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ABSTRACT: Effects of intrinsic structural and conformational properties on segmental orientation in 
uniaxially deformed copolymers are considered. Depedence of segmental orientation on equilibrium values 
of bond angles, torsional states, and probability distribution of rotameric states is studied. Calculations are 
carried out for chains with independent as well as pairwise interdependent rotameric states for neighboring 
bonds using the matrix generation technique of rotational isomeric state formalism. Results invite attention 
to the importance of specific energy and geometry parameters in prescribing the level of molecular orientation 
in the two diierent components A and B of AB type copolymers. Results are interpreted with reference to 
polarized Fourier transform infrared spectroscopy measurements in which the orientation of transition moment 
vectors is detected. The consequences of certain assumptions in data interpretation such as the choice of 
cylindrically symmetric reference axes along the chain contour are pointed out. The orientations of vectors 
along the backbone exhibit strong nonlinear dependence on the conformational characteristics of the component 
A or B to which they are appended. Thus, the bond vectors of the two monomeric units may exhibit quite 
distinct orientations, arising only from slight perturbation in bond angles of one of the units. Vectors 
perpendicular to chain backbone were less sensitive to monomeric structure. Calculations carried out 
independently by Monte Carlo simulations showed that this method yields an adequate qualitative description 
of the orientational behavior of chain segments while precise quantitative determination requires the use of 
the exact matrix generation technique. 

I. Introduction 
With the advance of experimental methods for mea- 

suring molecular orientation, such as polarized Fourier 
transform infrared1 (FTIR) and deuterium nuclear mag- 
netic resonance2l3 (2H-NMR) spectroscopy, more attention 
is being invited to the role of structural and conformational 
characteristics of polymer chains in prescribing the 
observed behavior.4 The analysis of segmental orientation 
with these techniques, in networks and bulk polymers 
above the glass transition temperature, leads to informa- 
tion that is commensurate, in precision and in detail, with 
results of calculations based on the rotational isomeric 
state (RIS) model of chain statistics.5 Recent comparison 
of FTIR measurements on well-defined model poly- 
(dimethylsiloxane) (PDMS) networks with RIS calcula- 
tions,' for example, shows satisfactory agreement between 
experiment and theory. These measurements and cal- 
culations are also in reasonable accord with the 2H-NMR 
data of Deloche et  a l . 2 9 e 9 7  on similar PDMS networks. 
Further progress in FTIR spectroscopy by the introduction 
of modulation techniques8 renders this experimental field 
even more challenging. The careful analysis of segmental 
orientation in elastomeric networks, in particular, leads 
to indispensable information in understanding the physics 
of dense polymeric media. 

Both the FTIR and the 2H-NMR techniques directly 
measure the Orientation of specific labels on a chain relative 
to a laboratory-fixed axis. The orientation is suitably 
induced by stretching the specimen uniaxially. The sample 
may be an elastomeric network or an un-cross-linked 
sample. In the case of a network, segmental orientation 
at  equilibrium may be obtained. Furthermore, the system 
may be swollen with a suitable diluent to eliminate local 
intermolecular orientational correlations.9 In this way, 
single chain configurational contributions to segmental 
orientation may be measured and compared with predic- 
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tions of statistical theories. In un-cross-linked samples, 
orientation is induced by deforming the sample macro- 
scopically a t  a rate sufficiently high to prevent relaxation. 

There has been noteworthy progress in this field during 
recent years,l&l6 especially in the field of engineering 
polymers and blends. A recent infrared study13 of 
orientation and chain relaxation of amorphous homopoly- 
mers or miscible polymer blends stretched above their 
glass-transition temperature indicates that local forces 
between neighboring segments play a major role in the 
observed behavior. Local forces may be either of intrachain 
or interchain origin. Intrachain forces arise from the 
intrinsic chain stiffness or reduced flexibility along specific 
directions, depending on the particular chain geometry 
and conformational energetics, whereas interchain inter- 
actions impose spatial restrictions on the reorientation 
motion of the chain segments, becoming stronger in denser 
media. An interesting feature which emerges from ex- 
perimental studies is, however, the different levels of 
orientation observed for the components of a given blend. 
This behavior is valid both in compatible amorphous 
blends, in which favorable intermolecular interactions 
might induce some orientational coupling between the 
Components, and in blends where interchain interactions 
are asserted to be nonexistent.lS Examples are the blends 
of polystyrene-poly(xy1ene ether),17 polystyrene-poly- 
(vinyl methyl ether) ,18 poly(methy1 methacrylate)-co-poly- 
(styrene-co-a~rylonitrile).~~ The fact that the different 
components exhibit different orientation8 irrespective of 
intermolecular coupling, if any, suggests that the intrinsic 
structural and conformational properties of the individual 
chains might be predominant in controlling the observed 
orientations. This argument is further strengthened by 
the experimental observation of different orientations in 
the two different structural units of polystyrene-poly- 
(vinyl methyl ether) copolymer chains.s 

The specific purpose of the present communication is 
to emphasize the importance of the role of intrinsic 
structural and conformational characteristics of the single 
polymer chain in segmental orientation. For this purpose, 
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all configurations of the chain. In FTIR experiments, the 
measured dichroism directly gives S(x)  as described in 
the following section. Similarly in 2H-NMR experiments, 
measured splitting leads3 to S(x). 

In addition to the orientation of the label u, the 
orientation of another axis, called the "molecular axis" 
embedded into a portion of the chain may be of interest. 
An example to such a molecular axis is shown in Figure 
lb, by the dashed line [ which forms an angle a and u and 
an angle (9 with the laboratory fixed axis A. In general, 
the chain segment characterizing the molecular axis [ is 
chosen to include portions of the chain ranging from a 
single bond to a few monomeric units, depending on the 
vectorial quantity probed by the specific experimental 
technique. In Figure lb, the chain segment consists of 
two bonds containing the label u. The orientation of the 
chain segment or equivalently of the molecular axis is 
expressed by the orientation function S(0) defined ac- 
cording to eq 1 with t9 replacing x. 

b. Segmental Orientation in Uniaxially Deformed 
Networks. In statistical calculations according to the 
RIS scheme and the phantom network theory of elasticity, 
the orientation S(x)  of the vector u relative to the direction 
of stretch is obtained from the expression 

(2) 

where X is the extension ratio defined as the ratio of the 
final macroscopic length of the network under uniaxial 
extension to its length in the reference state, f is the 
junction functionality, and DO is the configurational factor 
defined by 

(3) 

Here, (P is the angle between u and the chain end-bend 
vector r. The subscript zero indicates that the averaging 
is performed for chains in the unconstrained state. The 
first molecular approach to the problem of segmental 
orientation in real chains, not necessarily conforming with 
the freely jointed chain model, is the pioneering work of 
Nagai,'g which was further developed by Flory.6 The 
rotational isomeric state (RIS) approximation of chain 
statistics is adopted in these formulations, leading to an 
expression for S in the form of aaeries expansion containing 
various order moments of the chain end-bend vector and 
related trigonometric variables. For sufficiently long 
chains and small deformations, the first term of the series 
represented by eq 2 is adequate. For finite chains subject 
to large deformations, the reader is referred to a recent 
extension20 of the formulation of Nagai and Flory in which 
explicit expression including higher order terms is pre- 
sented. 

For a vector lying along the backbone of a sufficiently 
long chain, the front factor DO equates to 1/5N, where N 
is the number of Kuhn segments in the chain. For network 
chains of n bonds, within the validity of the RIS scheme, 
eq 2 represents the exact first term, linear in n-l, replacing 
the front factor 1/5N of the Kuhn approximation. The 
moments (r2)oand (r2cos2@)~ineq3arereadilycalculated 
with the RIS matrix generation technique whereas the 
higher order momenta appearing in the serial expansion20 
for S(x) are estimated by Monte Carlo (MC) chain 
generation. 

c. Description of Orientation in FTIR Experi- 
ments. Fourier transform infrared experimenta measure 
the absorption bands associated with transition moments 
having a definite orientation with respect to the chain 
backbone. The vector u of Figure 1 which is rigidly affixed 

S ( X )  = Do(1- 2/f)(X2 - X-') 

Do = (3(? cos2 @)d(r2 )o -  1)/10 
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Figure 1. (a) Orientation of the investigated vector u with respect 
to the reference direction A. In ETIR experiments of uniaxially 
deformed samples, u represents the transition moment vector, 
and A is the stretch direction. The angle between u and A is 
shown as x.  (b) Angular position 9 of the chain-embedded 
molecular axis l, with respect to A. u makes an angle a with the 
molecular axis 4. Here the direction of 6 is taken along that of 
the vector connecting backbone atoms i and i + 2. (c) Local 
coordinate system of axes I ,?, and j' defining the position of u 
with respect to the chain backbone. The q-axis is chosen in the 
plane of the molecular axis I: and the laboratory fixed axis, A. 
The completm the orthogonal system. The azimuthal angle 
a and the polar angle q, define the orientation of u with respect 
to the system. 

copolymeric chains composed of monomeric units which 
poesess different geometrical and conformational character 
will be considered, and segmental orientation simulta- 
neously occurring in either component of the chain will be 
analyzed. The plan of the paper is as follows: In part 11, 
the meaaure of segmental orientation is defied. The 
conventional treatment of data, such as those from infrared 
or NMR experiments, is briefly outlined. In part 111, 
calculation of segmental orientation by the matrix gen- 
eration technique based on rotational isomeric state (RIS) 
formalism and by Monte Carlo simulations is described. 
In part IV, results of calculations for AB type alternating 
copolymers are reported, showing the importance of local 
conformational and geometric features on segmental 
orientation. Concluding remarks are presented in part V. 

11. Description of Segmental Orientation and 
Interpretation in Terms of FTIR Experiments 

a. Definition of Segmental Orientation. A vector 
u rigidly affixed to a bond of a polymer chain is shown in 
Figure la. The dashed line identified as A and making an 
angle x with u representa a laboratory-fiid axis. In 
uniaxial deformation, A coincides with the direction of 
the applied load which may be tensile or compressive. 
The orientation of u with respect to A is expressed in 
terms of the orientation function S(x),  which is given by 
the second Legendre polynomial P~(COS x) as 

The angular brackets refer to the ensemble averaging over 



Macromolecules, Vol. 27, No. 7, 1994 Segmental Orientation in Deformed Chains 1705 

to a chain bond is assumed to be the transition moment 
vector. The relative orientation of u with respect to the 
chain backbone, which is along the axis 4, is defined by the 
azimuthal angle a and the polar angle cp, with respect to 
the coordinate system shown in Figure IC. In this figure, 
the I) and (-axes are chosen within a plane whose normal 
is the molecular axis, (. 

For incident radiation polarized along A, the measured 
absorbance due to the particular orientation of u may be 
resolved into a component parallel, all, and another 
perpendicular, a l ,  to A as 

(4) all = luI2 cos2 x 

and 

a, = (1/2)[uI2 sin2 x ( 5 )  

The factor of 1/2 in eq 5 results from averaging of all 
rotations of u about the stretch direction A, which 
constitutes an axis of cylindrical symmetry. The dichroic 
ratio R measured in infrared studies is defined as 

R = alh(x) sin x dx/J, ,h(x) sin x dx (6) 

where h(x) represents the distribution of the angle x. 
Substituting eqs 4 and 5 in eq 6 and using eq 1 leads to 

R - 1  S(x) =R+2 (7) 

On the other hand, the orientation of the local chain axis 
5 with respect to the direction of stretch is given by 

2 R - l  
3 cos2 a - 1 R  + 2 

S(9) = 

This equation is obtained by expressing all and a l  in terms 
of a, 9, and cp, averaging over cp by assuming cylindrical 
symmetry about the axis and finally integrating over all 
0 directions using a distribution function f(9). Equation 
8 may be rearranged using eq 7 as 

S(x) = S(9) S(a) (9) 

where S(a) = (1/2)(3 cos2 a -  1). This form was first given 
by Fraser21 and applied to orientation in deformed 
polymers by Read and Stein.22 In the latter work, the 
angle 9 has been referred to as the angle between the 
stretch direction and the “segments” of the chains. That 
the directions of these segments should be the axes of 
cylindrical symmetry for the associated transition mo- 
ments measured in the experiments was not stated 
explicitly. 

Equation 9 shows that the dichroic ratio measurements 
depend (i) on the particular orientation of the transition 
moment vectors relative to the local molecular axis, if such 
an axis of cylindrical symmetry can be defined on a local 
scale, and (ii) on the mean-square projection of that axis 
along the stretch direction. However, the anisotropy of 
chain structure and of rotational isomeric states might 
invalidate the adoption of an axis of cylindrical symmetry 
on a local scale. Then, the integration over the polar angle 
(p should be carried out by adopting a joint distribution 
function f(t9,cp) for the coupled change of the two degrees 
of freedom. Thus, in a given chain, the different segments 
along the backbone, possessing different geometry and 
conformational characteristics, may lead to different 
dichroic ratio values, even if the corresponding transition 

R A  

Figure 2. Schematic representation of a portion of an alterna- 
ting copolymer with two types of monomeric unite -[ACl- and 
-[BCl-, and substituenta RA and RB attached on atoms A and 
B, respectively. All bonds are of equal length. The supplemental 
bond angles are denoted as 8, BA, and OB depending on the type, 
C, A, or B, of the backbone atom. Bond torsional rotations are 
indicated by 4~ for bonds CA and AC and by 4~ for bonds CB 
and BC. 

moments are at  the same fixed angular position with 
respect to the backbone. 

From the preceding arguments the following important 
conclusion may be drawn: The l d  structural and 
conformational characteristics ofthe chain play a major 
role in prescribing the molecular orientation, and a 
quantitative estimation of the latter requires consideration 
of the detailed structure of chain segments. This will be 
the subject of the succeeding section. 

111. Calculation of Segmental Orientation in 
Copolymers 

The configurational averages (r2 cos2 iP)o  and (r2)0 
appearing in the expression (eq 3) for the configurational 
factor DO have been calculated by both matrix generation 
technique based on RIS formalism and MC simulations. 

(a) Model Copolymer. The copolymer is assumed to 
be composed of two types of monomeric units A and B, 
comprising each two backbone bonds, with different 
substituents RA and RB attached on alternating backbone 
atoms. Backbone bonds flanking atom A are indicated as 
CA and AC, those about B are CB and BC, all of them 
being of equal length lo. The supplemental bond angles 
are denoted as 8, OA, and OB depending on the type, C, A, 
or B, respectively, of the backbone atom, as shown in Figure 
2. Bond torsional rotations are indicated by the variable 
C$A for bonds CA and AC, and by C$B for bonds CB and BC. 
Three discrete rotational isomeric states, centered about 
the conventional trans (t),gauche+ (g+), andgauche- (g-) 
states are accessible to backbone bonds. Such a geometric 
representation conforms with polystyrenepoly(methy1 
methacrylate) copolymers, for example. Calculations are 
carried out for independent as well as pairwise interde- 
pendent rotational states for neighboring bonds along the 
chain. 

The vector u, whose orientation is of interest, is chosen 
to be either along the backbone bonds (ull), or perpen- 
dicular to the line connecting two successive C atoms lying 
in the plane defined by the two bonds between those C 
atoms (uJ. The unit vectors Un along bonds CA and AC 
are indicated as ullA and those alon? CB and BC as UIIB. 
Likewise, superscripts A and B are appended to uL in 
order to indicate the monomericunit to which they belong. 
Thus, two sets of vectors (i) ullA and ullB and (ii) u ~ A  and 
uLB are analyzed. Results are obtained by both matrix 
generation method based on RIS formalism and Monte 
Carlo chain generation. The two seta (i) and (ii) exhibit 
substantially distinctD0 values, the former being positively 
oriented with respect to r and the latter exhibiting negative 
orientation (negative DO or 5’1, as might be intuitively 
expected from the identity Cj(COS2 ai) = 1 where 9i is the 
angle between u and the ith axis of a Cartesian laboratory 
fixed frame. 

In computations, fluctuations of amplitude *40° are 
allowed in the location of isomeric minima as well as in 
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Similarly, the mean-squared end-to-end distance (r2)o 
is calculated according to the matrix generation method 
using5 

the bond angles, and the effecta of geometry and energy 
parameters on the orientation of vectors UII and uL  rigidly 
embedded in either of the monomeric units A or B are 
studied. 
(b) Mathematical Methods for Evaluating DO. 

Inasmuch as the segmental orientation may be written in 
terms of eq 2 as a f i t  approximation to real chain behavior, 
the calculation of S for a given extension ratio reduces to 
that of the front factor DO, as the momenta ( r2  cos2 @)o 
and ( r2)o in eq 3. Precise evaluation of these moments is 
critically important, because only slight departures from 
isotropic behavior ( r2  cos2 ip)0/(r2)o = (cos2 i p )  = 1/3 are 
responsible for the observed behavior. Accordingly, the 
matrix generation method which yields exact results for 
( r2  cos2 @)o and (r2)o are adopted. On the other hand, 
part of the calculations are repeated using Monte Carlo 
chain generation method in order to assess the applicability 
of this approximate method which would become indis- 
pensable in evaluating higher order moments. A brief 
recapitulation of both methods is presented below. The 
reader is referred to original references for further details 
of the mathematical methods. 

Matrix Generation Technique. The moment ( r2 cos2 
@)o associated with the orientation of a reference vector 
affixed to the ith unit along the chain is c a l ~ u l a t e d ~ l ~ ~  by 
the RIS scheme using 

i-1 n 

( r2  cos' = J * ( F  3,')3,( 3,')JZ-l (lo) 
= 1  k= i+ l  

where Z is the configurational partition function, J* E 
row(l,O,O, ...), J E col( l ,l ,l ,  ... ), 3i is defied for thesequence 
of four consecutive bonds as 

Here, F,X where X = CA, AC, CB, and BC is evaluated 
from 

where E26 is identity matrix of order 26, Qp is the direct 
product, Ui is the statistical weight matrix which is taken 
to be of the form 

and llFiXll is the matrix composed of the diagonal arrays 
of the generating matrix Fi of states trans (t), gauche+ 
(g+), and gauche- (g-) for the particular bond X. Fj is 
given by eq 9 of ref 23, in which mi is replaced by u1lA, q B ,  
uLA, or uLB, depending on the investigated vector. ax 
refers to the fiist-order interaction parameter associated 
with the g* state of bond X; w x  is the second-order 
interaction parameter corresponding to g'g'. We note 
that both WCB and WCA give rise to the interaction of two 
C atoms separated by four bonds and therefore will be 
taken to be equal to each other. WBC and WAC describe the 
interactions between successive A and B atoms, respec- 
tively. wx is set equal to 1 in the case of independent 
bonds. In the extreme case of infinitely large repulsion, 
w x  = 0. 

i=l 

where 

CA AC CB BC si = si si si si 

with 

and llGFll is the diagonal array of the generator matrices 
Gi of states trans (t), gauche+ (g+), and gauche- (g-) for 
the particular bond X. The generator matrix GiX has the 
familiar form given in ref 5. 

Monte Carlo Generation. In MC chain generation 
bond dihedral angles are assigned on the basis of the 
probability distributions of independent rotational states 
for each bond. From symmetry considerations, the 
equilibrium probabilities of bond rotational states t, g+, 
and g- obey the relationships 

For independent bonds, the total number of equilibrium 
probabilities to specify the configurational distribution of 
rotameric states in the copolymer reduces from 12 to 4, 
using the two linearly independent identities pca(t) + PCB- 

PCB(K) = 1 and PCA(t) pCA(g+) PCA(C) = 1, in 
addition to eq 17. The set of variables PCB(t), pcA(t), 
pc~(g-1, and PCB(C) will be varied in the calculations. 

The following steps are performed for each generated 
chain: (i) the chain vector r between terminal atoms is 
calculated. (ii) The angles @,A and @.iB between the vector 
rand the transition moment vectors uPand up, appended 
to the ith unit of type A and B, respectively, is found from 
@: = COS-'[(U~%)/(U~~)]. u t  and r are the magnitudes 
of Ujx and r, respectively. The dot denotes the scalar 
product and x stands for either A or B. (iii) the arithmetic 
average cos' 9, over all units of a pdicular type x is cal- 
culated for the generated chain, the terminal three units 
at both ends being excluded. (iv) the values r2 = (Pr) and 
rz cos' ax are recorded. (v) Steps i-iv are repeated for 106 
Monte Carlo chains and the averages ( r 2 ) o  and 
( r2  cos2 aX)o over all chains are inserted into eq 3, to 
evaluate DOX for X = CA and CB. 

IV. Results of Calculations 
Influence of Bond Angles. For an assessment of the 

influence of bond angles on segmental orientation, 6~ has 
been varied while 6~ and 6 were held fixed at  the tetrahedral 
value. Calculations were performed for the two casea of 
(i) rotationally independent and (ii) pairwise interdepen- 
dent bonds, assuming identical length and energy para- 
meters for units A and B. In the case of interdependent 
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Figure 3. Configurational factors DOA and DOB obtained for unit 
vectors u A and ulB along backbone bonds, as a function of $. 
The solid and dashed curves are calculated for ullA and u , 
respectively, using a matrix multiplication method of the R y" S 
scheme for chains with independent bonds. PCB(t) = PCA( t )  = 
0.48 and pc~(g) = pc~(g-1 = 0.26, OA 109.5', and $(t) = 0' and 
$(g*) = f120° for all bonds. The empty and filled circles 
represent the average over lo6 Monte Carlo chains. Bond angles 
are the only parameters differing in the two monomeric units of 
the copolymer, as indicated in the abscissa. 

rotational states, both favorable and unfavorable second- 
order interactions have been considered. 

The results can be summarized as follows: First, the 
orientation of UII in the two types of monomers have been 
analyzed for chains with rotationally independent bonds. 
In the particular case of 6A = OB the transition moments 
with a given orientation with respect to the local chain- 
embedded frame, appended to atoms A and B, naturally 
exhibit same segmental orientation, manifested by iden- 
tical values DOA = DOB. Figure 3 displays the configura- 
tional factors DOA and DOB obtained from both MC 
simulations and matrix generation for independent bond 
rotations, using ulA and u,lB. The abscissa in the figure 

and $. Simulation results are presented by the empty 
and filled circles for DOA and DOB, respectively, and the 
labeled curves which fall generally below the MC results 
are calculated by the RIS matrix multiplication scheme. 
The results are obtained for PCB(t)  = PCA(t )  = 0.48 and 
pc~tg-1 = pc~(g -1  = 0.26, with the torsional states d(t) = 
0' and d(g*) f120° for all bonds. We note that for 
polymers composed of monosubstituted monomers, chain 
asymmetry implies distinct probabilities for the g+ and g 
states of a given bond, with a given chirality. By adopting 
equal probabilities for those two states, we implicitly 
consider the average statistical behavior of atactic units, 
with substituents attached in either 1 or d positions. 

values do 
not perturb the orientation of ullA as evidenced from the 
approximately horizontal curve obtained for DOA while 
DOB exhibits some smooth increase with decreasing OB. 
The insensitivity Of  DOA to OB is expected since the energy 
and length parameters of unit A are kept fixed in obtaining 
Figure 3. It should be pointed out, that the adoption of 
6s = 50°, which isa reasonable equilibrium value for units 
with large substituents such as Si-0-Si bond angles in 
poly(dimethylsiloxane), leads to a 50% increase in the 
configurational factor, DO, from -0.0052 to 0.010, which 
is directly reflected upon the orientation function S. Thus, 
in spite of the identical conformational probability dis- 
tribution of the isomeric states of the two monomeric units, 
and the inherent constraints imposed by chain connec- 
tivity, the bond vectors of the two monomeric units exhibit 
quite distinct orientations, this arising only from a slight 
perturbation in the bond angles of one of the units. 

Calculations repeated for pairwise interdependent bonds 
but not shown in Figure 3 demonstrated the following: If 

represents the dif 1 erence between the two bond angles OA 

We observe in Figure 3 that the changes in 

O'Oo2 0 7 
no -0.004 

-0.006 

-O'Oo8 -0.01 w 
-30 -20 -10 0 10 20 30 

0,- 0, 
Figure 4. Configurational factors DOA and DOB obtained for uLA 
and uLB, using the same model and parameters as in Figure 3. 
uIX is the unit vector perpendicular to the plane defined by 
bonds CX and XC, with X = A or B. See legend to Figure 3. 

both A-A and B-B pairs are subject to unfavorable second- 
order interactions of the same strength (WBC = WAC < l), 
while C-C pairs do not experience any second-order 
interaction (WCA = WCB = l), the deviation between DOA 
and DOB is enhanced. In the opposite case of attractive 
second-order interactions (OBC = WAC > l), the difference 
between DOA and DOB diminishes. 

The dependence of u l A  and u l B  on 6A - OB is shown in 
Figure 4 for a chain with independent rotational states. 
The curves show results of exact calculations. The 
orientational behavior of ulA and ulB is markedly 
different than that for UII. In contrast to 1111, the orientations 
of the perpendicular vectors ulA  and ulB do not differ 
much from each other as dB is varied. Yet, both ulA and 
ulB exhibit a strong dependence on 8A - 6B as observed 
from the figure. The empty and filled circles shown in the 
figure represent results of MC simulations. The agreement 
between analytical curves and MC results is poor, which 
demonstrates the inadequacy of the MC method for 
calculating the orientation of uL. 

The effect of bond interdependence on the orientation 
of ulA and ulB  is shown in Figure 5. In part a of the 
figure, backbone atoms A are strongly attracted (OBC = 0), 
whereas a strong repulsion is imposed between atoms B 
of the backbone (WAC = 10). No second-order interaction 
occurs between C-C pairs. The opposite situation (WBC = 
10, WAC = 0) applies to Figure 5b). Incorporation of 
interactions between backbone atoms results in strong 
perturbations in the orientation of ulB, especially for 
positive values of OA - OB. It iS to be noted that the 
configurational factor for ulB may take large positive 
values (Figure 5a) or negative values (Figure 5b), depending 
on the type of interaction between backbone bonds. 

Influence of Rotational States. Here we turn our 
attention to the role of the location of the rotationalminima 
in prescribing segmental orientation. For this purpose, 
the minimum energy dihedral angle representative of the 
gauche* state is assumed to deviate within i40° from the 
perfect staggered position given by f120°. All bond angles 
are constrained to tetrahedral values. The probability 
distributions of rotameric states of the two types of 
monomeric units are the same, although g* states are now 
assumed in both units to be more favorable. This 
assumption is adopted for a clear visualization of the effect 
of angular distortions in the g* states. 

Figure 6 displays the configurational factors obtained 
WithPC&) = pcA(t) = 0.2 =dpcA(g) = p c ~ ( g )  = 0.4, for 
the vectors UII  for a chain with independent bonds. The 
curves are obtained from matrix generation calculations 
and circles are from MC simulations. The rotameric states 
of bonds CA and AC are held fixed a t  the #A(trans) = Oo, 
&(gauche*) = f120°, while the gauche states of bonds 
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Figure 8. Configurational fadors DOA and Doe obtained for uLA 
and u lB by RIS scheme, using the same energy and length 
parameters as in Figure 3, except for the second-order interaction 
parameters: (a) WAC = 10, WBC = 0; (b) WAC = 0, wx = 10. See 
legend to Figure 3. 
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Figure 6. Influence of the location of the rotational isomeric 
states on the configurational fadors DOA and DOB associated with zA and jB for p+) = 0.2 and p c ~ ( g )  = pa@) = 0.4. 

1 secon -order mteraction parameters are taken as unity. Solid 
and dashed curves represent results of exact calculations for units 
A and B, respectively. Empty and fiied circles are obtained by 
MC simulations by averaging over 106 MC chains. The rotameric 
states of the bonds in unit A are held fiied at the values 4 ~ -  
(trans) = Oo, &&auche*) = f120°, while the gauche states of 
bonds in unit B are varied, as shown in the abscissa. 

BC and CB are varied, as shown in the abscissa. DOB 
exhibits a relatively weak perturbation, due to the changes 
in 4 ~ ,  but the changes in DOA are more pronounced. A 
shift of f20°  in the location of the g* state of BC and CB 
bonds, for instance, leads to about 1 order of magnitude 
difference between the segmental orientations of the two 
units. In fact, DOB = 0.0035 and DOA - 0.0005 when $A@*) 
= f140°, whereas a t  &dg*) = 120' both& andDoAeqUate 
to 0.0022. An interesting observation is the highly 
nonlinear response of the configurational factors to the 
changes in the location of isomeric minima. 

In Figure 7, the dependence of the configurational factors 
for uLA and uLB on the changes in 4~ is shown. The curve 
represents results of matrix generation calculations and 
the circles are from MC simulations. Matrix generation 
calculations lead to identical results for the orientation of 
ulAand uLBas identified by the single curve in the figure. 
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Figure 7. Influence of rotational isomeric states on the con- 
figurational factors DOA and Dm obtained for uLA and ulB, ying 
the same parameters as in Figure 6. Exact results for u t a  A 
and B are shown by the same curve. 
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Figure 8. Effect of location of rotational isomeric states on the 
configurational factors DOA and Dm obtained for u and u 
using the same parameters as in Figure 6 except for &e seconf 
order interaction parameters (a) WAC = WBC = 0 and (b) WAC = oec 
= 2. See legend to Figure 6. 

The differences appearing in the values Of DoA and DOB by 
MC chain generation result from the statistical insuffi- 
ciency of the simulations. 

Results of calculations for chains in which both units 
are assigned unfavorable second order interactions (WAC 
= OBC = 0) and favorable interactions (WAC = wgc = 2) are 
shown in parts a and b of Figure 8, respectively. The 
curves are obtained for the orientations of UH* and qB. 
The orientations are strongly affected by the presence of 
unfavorable interactions as observed from Figure 8(a). In 
the opposite case of favorable interactions, units A and B 
exhibit comparable orientations as illustrated in Figure 
803). 

The orientations of uLA and u L B  in the presence of 
second-order interactions are displayed in Figure 9. 
Irrespective of the type of second-order interactions, DOA 
and DOB are found to be indistinguishable for perpendicular 
vectors. The upper and lower curves in the figure are 
obtained for attractive (OAC = WBC = 2) and repulsive (OAC 
= OBC = 0) interactions, respectively. The middle dotted 
curve corresponds to the case of independent bonds. It 
is interesting to observe that in the presence of repulsive 
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to the same chain, being subject to the same extension 
ratio, does not necessarily imply the same orientation of 
different chain segments on a local scale. 
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Figure 9. Effect of bond interdependence on DM and DOB 
associated with uL: and uLB. The upper and lower curves are 
obtained for attractive (WAC = WBC = 2) and repulsive (WAC = WBC 
= 0) interactions, respectively. The middle dotted curve cor- 
responds to the case of independent bonds (WAC = WBC = 1). The 
orientations of uLAand uLBare indistinguishable and represented 
by the same curve in each case. 

interactions that preclude the gfgi states, segmental 
orientation changes drastically with the location of rota- 
meric minima. 

IV. Concluding Remark 
On the basis of the above analysis, we would like to 

emphasize the following major point: The intrinsic 
conformational properties of chain units exert a strong 
influence on segmental orientation. This feature leads to 
different degrees of orientation in different components 
of a copolymer, in particular for bond vectors. Even in 
the extreme case of an alternating copolymer, in which 
the orientational behavior of the adjacent monomeric units 
is expected to be closely coupled due to chain connectivity, 
significant deviations are observed in the orientations of 
vectors U* and uB appended to units A and B, provided 
that the geometry and energy parameters of the two units 
are different. Thus, the fact that two units A and B belong 


