicts greater molecular diversity than the
pathway-like model.Fig. 3B shows that a substantial
fraction of receptor dimers are predicted by the network
model to associate transiently with two molecules of
phosphorylated Shc during the response to EGFR. At the
peak of the time course ofFig. 3B, 26% of total phos-
phorylated Shc is found in complexes containing two
molecules of EGFR and two molecules of Shc.Fig. 3C
shows that a substantial fraction of monomeric receptors
are also predicted by the network model to be found in
association with Sos. The slightly delayed association of
Sos with monomeric receptors compared to association
of Sos with dimeric receptors reflects the time required
for receptors in dimers to become phosphorylated and
dissociate from each other. As can be seen, the fraction of
membrane-associated Sos in complexes with monomeric
receptors is small at short times, but becomes more
significant as the steady-state is approached. At steady-
state, 36% of total Sos is associated with monomeric
receptors. The assumptions of the pathway-like model
preclude the formation of these complexes and many
others, as indicated inFig. 3D. The plots ofFig. 3D rep-

resent the numbers of molecular species containing 98%
of receptors as a function of time after EGF stimulation
according to the network and pathway-like models. As
can be seen, at the peak of the time course predicted
by the network model, 98% of receptors are distributed
among more than 100 molecular species. The diversity
of molecular species containing 98% of receptors falls
as the steady-state is approached to about one third of its
peak transient value. However, at all times, the distribu-
tion of receptors among molecular species predicted by
the network model is greater than that predicted by the
pathway-like model. The molecular species (and reac-
tions) that are prevalent at any given time are determined
by the dynamics of the signaling cascade and the con-
nectivity of the reaction network (Faeder et al., 2005b).

3.3. Distinguishing predictions of the two models

The two models make distinct predictions, which
could help us determine if assumptions restricting the
range of species are valid (Fig. 4). Fig. 4A illustrates
the predicted effects of two mutations: (1) knocking out
the EGFR tyrosines that bind Shc, and (2) knocking out
Shc tyrosines that bind Grb2. The first mutation blocks
Shc recruitment to receptor. The second mutation blocks
Grb2 binding to Shc, but allows Shc to bind EGFR. Both
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Fig. 4. Comparing predictions of the two models for different hypo-
thetical experiments. (A) Level of Sos recruitment for wild type (WT)
and two mutations: knock out of EGFR tyrosines that bind Shc, and
knock out of the Shc tyrosines. For WT, the network model (broken
line) and the pathway-like model (dotted line) express essentially the
same level of Sos recruitment at all times. For the first mutation, the
pathway-like (curve 1) and network (curve 2) models predict the same
level of Sos recruitment. For the second mutation, predictions of the
pathway-like and network models are different. The network model
(curve 3) predicts the same level of Sos recruitment as for the first
mutation, whereas the pathway-like model (curve 4) predicts a signifi-
cantly lower level. (B) The number of receptor dimers depends on the
total cytosolic Grb2 concentration in the pathway-like model (broken
line represents the amount of receptor dimers for the nominal value of
Grb2, dotted line represents the amount of receptor dimers for the 100-
fold increase in cytosolic Grb2 concentration) but not in the network
model (solidline). (C) Shc recruitment as a function of the rate of dis-
sociation of antibody-induced dimers of EGFR. Receptor dimerization
is induced by a bivalent monoclonal antibody rather than by EGF. The
prediction of the modified network model (solid line) and the modified
pathway-like model (broken line) differ. These models are available as
BioNetGen input files at our website (http://cellsignaling.lanl.gov).

mutations eliminate Shc-mediated recruitment of Sos
and thus might be expected to downregulate Sos activa-
tion.Fig. 4A demonstrates that both mutations do indeed
lower Sos recruitment compared to the wild type (WT)

during transient activation, but, counter to intuition, pro-
duce a much higher level of steady-state Sos activation.
For the first mutation, both the network and pathway-like
models predict the same steady-state levels because in
the absence of Shc binding, Grb2 recruits Sos at the same
rate in both models via direct binding of Grb2 to EGFR.
For the second mutation, the predictions of the two mod-
els differ because unphosphorylated Shc can bind EGFR,
and this binding competes with Grb2–EGFR binding in
the pathway-like model but not in the network model.
This competition results in partial inhibition of Sos acti-
vation in the pathway-like model, although the level of
steady-state activation is still higher in the mutant than
in WT. In contrast, the level of steady-state activation
predicted by the network model is the same for both
mutations. If the levels of steady-state Sos activation for
the two mutants could be measured experimentally, the
results presented above suggest that independence of the
Grb2 and Shc binding sites in EGFR could be established
or refuted.

The two models make different predictions about
EGFR dimerization during signaling, as shown in
Fig. 4B. The pathway-like model predicts a slower
approach to steady-state and a larger number of recep-
tors in dimers at steady-state than the network model.
The pathway-like model also predicts a transient over-
shoot, whereas the network model does not. These pre-
dictions of the pathway-like model arise, because in this
model signaling affects receptor dimerization. Recall
that phosphorylated receptors in a dimer are not allowed
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to dissociate. In contrast, in the network model, re
tor dimerization is independent of the signaling ev
under consideration. Thus, monitoring receptor dim
ization as parameters of signaling are varied (e.g., pr
expression levels of Grb2 or Shc) could help determ
if signaling affects dimerization. The predicted effec
varying Grb2 concentration is shown inFig. 4B. The
number of receptor dimers depends on the total cy
lic Grb2 concentration in the pathway-like model but
in the network model.

The two models also make different predictions ab
the outcome of the following hypothetical experime
which depends on whether or not receptor monomer
involved in signaling. Let us consider a panel of biva
antibodies that crosslink EGFR with different kinet
Fig. 4C illustrates the predicted effects at steady-sta
crosslinking receptors with an antibody as a functio
dimer dissociation rate. The network model predicts
Shc recruitment is maximal at an optimal dimer lifetim
whereas the pathway-like model predicts a low leve
Shc recruitment that is relatively insensitive to the l
time of dimers. In the pathway-like model only dim

http://cellsignaling.lanl.gov/
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can recruit Shc, whereas in the network model phos-
phorylated receptor-monomers can be associated with
Shc. Model parameters are such that unphosphorylated
Shc has high affinity for EGFR and remains associated
with receptor for a long time, which explains the build-
up of the receptor-associated pool of Shc proteins as
dimer lifetime decreases. A shorter lifetime allows more
receptors to traffic through the dimeric state become
phosphorylated and recruit Shc. This effect is one of
serial engagement (Goldstein et al., 2004). As the life-
time becomes shorter still, Shc recruitment falls, because
dimers break apart before receptors can be phosphory-
lated, an effect known as kinetic proofreading (Hlavacek
et al., 2002; Goldstein et al., 2004).

3.4. Molecular diversity during signaling

In Fig. 3D, we pointed out that only a relatively small
fraction of the possible molecular species is populated at
steady-state, but many more species are populated during
the transient peak. This behavior is described in greater
detail in Fig. 5, which helps to clarify the differences
and similarities between the network and pathway-like
models. The distribution of Sos in different species is
shown at short times in panel A and at long times in
panel B.Fig. 5B demonstrates that at steady-state only
two chemical species contain 72% of all Sos recruited
through ShcP. These species are a dimer and a monomer
that each contain one phosphorylated tyrosine. This kind
of species is accounted for in the model ofKholodenko
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Fig. 5. Distribution of Sos among receptor species. Black bars corre-
spond to the network model; white bars correspond to the model of
Kholodenko et al. (1999). Gray bars represent the receptor species of
the network model containing more than 5% of Sos. These species
are referred to by index and are graphically illustrated in panel E. (A)
Distribution of Sos bound to pY1148/73 via ShcP–Grb2 at 10 s. (B)
Distribution of Sos bound to pY1148/73 via ShcP–Grb2 at 100 s. (C)
Distribution of Sos bound to pY1068 via Grb2 at 10 s. (D) Distribution
of Sos bound to pY1068 via Grb2 at 100 s. (E) Species accumulating
more than 5% of total Sos, which are referenced by index in the panels
above.

explains the differences between the two models at short
times.

3.5. Distinct reaction sequences that lead to Sos
recruitment

Another important question is what reaction paths
are involved in recruitment of Sos to the membrane. To
et al. (1999). In contrast with the narrow distribution
steady-state, the transient distribution is much bro
The two most prevalent steady-state species contain
47% of Sos recruited through ShcP (Fig. 5A), with Sos
distributed among a variety of other receptor specie
species account for 95% of Sos recruited through S
The next two most prevalent receptor species du
the transient contain 18% of Sos at 10 s. These sp
contain receptor dimers with each receptor bound
adapter; this kind of species is unaccounted for in
pathway-like model. Similar distributions are obser
for Sos bound to receptor via Grb2 recruited at Y1
(Fig. 5C and D).

These observations provide an explanation for
match in quantitative predictions between the
models at steady-state. According to the network m
under steady-state conditions, only one phosphotyr
in a dimer is engaged in protein-binding activity,
assumed in the pathway-like model ofKholodenko e
al. (1999). Complexes in which more than one prot
is bound to a receptor at the same time are ra
steady-state, but common during the transient, w
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answer this question we use the method of path anal-
ysis, described byFaeder et al. (2005b). This method
determines the prevalence of sequences of reactions by
which a molecular component is transformed from one
state into another one. Here, we focus on pathways that
transform an unmodified receptor monomer into a recep-
tor associated with Sos under steady-state conditions.

There are nine distinct reaction paths for Sos recruit-
ment in the model ofKholodenko et al. (1999). Fig. 6A
illustrates the top three, which account for 70% of Sos
recruited at steady-state. In contrast, there are a variety
of paths in the network model, with the 50 most preva-
lent paths accounting only for 45% of Sos recruitment.

All of the paths in the network model can be grouped
into nine classes of reaction paths, each of which corre-
sponds to an individual path in the model ofKholodenko
et al. (1999). Fig. 6B illustrates the most prevalent paths
within one such class, in which recruitment of Grb2 and
Sos is sequential.

According to both models, at steady-state, about a
third of Sos is activated via sequential recruitment of
Grb2 and Sos. Parameters of the models are such that the
amount of free Grb2–Sos complex in the cytosol is less
than the amount of free cytosolic Grb2, which explains
why simultaneous recruitment of Grb2 and Sos in com-
plex, the second most prevalent route to Sos activation,
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ig. 6. Prevalent reaction sequences leading to Sos recruitment at stea
o a receptor associated with Sos. The first two steps are EGF–EGFR
eceptor tyrosine residue; different receptor phosphoforms are generate
ndicate the frequencies of the paths. Results for both models are give
hemically distinct paths within the most prominent class of pathways
eceptor is phosphorylated. The first three steps (EGF–EGFR binding, r
ll the paths illustrated in panel B lead to formation of Grb2–Sos comple
oth dimers and monomers and different phosphoforms of receptors. P

eading to Sos recruitment, as derived from the network model. Results
hich is not involved in Sos activation.
dy-state. (A) Top three classes of reaction paths leading from a naked receptor
binding and receptor dimerization. The third step is phosphorylation of a

d, illustrated in Box 2 ofFig. 1A. After these steps, paths diverge. Percentages
n, with results derived from the pathway-like model in parentheses. (B) Top
leading to Sos recruitment, starting from a dimer in which pY1068 of one
eceptor dimerization, and tyrosine phosphorylation) are not shown. Although
x at pY1068, the receptor species involved differ significantly—they include

ercentages indicate the frequencies of these specific paths among all paths
do not take into account modifications of the receptor tyrosine residue Y992,
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is less common than sequential recruitment of Grb2 and
Sos to Y1068. These two classes of paths are responsible
for about 50% of the Sos recruited at steady-state. The
third most prevalent class of paths is binding of the com-
plex ShcP–Grb2–Sos to Y1148/73. Although the amount
of ShcP–Grb2–Sos complexes is high at steady-state, the
prevalence of this pathway is supressed by the low affin-
ity of the complex for EGFR.

As illustrated inFig. 6B, within each class of Sos
activation pathways there is molecular diversity. The
network model allows one to identify the individual
chemical species involved in these reaction paths. As can
be seen, sequences that recruit Sos may involve receptor
monomers.

Gong and Zhao (2003)have also analyzed the relative
contributions of the Shc-dependent and Shc-independent
pathways for Sos recruitment and subsequent Ras activa-
tion using the model ofSchoeberl et al. (2002), and they
find that over the full time course of receptor stimulation
there is a significant preference for the Shc-dependent
pathway. We find for both the pathway-like and the net-
work models that the two pathways make nearly equal
contributions to Sos activation at steady-state. The dif-
ferences between our results and those ofGong and Zhao
(2003) might arise from the differences between the
model ofKholodenko et al. (1999)and that ofSchoeberl
et al. (2002), such as the assumption that GAP stabilizes
the formation of dimers in the latter model. In any event,
the results of Section3.3 demonstrate that pathway
analysis is not always a reliable indicator of the effect
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problems hinder modeling of systems that involve multi-
state molecules and multicomponent complexes: track-
ing the combinatorially large number of possible molec-
ular species, and defining their properties. We address
these problems with a rule-based modeling approach,
implemented in software called BioNetGen (Blinov et
al., 2004; Faeder et al., 2005a). Computer-aided eval-
uation of rules, specified on the basis of knowledge of
protein interactions, generates a reaction network, with
the individual chemical species, and reactions in the net-
work defined automatically.

Here, we have presented a specific application of
the rule-based approach for developing predictive mod-
els of signaling systems without ignoring combinatorial
complexity. As demonstrated, a rule-based model can
be derived from the same type of experimental data
that has been used to construct models via the conven-
tional manual approach, which is capable of accounting
for only a fraction of the species that are potentially
generated in a signaling system. In contrast, in the rule-
based approach, the full spectrum of protein complexes
and phosphoforms implied by specified molecular inter-
actions and activities of the domains of the signaling
molecules is considered. Thus, for example, covalent
modification of each of the tyrosines of EGFR included
in the network model presented here can be monitored
independently. If each domain of a protein has modu-
lar binding or enzymatic activity, a protein consisting of
several domains and/or sites of covalent modifications
may undergo many possible reactions. Multiple branch
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of blocking the activity of a signaling protein, which
the case of Shc results in a large increase in the lev
steady-state Sos activation. Thus, when Shc is pr
it may carry a major portion of the Sos activation fl
but its removal, at least in the case of the mode
Kholodenko et al. (1999), permits the Shc-independe
pathway to carry a substantially larger activa
flux.

4. Discussion

The problem of combinatorial complexity has b
noted by a number of researchers (Husi et al., 2000
Arkin, 2001; Endy and Brent, 2001;Pawson and Nas
2003). Nevertheless, very few modelers have attem
to account for the full potential molecular diversity
signaling systems, although models incorporating d
at the submolecular level have been developed (Wofsy
et al., 1992; Morton-Firth and Bray, 1998; Levche
et al., 2000; Goldstein et al., 2002; Faeder et al., 2
Shimizu et al., 2003; Li et al., 2004; Haugh et al., 20),
including some that account for hundreds of species.
t

points arise at each signaling step and lead to diffe
possible signaling scenarios. All of these branch po
can be considered in a rule-based model, becaus
number of domain interactions of interest is often sm
which allows corresponding rules (but not equations
be specified manually.

Interactions among proteins in the network mo
considered in this paper are inherited from the in
actions considered in the pathway-like model
Kholodenko et al. (1999). The pathway-like model re
resents early events in EGFR signaling as a serie
consecutive signaling events and closely mirrors
hierarchical ordering of steps in the signaling casc
initiated by EGF stimulation. Variables in the mo
can be associated with experimental observables
reactions in the model correspond to steps in the
naling cascade. The model includes only 25 chem
species and 47 reactions because it is based on a n
of assumptions that limit molecular diversity a prio.
These assumptions include simultaneous phospho
tion of all tyrosine residues in a dimer (i.e. lumping all
tyrosines together), no dissociation of phosphoryl
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receptor dimers, and competitive binding of adapter pro-
teins to a receptor dimer. These assumptions may or may
not be appropriate under all experimental conditions. We
would like to reduce such limiting assumptions to a min-
imum even though we recognize that not all possible
species are important under all conditions. The reason
is that we cannot identify the critical species through
intuition, as the importance of species depends on net-
work dynamics and connectivity. Input to a model in
the form of known molecular interactions and activities
seems preferable to input in the form of an intuitively
selected set of chemical species and reactions.

The network model, without adjustment of parame-
ter values, reproduces the predictions of the pathway-
like model that were compared with experimental data
by Kholodenko et al. (1999)(Fig. 2). However, other
predictions of the two models differ, and the network
model yields new predictions that are unavailable from
the pathway-like model. For example, in the network
model, individual tyrosines of EGFR are considered.
Thus, this model can be used to predict the dynamics
of phosphorylation for each tyrosine, and we find that
different tyrosines have different temporal patterns of
phosphorylation (Fig. 3A). The results ofFig. 4 sug-
gest three types of experiments that could be performed
to determine which model better represents early events
in EGFR signaling and obtain mechanistic insights. For
example, the pathway-like model predicts that mutations
of EGFR and Shc tyrosines should have different effects,
whereas the network model predicts that these mutations
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the phosphorylation sites of EGFR independently, which
creates large classes of reactions that can be character-
ized by the same rate constant. This lumping of rate
constants in the network model is motivated by the modu-
larity of protein domains (seeHlavacek et al., 2003), and
it can be tested and refined as more experimental data
becomes available about the effects of protein–protein
interactions. There is, however, already some evidence
that a large number of proteins can bind independently to
the relatively small cytoplasmic portion of a membrane-
bound receptor, such as EGFR (Jiang and Sorkin, 2002)
or CD19 (Brooks et al., 2004).

The simple structure of the pathway-like model, on
the other hand, comes at the cost of introducing complex
and often hidden correlations among model parameters
and variables. For example, the assumption that only
unmodified dimers of EGFR can dissociate leads to a
correlation between adapter protein expression levels
and ligand–receptor binding (Fig. 4B), and masks the
effects of serial engagement and kinetic proofreading on
EGFR–Shc association predicted by the network model
(Fig. 4C).

The pathway-like and network models provide differ-
ent microscopic pictures of EGFR signaling. As might be
expected, the network model predicts greater molecular
diversity (Figs. 3B–D, 5, and 6). For example, multiple
adapter proteins are predicted to associate with the same
receptor dimer, which is not allowed in the pathway-like
model but consistent with the results ofJiang and Sorkin
(2002). Also, receptor monomers are predicted to con-
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should have identical effects (Fig. 4A). Interestingly
both models make the surprising prediction that e
ination of Shc-mediated recruitment of Sos will hav
positive effect on overall Sos recruitment at steady-s
This result is obtained because phosphorylated Shc
models, consistent with molecular dynamics simulat
(Suenaga et al., 2004), binds EGFR with low affinity an
sequesters Sos in the cytosol, inhibiting Sos activa
This finding appears to contradict earlier experime
results (Sasaoka et al., 1994) and probably merits fu
ther experimental investigation.

Kinetic rate constants in the network model are
same as those in the pathway-like model with the ex
tion of a scale factor, which was introduced for stoich
metric reasons (cf.Tables 1 and 2andKholodenko et al.
1999). For example, the rate constant for Grb2 bind
to phosphorylated receptor dimers in the pathway
model is twice the value of the rate constant for bind
of the SH2 domain of Grb2 to receptor phosphotyro
Y1068 in the network model. To avoid introducing ad
tional rate parameters when constructing the netw
model, we made the assumption that proteins bin
tribute to Sos recruitment, which again is not allow
in the pathway-like model. Spatial spread of rece
phosphorylation in response to localized EGF stim
tion (Verveer et al., 2000; Reynolds et al., 2003) might
be explained by the involvement of receptor monom
in signaling. Also consistent with predictions of the n
work model are proteomic assays indicating that EG
is a member of a large number of heterogeneous
tein complexes that arise during signaling (Blagoev e
al., 2003, 2004). At this time, predictions about mole
ular diversity are difficult to test, but such predictio
will become more important with advances in meth
for monitoring protein modifications and interactio
(Aebersold and Mann, 2003; Mann and Jensen, 2
Meyer and Teruel, 2003).
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