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Equilibrium configurations of rigid building blocks with multiple embedded interaction sites are
investigated, as a coarse-grained approach for conformational sampling of protein structures with
known secondary structure. First, hypothetical structures of asymmetric shapes, and pairs of rods
composed of multiple interaction sites are considered. The rods are either disconnected or joined by
a flexible loop. The sites are assumed to interact with a classical 6-12 Lennard-Jones potential.
Subsequently, the investigation is extended to the study of two disconnecteda helices composed of
homogeneous interaction sites and to the ROP monomer, a small protein consisting of two
heterogeneousa helices connected by a loop. Residue-specific long-range and short-range potentials
extracted from a protein database are used. A Monte Carlo procedure combined with an energy
minimization algorithm, originally developed by Li and Scheraga@Proc. Natl. Acad. Sci. USA84,
6611 ~1987!# is used to generate a set of low energy conformations over the full conformational
space. Results show that:~i! The potential of mean force between two rods as a whole exhibits an
inverse linear dependence on the separation between rods despite the individual sites interacting via
a 6-12 Lennard-Jones potential.~ii ! As the length of the rods~or helices! increases, they tend to
align parallel to one other.~iii ! This tendency to become parallel is enhanced when the density of
interaction sites is higher.~iv! The angle between the principal axes of the rods is found to scale as
n25/3 with the numbern of sites.~v! The native conformation of the ROP monomer, including the
detailed rotational states of the virtual bonds located in the loop connecting thea helices is correctly
predicted. This lends support to the adoption of such a coarse-grained model and its parameters for
future simulations. ©1997 American Institute of Physics.@S0021-9606~97!50430-2#
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I. INTRODUCTION

The determination of the equilibrium configuration
structural elements containing rigidly embedded interact
sites is a problem of interest in several disciplines. For
ample, in the investigation of complex biomolecular pr
cesses such as protein folding, ligand binding, prote
protein interactions, etc., a simple approach is to assum
rigid-body approximation for some structural elemen
which possess sufficient internal stability, and simulate
statistics and dynamics of these bodies. Likewise, in polym
simulations monomeric repeat units are conveniently
proximated by unified groups.1,2 In the case of proteins, de
pending on the degree of resolution, individual amino ac
as a whole or secondary structural elements such asa heli-
ces, may be approximated as rigid blocks.3–7 At a more
coarse-grained level, structural domains, or individual m
2046 J. Chem. Phys. 107 (6), 8 August 1997 0021-9606/97
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ecules forming a complex or an aggregate may be viewe
rigid building blocks whose mechanics and dynamics are
interest.

Here, we will concentrate on the spatial organization
such rigid bodies. For a system ofn interaction sites, the
determination of the global minimum in th
3n-dimensional energy landscape is known as an NP-h
problem, elusive to conventional energy minimizatio
searches on computer, i.e., the complexity of the prob
increases exponentially, and not via a polynomial with t
increasing size of a molecule. Embedding these sites
m rigid blocks,m!n, on the other hand, reduces the to
number of degrees of freedom to 6m, or to 6(m21) if the
absolute location and orientation in space are neglected.
brings a significant reduction in the complexity of the pro
lem.

The key, general strategy for finding the minimum e
/107(6)/2046/14/$10.00 © 1997 American Institute of Physics
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2047Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies
ergy configuration of such models is the following: First, t
relevant variables of the coarse-grained structure are cho
Second, the total free energy is minimized with respec
these variables. As shown in the Appendix, the equation
motion controlling the linear and angular momentum of t
system are highly nonlinear and possess large number
local minima. One may easily be trapped in a local mi
mum, which depends on the starting point in the configu
tion space. In order to avoid such events, we adopt he
heuristic approach and generate a large number of ‘‘low
ergy conformations’’ starting from random initial points ov
the complete phase space. The method closely resemble
Monte Carlo~MC! procedure with minimization originally
developed by Li and Scheraga,8 and shown by Abagyan an
Maiorov to be an efficient conformational search techniqu9

We then analyze the ensemble of low energy conformati
to determine the most probable state. A key strategy ado
at this step is to determine the loci of the lowest energy st
as a function of a single geometric variablej, all other vari-
ables being optimized to achieve the lowest energy confi
ration subject to the fixedj value.

The paper is organized as follows: In the next secti
the basic theoretical approach is presented with illustra
calculations for a few hypothetical collections of rigid buil
ing blocks, including two disconnected rods and two ro
connected by a flexible loop. In the Sec. II B, these conce
are extended to helical protein fragments. Both disconne
pairs of helices composed of homogeneous interaction s
and helices connected by a loop, comprising specific inte
tion sites, are considered. ROP monomer10 is considered as a
specific protein for illustrating the application of the metho
In addition to the correct registration of the two helices, t
detailed conformation of the loop connecting the helices
predicted by an efficient energy minimization algorithm.

II. RESULTS

A. Illustrative calculations with simple models

1. Asymmetric shapes in two dimensions

In Fig. 1~a!, two rigid bodiesM1 and M2 in a two-
dimensional space are shown.O1 and O2 are two arbitrary
points fixed in the two respective bodies, to which the co
dinate systemsx1y1z1 andx2y2z2 are affixed.ai andbj are
the position vectors of thei th and j th sites inM1 and M2 .
M1 andM2 are assumed to havem andn rigidly embedded
interaction sites, respectively. In the absence of the r
body assumption, the determination of the minimum ene
configuration would require the simultaneous solution
2(m1n) equations. Here, the problem reduces to the sim
taneous solution of three equations, only, two linear mom
tum and one angular momentum balance, for three
knowns, sayRx , Ry , and u. Here, Rx and Ry are the
components of the position vectorR pointing from O1 to
O2 , andu is the angle between the axesy1 and y2 , which
define the rotational state ofM2 with respect toM1 . The set
of equations and their solution are outlined in Appendix

Figure 2 illustrates some equilibrium configurations o
tained from the solution of Eqs~A8! for various collections
J. Chem. Phys., Vol. 107
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of rigid bodies. The interaction sites are located at the c
ners of the blocks, in each case. The interaction energy
tween sitesi and j is assumed to obey a Lennard-Jones~LJ!
potential, with attractive and repulsive coefficients equal

FIG. 1. Model structures used for illustrative calculations.~a! Two rigid
bodiesM 1 andM 2 in two-dimensions. Interaction sites rigidly embedded
M1 andM 2 are expressed by the respective position vectorsai andbj , with
respect to the molecule-embedded coordinate systemsO1x1y1z1 and
O2x2y2z2 . R is the vector pointing fromO1 to O2 . It is conveniently
expressed in terms of its magnitudeR and the angleu between the axes
y1 and y2 . r i j is the separation vector between sitesi and j . ~b! Two
disconnected rods.a is the angle between the axes of the rods.~c! Two rods
connected by a flexible spacer. The originsO1 andO2 are chosen here at the
connections of the spacer.r̄ denotes the separation between the centers
the rods. Two supplemental anglesu1 and u2 , and one torsional anglef
define the orientation ofM 2 with respect toM 1 , provided that the rods are
cylindrically symmetric.

FIG. 2. Equilibrium states of collections of rigid bodies in two dimension
This illustrates some equilibrium configurations obtained from the solut
of Eqs.~A8! for various collections of rigid bodies. The interaction sites a
located at the corners of the blocks, in each case. The interaction en
between sitesi and j is assumed to obey a Lennard-Jones~LJ! potential,
with attractive and repulsive coefficients equal toAi j 51 kcal Å6/mol and
Bi j 51088 kcal Å12/mol, respectively.
, No. 6, 8 August 1997
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2048 Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies
Ai j 51 kcal Å6/mol and Bi j 51088 kcal Å12/mol, respec-
tively. This choice of parameters yields an equilibrium d
tance of 3.6 Å between two single interacting points
space.

The solutions displayed in Fig. 2 are obtained sequ
tially. First, Eqs.~A8! are solved for two bodies only. The
equilibrium positions obtained in this manner are then h
fixed, and the third body is placed at its equilibrium config
ration by solving Eqs.~A8!, and so on. The configuration
shown in Fig. 2 are unique and exactly reproducible, ir
spective of the starting configurations. In order to test
validity of keeping all previously placedn21 bodies fixed
while placing thenth body, relaxation experiments are pe
formed. For example, for Fig. 2~b!, the triangles were ini-
tially placed in the order,M1 , M2 , M28 , M29 . After placing
the fourth triangleM29 , the triangleM2 is relaxed and its
new equilibrium configuration relative to the other thr
fixed triangles is recalculated. The result did not differ n
ticeably from the original equilibrium configuration ofM2

relative toM1 . This is due to the presence ofM1 between
M2 , M28 andM29 . The distances between the interaction si
of M2 and those ofM28 and M29 are much larger than th
effective range of the LJ potentials so that the location
M2 is predominantly determined by its interaction wi
M1 .

2. Pair of rods composed of multiple interaction sites

In Fig. 1~b!, two rods with their centers at a separation
R are displayed. When the interaction sites are located s
metrically with respect to the center of each rod,R becomes
mutually perpendicular to the two rods and the solution
the equilibrium configuration of the two rods simplifies co
siderably. Then, the two unknowns to be evaluated are
magnitude ofR and the anglea between the two rods. Re
sults of calculations with the same potential and coefficie
as those of Sec. II A 1 are presented in Fig. 3. The ordina
the anglea and the abscissa is the number of interaction s
on each rod. The three curves are obtained for different
ues of the parameterh, whereh[r eq/ l is the ratio of the
equilibrium distance between two sites to the separation
tween consecutive sites on a given rod. Defined in this m
ner h is a measure of the density of interaction sites on
given rod. The range 2<h<3 is typical of atomic sites, rea
bond lengths being about two or three times shorter than
sum of the van der Waals radii of the atoms. For C–C bon
for example,h52.35, takingl 51.53 Å andr eq53.6 Å.

The most probable anglea between the rods decreas
from 90° to 0° with an increasing numbern of interaction
sites~Fig. 3!, the decrease being sharper in the case of m
distant interaction sites~smallerh! along the chain. The de
cay curves are plotted on a logarithmic scale in the inset.
straight lines in the latter, which are obtained by le
squares fits, have approximately equal slopes of25/3. Thus
a may be expressed by a power relationa;n25/3. In gen-
eral, the distancer̄ between the centers of the two rods
equilibrium is observed to remain slightly below the equili
rium distance between two free sites.
J. Chem. Phys., Vol. 107
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3. Pair of rods composed of multiple interaction sites,
joined by a loop

The presence of a flexible connector at the ends of
rods modifies the problem of the previous section. The to
free energy of the system is now found from the sum
intermolecular interactions and the free energy of the lo
The latter may conveniently be chosen as the elastic
energy change of entropic originDAel52kT lnW(R) for a
flexible chain whose end-to-end separation obeys the Ga
ian distribution

W~R!5K expH 2
3~R2R̄!2

2^~R2R̄!2&0
J . ~1!

Here,K is the normalization constant andR̄ is the equilib-
rium end-to-end separation of the connector in the absenc
the rods. The loop is therefore approximated as a spring w
a force constant equal to 3kT/2,(R2R̄)2.0. A suitable
choice of geometric variables for determining the minimu
energy configuration~s! may be the magnitudeR of the vec-
tor R joining the two ends of the loop, the angleu1 between
R and the first rod, the torsion anglef by which M2 has
rotated aboutR, and the angleu2 betweenR and M2 . The
problem of obtaining the equilibrium configuration is mo
complicated relative to that of Fig. 1~b!. This is because the
previous symmetry no longer holds due to the constra
imposed by the loop, unless the loop were sufficiently fle
ible so as to permit the optimal placement of the two disc
nected rods.

A set of low energy conformations is determined by t
solution of Eq.~A8!, as outlined in Appendix A. The con
figurational energy values associated with these most lik
states are presented in Fig. 4 as a function of the dista
between the midpoints of the rods. The curves are obtai

FIG. 3. Dependence of the anglea between the axes of the rods on th
number of interaction sites,n, rigidly embedded in the rods. The curves a
drawn for various choices of the density parameterh[r eq/ l , wherer eq is
the equilibrium distance between two nonbonded interaction sites andl is
the separation between two consecutive sites on a given rod. The loga
mic plot in the inset indicates a power law of the forma;n25/3.
, No. 6, 8 August 1997
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2049Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies
for n520 andh52.35. The energies are normalized by d
viding by 103Ai j /r eq

6. The lower curve is obtained in th
absence of the loop. The lowest energy configuration occ
at r̄min53.5 Å. In the lowest energy configuration, the en
of the two rods are positioned atR516.5 Å. The upper
curve is obtained in the presence of a loop which obeys
distribution of Eq.~1! with R̄519 Å and 3kT/2^(R2R̄)2&0

50.5 kcal mol21 Å 22. These values cause the energy of t
spring to compete with the intermolecular energy of the ro
and r̄ is shifted to a larger value,r̄min54.4 Å. An extremely
sharp increase in the energy takes place at shorter se
tions, i.e., the repulsive part of the interaction is very stro
The curve levels off at values ofr̄ as high as 20 Å, indicating
that the attractive potential between the centers of the
rods is highly nonlocal.

In Fig. 5, the data of Fig. 4 are plotted in double log
rithmic coordinates after removing the leftmost, rising po
tion of the curves. Presented in this form, the slopes of
curves provide an estimate of the power lawE( r̄ )
;2(1/r̄ )p governing the attractive part of the potential
mean force between the rods in the absence and in the
ence of a connector. The two curves exhibit a qualitativ
similar character, regardless of the presence of a conne
The upper straight line, drawn for comparison, has a slop
21, and approximately matches the portion of the two

FIG. 4. Energies of the lowest energy states of the pair of rods shown in
1 as a function of the separationr̄ between the centers of the rods. The upp
curve represents the loci of local minima for the case of rods connecte
a flexible spacer whose equilibrium end-to-end separation isR̄519 Å with
a force constant of 3 kT/2^(R2R̄)2&050.5 kcal mol21 Å 22. The lower
curve is obtained for the same pair of rods in the absence of the loop.
lowest energy configuration is obtained atr̄min53.5 Å. In the lowest energy
configuration, the ends of the two rods are positioned atR516.5 Å. Here,
the loop constrains the rods to assume a relatively higher energy confi
tion, and the most probable separation between the rods is shifted from
to 4.4 Å. The ordinate values are normalized with respect to the LJ attra
energy parameterAi j and the equilibrium separationr eq of nonbonded sites,
by dividing with 103Ai j /r eq

6. A very sharp increase in energy occurs
shorter separations due to strong repulsive interactions. The energy
proaches zero at about 20 Å, indicating that the attractive potential betw
the rods is highly nonlocal.
J. Chem. Phys., Vol. 107
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ergy curves up to about 20 Å. This indicates that although
inverse sixth power~LJ! relation is used for the attractiv
potential between all the individual interaction sites emb
ded in the rods, the potential of mean force between the r
as a whole obeys a 1/r̄ relation, over a wide range ofr̄
values.

Finally, in Fig. 6, the energy of interaction is plotted as
function of the anglea between the rods. In parallel with
Figs. 4 and 5, the ordinate displays the total potential
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FIG. 5. Another representation of the results displayed in Fig. 4. The s
of the upper line drawn through the data is equal to21, showing that the
energy of the most probable configurations decreases linearly with the s
ration r̄ between the centers of the rods. Thus the potential of mean f
between the rods obeys a relationship of the formE( r̄ );2(1/r̄ )p with p
51 in the ranger̄<20 Å, approximately, although the individual sites in
teract via a 6–12 LJ potential.

FIG. 6. Energies of the lowest energy states of the pair of rods show
Figs. 1~a! and 1~b!, as a function of the anglea between their axes. In
parallel with Figs. 4 and 5, the filled and open circles refer to the m
probable states of disconnected and connected pairs of rods, respective
in the two figures, the ordinate displays the total potential of mean fo
between the rods at the lowest energy configuration found for each fi
value of the abscissa. Again, the two curves exhibit a similar dependenc
a.
, No. 6, 8 August 1997
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2050 Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies
mean force between the rods at the lowest energy config
tion found for each fixed value of the abscissa. The filled a
empty circles show results for disconnected and conne
pair of rods, respectively. Again, the two curves exhibi
similar dependence ona. A shallow minimum is found
arounda55° in both cases. The similarity of the curves f
connected rods to those for disconnected rods in Figs.
indicates that the interactions between the sites embedde
the two rods dominate the observed qualitative behav
rather than the elastic characteristics of the loop. The c
straints imposed by the loop have a secondary effect, in
sense that they affect the equilibrium energies without s
nificantly altering the dependence of the lowest energy st
on the geometric variablesR anda.

B. Extension to protein helices

In this section,M1 andM2 are modeled so as to mimi
the behavior ofa-helices in proteins. Each residue is repr
sented by two interaction sites, one on the backbone (B) and
the other on the sidechain (S). These sites may be conve
niently identified with thea andb carbons of amino acids
The number of unknowns required to characterize a confi
ration$F% of the two bodies is equal to four provided that t
helices are cylindrically symmetric, i.e., the interaction si
are all equivalent and uniformly distributed along the helic
These four variables may conveniently be taken as those
scribed in Fig. 1~c!. One has to add to this set two mo
variables, say the torsion angles about the principal axe
M1 and M2 , if the helices are not cylindrically symmetric
This choice of variables is not unique, certainly. Another
of variables, also suitable for calculation, is illustrated in F
7. This consists of the polar~q! and azimuthal~c! angles of
the vectorR connecting the centroids of the two helice
expressed in the systemOx1y1z1 , the magnitude ofR, and
three Euler anglesa, b, andx describing the orientation o

FIG. 7. Schematic representation of twoa helicesM 1 andM 2 connected by
a flexible spacer. The anglesq andc define the orientation ofR with respect
to the frameO1x1y1z1 . R is the separation vector between the centroids
the helices. The orientation of the second helix is defined in terms of
three Euler anglesa, b, andx, which are illustrated on the right panel. In th
case of anidealizedpair of a-helices, in which the heterogeneity of th
interaction sites is neglected and thereby the cylindrical symmetry assu
tion holds, the variablesc andx are eliminated.
J. Chem. Phys., Vol. 107
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M2 with respect toOx1y1z1 ~see Appendix B!. These six
variables$R,q,c,a,b,x% fully describe a given configuration
$F% of the pair of helices.

1. An idealization: Two disconnected a helices
composed of homogeneous interaction sites

Here, the local geometric characteristics and the ene
functions and parameters associated with theB2B, B2S,
and S2S interactions are taken to be those of an avera
amino acid, derived from known protein structures~Fig. 8!.
This simplification, referred to as anidealizedpair of a he-
lices, permits us to eliminate two geometric variables, sac
and x, in the search for the most probable states. Resid
specific characteristics will be taken into consideration in
next subsection, when analyzing a real pair ofa helices.
Details about the model and parameters are presented in
pendix B.

The results obtained for helices of 30 residues are sho
in Fig. 9. The most probable states are selected from a la
number~of the order of 105! of local minima located with a
MC–Metropolis procedure coupled with a simplex11 energy
minimization algorithm, which closely conforms with a pre
viously developed conformational search technique.8,9 In
parallel with the basic approach outlined above, the cur
display the energies of the most probable states as a func
of a given geometric variable,R anda in parts~a! and~b! of
Fig. 9, respectively.E(R) in part ~a! represents, for example
the energyE$R%[E$R,q,a,b% minimized with respect to
$q,a,b% within the full range accessible to these angles, a
with respect toR within each successiveR60.25 Å. Like-
wise,E(a) represents the energy minimized with respect

f
e

p-

FIG. 8. Potentials of mean force between sidechain (S) and backbone (B)
sites of amino acids in globular proteins, averaged over all types of resid
E(S–S), E(S–B), andE(B–B) refer to sidechain–sidechain, sidechain
backbone, and backbone–backbone interaction energies, respectively
tracted from known protein structures using all pairs of sites separate
five or more virtual bonds~Ref. 14!. Here, these potentials account for th
interactions between the homogeneous sites affixed to theidealizedpair of
a-helices.
, No. 6, 8 August 1997
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2051Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies
the remaining variables. The lowest energy st
(;2140RT) is indicated by an arrow in each case. Bo
curves reveal that the optimal distanceR between the center
of helices and the anglea between their principal axes ar
uniquely determined by the present analysis. These min
appear furthermore to be easily accessible in view of
shallow shape of the energy profile in their neighborhood

Results of similar calculations for energy as a functi
of q andb, not shown for brevity, exhibit multiple minima
of comparable depths. The most probable polar angle
found to be confined to the region 60°<q<120°. E(b), on
the other hand, displays three minima differing by<0.5RT
in depth with the most favorable value ofb'50°. Inas-
much as the two helices are almost parallel to each othe
the most stable configuration, the exact choice of the varia
b is relatively unimportant.

Examination of two-dimensional energy surfaces p
mits one to distinguish coupling between the different d
grees of freedom. Loci of approximately 43104 minima,
E(R,a), are displayed as a function ofR anda in Fig. 10.
These are obtained after minimization of eachE$F%
[E$R,q,a,b% value with respect tob andq within square
bins of size DR50.25 Å and Da51° centered around
(R,a) values in the range 0<R<20 Å and 0<a,180°.
The surface is drawn by smoothing out the energies ove
grids along the horizontal axes. This permits a clearer v
alization of the global minimum, although the depth of t
well is somewhat reduced.

Calculations were repeated for pairs of helices of diff
ent lengths. A distinctive feature in shorter helices is that
low energy~<3RT above the most stable state! configura-
tions are obtainable over a wide range (0<a<50°) of tilting
anglea between helices, although in the case of longer
lices configurations of comparable stability were confined
the range 2<a<9°, only. The decrease in the angle b
tween the principal axes with increasing asymmetry
length of the rigid building blocks emerges as a gene
property, irrespective of the detailed structural and energ
characteristics.

FIG. 9. Energies of the most probable configurations of a pair of ideal
helices ofn530 residues as a function of~a! the separationR between the
centroids of the helices, and~b! the angle between the principal axes of t
helices. The ordinate values represent the loci of the local minima locate
the simplex algorithm for each fixed value of the geometric variableR in ~a!
or a in ~b!. A global minimum is observed atR58.5 Å anda57.5°.
J. Chem. Phys., Vol. 107
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The following two points observed for the pair of rod
may provide guidelines for estimating the lowest energy c
figuration of a pair of helices:

~i! For two identical rods, the angleu between the vector
r̄ and the rod axis was 90°. In the present section
corresponding angle is found to beq590°612°. If
one accepts the value,u590°, obtained for the pair of
rods as a reference, the deviations ofq from 90° may
be regarded as perturbations resulting from~i! inho-
mogeneities at the ends of the helices,~ii ! the three-
dimensional geometry of the helical structure as o
posed to linear structure of the rods, and~iii ! the
shape of the non-bonded interaction potential d
played in Fig. 8.

~ii ! The distance between the centers of the helices
found to be about 8.5 Å. This value approximates t
weighted average of the two minima of the potent
energy curves displayed in Fig. 8, and may be view
as an equilibrium separation,r eq, between collective
sites representative ofa-helical turns. Each helica
turn may thus be viewed as an entity equivalent to
interaction sites of the rods treated in the previo
section, such thatl 55.41 Å and the parameterh
[r eq/ l becomes 1.6, approximately. The correspon
ing a values for the presently investigated pairs
helices comprising eight turns, is estimated upon
trapolation from Fig. 3 to be 6°. This may be com
pared to the valuea57.5° at the lowest energy com
puted in the present section.

2. A protein consisting of two heterogeneous
a-helices connected by a loop: ROP monomer

ROP is a bacterial protein involved in regulating DN
replication.12 This is a dimeric four-helix bundle, the mono
mers being identical but oppositely oriented helic

d

by
FIG. 10. Loci of the lowest energy configurations as a function ofR anda,
for the pair of idealized helices ofn530 residues. The energy values a
obtained after minimization of eachE$F%[E$R,q,a,b% value with respect
to b andq within square bins of sizeDR50.25 Å andDa51° in the range
0<R<20 Å and 0<a,180°. The surface is smoothed out over segme
of 40 grids, which permits a clearer visualization of a global minimum. T
general roughness can be estimated from Fig. 9.
, No. 6, 8 August 1997
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2052 Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies
hairpins10 of 63 residues, each. Thus each monomer may
modeled as two rigida helicesM1 and M2 comprisingm
and n sites, respectively, and connected by a loop. Th
essential features differing from the above idealized pair
helices are considered in this case:

~i! The interaction sites are heterogeneous. Sidecha
sidechain (Si –Sj ), and sidechain–backbone (Si –Bj ) inter-
action potentialsEAB(Si –Sj ) andEA(Si –Bj ), characteristic
of each particular type~A, B, etc.! of residue are used, a
opposed to the homogeneous potentials of Fig. 8. These
tentials were recently extracted from 302 known prot
structures.13,14

~ii ! As a natural consequence of the heterogeneity
specificity of the interaction sites, the cylindrical symme
approximation is no longer valid, and the anglesc andx are
included in the analysis. These angles are expected to
related to the hydrophobicity moments of the helices,15 inas-
much as the helices have a tendency to assume tors
angles that minimize the solvent exposure of their hydrop
bic residues. Accordingly, the helix-embedded coordin
systemsO1x1y1z1 andO2x2y2z2 displayed in Fig. 7 are de
fined with reference to the hydrophobicity moment vect
m1 andm2 of the helices in addition to their principal axe
The y1 axis is chosen in the plane spanned byz1 and m1 .
The x1 axis completes a right-handed coordinate system
angular deviation from the projection of thez2 axis on the
O1x1y1 plane defines the anglec. The same recipe is
adopted for defining the axesy2 and x2 of the system
O2x2y2z2 . The rotationx is accounted for by the angle be
tween the hydrophobicity moments of the respective helic
In particular,x5180° refers to the face-to-face placement
hydrophobic momentsm1 andm2 , i.e., the optimal configu-
ration from the point of view of burial of hydrophobic res
dues at the interface. The other extreme case (x52180°)
corresponds to the full exposure of hydrophobic surface
solvent.

~iii ! The connectivity of the helices, and the constrai
imposed by the finite size and specific energetics of the r
dues in the loop region are rigorously considered here.
the flexible spacer comprises virtual bonds. The bond
lengths and angles in the spacer are held fixed at va
characteristic of the particular residues in the native prim
structure~Table I!. The flexibility of the loop is ensured by
the torsional mobility of the virtual bonds of the loop. Th
corresponding dihedral angles are indicated asw i , with 1
< i<s. The overall configurational potentialE$F%
[E$R,u,c,a,b,x% becomes

E$F%5(
i

(
j

@E~Si2Sj !1E~Si2Bj !1E~Bi2Sj !

1E~Bi2Bj !#1 (
k51

s

E~wk!1 (
k51

s11

DE~wk21 ,wk!.

~2!

Here, the subscriptsA, B, etc., are omitted for brevity, al
though each term depends on the specific type of interac
residuei or j . The first summation in Eq.~2! is performed
J. Chem. Phys., Vol. 107
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over all sites 1< i<m embedded inM1 . The second sum-
mation of the first sum is performed over all sites 1< j <s
1n on the flexible spacer and onM2 , provided that the sites
i and j are separated by at least five bonds along the ba
bone. The last two summations are performed over the bo
of the loop region, using residue-specific short-range con
mational potentials.16 w0 andws11 are adopted for the dihe
dral angles of the bonds flanking the spacer, as the torsi
states of these two bonds also affect the overall poten
E$F%. In general, the contribution of the dihedral angle to
sions ~last two summations! in Eq. ~2! is negligibly small
compared to that of the nonbonded interactions~first double
summation!.

The lowest energy configurations among the 60 000
cal minima determined by the simplex algorithm are p
sented in Table II. Only those configurations within<8RT
of the lowest energy configuration are listed in the tab
These are classified in order of increasing energy or decr
ing stability. The dihedral anglesw1–w7 of the fragment
Asn27–Gln34 are listed in columns 2–9. The succeeding
columns list the variables$R,q,c,a,b,x% characterizing the
relative position of the two helices. The terminal column
the energy of the particular configuration. The structu

TABLE I. Backbone geometry of ROP monomerA in the virtual bond
approximation.a

i w i Q i i w i Q i

4 2126.5 89.3 30 53.8 89.7
5 2131.6 89.0 31 221.1 84.1
6 2126.2 90.4 32 2.72 75.6
7 2130.0 88.1 33 2137.3 87.9
8 2132.0 88.2 34 2130.6 87.1
9 2131.0 88.5 35 2129.4 90.4

10 2130.4 90.1 36 2127.9 90.9
11 2128.9 87.5 37 2133.6 89.5
12 2130.6 91.1 38 2129.5 85.8
13 2130.3 89.6 39 2125.2 91.5
14 2129.3 86.9 40 2133.3 91.2
15 2132.1 89.7 41 2126.7 87.4
16 2126.8 90.8 42 2129.9 90.4
17 2135.2 87.1 43 2129.7 90.8
18 2126.8 85.7 44 2131.4 90.7
19 2125.9 91.6 45 2128.5 89.2
20 2129.1 89.6 46 2129.4 90.3
21 2129.8 89.4 47 2125.4 89.8
22 2133.4 87.8 48 2133.5 86.6
23 2121.6 91.2 49 2129.4 87.9
24 2132.1 88.6 50 2133.5 89.4
25 2128.2 89.0 51 2126.9 89.8
26 2132.1 90.1 52 2132.8 88.2
27 2126.6 91.2 53 2127.1 88.6
28 2125.7 89.8 54 2132.7 86.3
29 2134.0 88.0 55 2138.4 79.9

aThe virtual bonds of the monomer are indexed from 2 to 63, in conform
with the residue indices in the PDB coordinates; the terminal bonds, w
are not determined by x ray, are not present in the table. Thei th bond
connects the (i 11)st andi th alpha carbons. The dihedral angles refer
torsions relative to thetrans conformer, such thatw50°, 2120° and
1120° for thetrans, gauche2 and gauche1 states. Bond bending angl
Q i refers to the angle between the virtual bondsi and i 11. The virtual
bonds have torsional angles of 129°68° and bending angles of 88.5
63.5°, which are typical ofa-helices in the virtual bond approximation
except for the central bonds 29–31 which fold into a tight turn.
, No. 6, 8 August 1997
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2053Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies
TABLE II. Characteristics of the lowest energy configurations of the fragment Asn27–Gln34 in ROP monomer.a

$F% w1 w2 w3 w4 w5 w6 w7 R(Å) q c a b x E$F%/RT

1 2134.1 2132.5 49.2 234.9 2.1 2125.0 2126.2 8.95 81.2 151.0 19.5 42.9 100.8 212.0
2 2127.7 2155.8 26.5 28.5 35.7 2130.6 2121.5 8.46 79.3 137.1 19.5 42.8 124.8 212.0
3 2111.0 2164.2 53.3 24.8 15.6 2122.8 2131.2 8.58 83.3 138.8 19.3 38.1 119.5 212.0
4 2130.3 2128.2 45.3 229.8 16.9 2134.1 2118.7 8.79 74.8 150.8 18.0 48.5 104.0 211.7
5 2129.7 2129.3 54.9 233.6 4.4 2130.1 2118.4 8.90 80.8 149.2 15.1 44.0 99.2 211.2
6 2130.6 2131.7 41.3 226.3 21.7 2134.0 2113.4 8.80 77.9 143.5 15.7 45.3 111.7 211.1
7 2134.3 2132.9 46.1 234.3 6.7 2125.8 2122.9 8.68 82.1 146.8 17.9 43.4 105.0 210.6
8 2124.1 2151.9 46.9 217.4 15.2 2120.7 2121.5 8.65 87.2 142.9 18.8 39.5 120.8 29.1
9 2124.4 2133.8 48.9 222.1 29.8 2128.6 278.0 9.02 86.3 120.0 1.6 2163.8 132.4 28.7

10 2108.5 2161.4 51.2 12.1 25.3 2145.4 2124.8 8.99 74.9 137.9 17.6 43.8 114.0 28.5
11 2121.8 2152.3 30.0 211.7 32.9 2129.3 2126.8 9.00 75.1 140.7 20.0 41.9 117.9 28.4
12 2123.3 2138.4 34.2 239.3 27.4 2111.6 2123.9 8.36 79.2 142.2 17.1 42.9 118.7 27.7
13 2148.6 2133.5 31.3 228.2 12.2 2132.9 2122.1 8.42 84.6 138.6 20.1 40.4 116.2 27.1
14 2133.9 2125.1 49.3 237.9 25.6 2114.3 266.1 8.97 90.0 115.5 4.9 2149.7 141.4 27.0
15 2122.7 2155.8 211.7 214.6 74.1 2131.7 2120.1 9.84 66.6 124.4 12.7 33.8 130.6 25.4
16 2115.4 2133.1 53.4 220.8 32.2 2125.1 277.9 9.16 83.7 127.3 1.1 2129.3 130.7 24.9
17 2122.0 2154.1 210.1 212.3 78.2 2134.2 2111.3 9.72 66.9 124.4 10.9 37.0 132.9 24.6
18 2115.3 2145.5 14.3 220.3 56.0 2129.4 2119.0 9.33 67.2 134.3 14.0 42.9 123.3 24.2
19 2138.7 2133.8 23.1 232.1 29.4 2126.0 2118.6 8.87 78.9 135.7 18.1 37.7 123.1 24.0

b 2122.1 2134.0 53.8 221.1 2.7 2137.4 2118.6 8.95 74.2 151.5 18.9 49.6 94.0 0.0c

aAll angles are in degrees,R is in Ångstroms.
bNative structure.
cNative energy taken as reference point.
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characteristics of the native structure are presented in the
row. We note that the most stable states reached by the
plex algorithm have energies lower than that of the nat
state.

Specification of the variables$R,q,c,a,b,x% is sufficient
for defining a given configuration$F% of the pair of helices,
and there may be several sets of dihedral ang
$w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,w7% compatible with a given con
figuration $F%5$R,q,c,a,b,x%. In a sense the latter ma
be viewed as a macrostate achieved by several microst
We will concentrate on the most stable macrostates, altho
the results in Table II indicate that even the microstates
scribed by the set$w1 ,w2 ,w3 ,w4 ,w5 ,w6 ,w7% exhibit some
well defined characteristic; whereas two stable macrosta
shortly referred to as$F%1 and $F%2 , are distinguishable
These are characterized by$F%15$8.760.3 Å, 81°
67°, 14467°, 17.662.5°, 4466°, 112613°% and $F%2

5$9.060.03 Å, 8862°, 11863°,3. 361.7°,215767°,
13765°%. The former is energetically more favorable th
the latter by an energy difference of about 3 RT, and is
close agreement with the native structure. Furthermore,
fact that 16 out of the 19 lowest energy microstates belon
macrostate$F%1 suggests that the latter is also favored
kinetic effects. In particular, we note that the lowest ene
microstate shown in the first row of the table, exhibits stru
tural characteristics quite close to those of the native c
figuration: The separationR58.95 Å between the centroid
of the helices is exactly reproduced, the anglea between the
two principal axes and the azimuthal anglec agree within
less than 1°. The remaining three variablesu, b, andx differ
by <7° compared to the corresponding values in the na
protein.

A more critical analysis of the loci of the lowest energ
J. Chem. Phys., Vol. 107
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states may be carried out by examining the dependenc
E$F% on each of the geometric variablesR, q, c, a, b, and
x. The results are displayed in Figs. 11~a!–11~f!. These
curves provide an estimate of the depth and width of
lowest energy states along the six variables of the mult
mensional energy surface. In parallel with the curves of F
4–6 and 9, the dots represent the lowest energy states
tained upon minimization of the total energy with respect
all variables other than the one shown on the absci
E(R) represents, for example, the energy of the lowest
ergy state achievable at the givenR, by optimizing the vari-
ablesu, c, a, andb over their full range, and repeating th
for successiveR at 0.25 Å intervals. LikewiseE(a),
E(q), E(b), E(c), and E(x) shown in Figs. 11~b!–11~f!
are the loci of the most stable microstates obtained by c
fining the arguments to fixed, small intervals along the a
scissa, while allowing the remaining five variables to ta
the energetically most favorable combination. The nat
value is written on each figure, for comparison with the p
dicted lowest energy value.

The following properties are extracted from Fig. 11. Fi
ure 11~a! demonstrates that a unique minimum, which co
cides exactly with the native value is predicted for the spa
separationR of the helices. Figure 11~b! shows that the an-
gular inclination ofa519.5° between the principal axes o
the helices is preferred over the approximately parallel ali
ment of the helices taking place in the macrostate$F%2 not
only by its lower energy, but also by the shape of the pot
tial energy surface. The valueu574.17° of the native struc-
ture is located within the lowest energy well, as may
verified from Fig. 11~c!. This implies that the centroids o
the helices are not necessarily at the same elevation bu
second helix is located slightly upwards, which is correc
, No. 6, 8 August 1997
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2054 Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies
FIG. 11. Results obtained for the ROP monomer. Energies of the most probable conformations are displayed as a function of the geometric va~a!
R, ~b! a, ~c! q, ~d! b, ~e! c, and~f! x. The geometric data of the crystal structure are indicated in each case, demonstrating the close agreement be
native structure and the predicted lowest energy configuration. Here, an enlarged set of local minima~60 000 of them! is generated in parallel with Figs. 5–
and 9, and the lowest energy configurations are plotted as a function of each geometric variable after minimization with respect to the other five
J. Chem. Phys., Vol. 107, No. 6, 8 August 1997
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2055Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies
predicted. As to Fig. 11~d!, in parallel with the results ob
tained for idealized helices,b assumes quite distinct value
in different macrostates. This is explained by the fact that
two helices are almost parallel to each other and therefore
choice of a given azimuthal angle has a weak effect on
overall energy. Nevertheless, the broadest and most s
minimum is in satisfactory accord with the native structu
The most stablec value in Fig. 11~e! is easily recognized to
overlap with the native value. Finally, a deep well atx
590– 125° is observed in Fig. 11~f!. Here, negativex values
are quite unfavorable. As described above,x<0° refer to
configurations in which the hydrophobic residues are
posed to solvent. Such configurations are disfavored b
significant energy difference (;50 RT). It is interesting to
note that the rotationx5180°, which should allow for maxi-
mal interaction of the hydrophobic groups is not energ
cally favorable here, presumably due to a steric overlap.
stead the anglex'105° is preferred. This is slightly
(;10°) distorted in favor of the association of the two h
drophobic surfaces compared to the native structure. The
viation of about 10° may be the result of a fine tuning up
dimerization of the ROP monomer, inasmuch as a smallex
angle would allow for a better association of the two mon
mers at the interface. By the same reasoning, one can an
pate that the macrostate$F%2 which involves an even tighte
interaction of the hydrophobic groups between the two h
ces of a given monomer, thus lacking enough hydrophobi
at the interface of the monomers, which could be unfav
able for the dimer.

Finally, the most probable energy surfaceE(R,a) ob-
tained for ROP monomer, not shown for brevity, is found
exhibit the same characteristics as the loci of energy min
displayed in Fig. 10, i.e., a broad global minimum. Its loc
tion is slightly shifted towards a largera value~19.5°!. Like-
wise the separation between the centers of the helices i
creased by 0.5 Å compared to the idealized helices, whic
understandable in view of the bulkier side chains existing
ROP monomer. However, the essential features, i.e
funnel-like distribution in favor of an entropically favorab
energy minimum is again observed with the present coa
grained approach. The general roughness of the surface
be estimated from the graphs given in Fig. 11.

III. DISCUSSION AND CONCLUSION

Here, a Monte Carlo procedure combined with a sim
energy minimization algorithm is used to generate a stac
low energy conformations. Full coverage of the conform
tional space is accomplished, inasmuch as the loci of ene
minima are obtainable as a function of the geometric v
ables or generalized coordinates in the form of smooth,
continuous curves. Such a combination of MC proced
with energy minimization goes back to the original work
Li and Scheraga.8 As pointed out in recent studies,17,18 visit-
ing a maximum number of different local energy minim
using a minimal number of function evaluations, and cre
ing a stack of low energy conformations within a certa
energy range are essential for identifying the most proba
J. Chem. Phys., Vol. 107
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state in such multiple minima problem. Low energy confo
mations are used here to determine the effective energy
file, or the potential of mean force as a function of each
the generalized coordinates.

Exploratory calculations with simple models such
pairs of rods comprising uniformly distributed interactio
sites reveal some characteristics that may have important
plications insofar as real molecular structures are concer

First, the potential of mean force between the rods a
whole exhibits a linear dependence on the separation
tween rods~Fig. 5!, despite the individual sites interactin
via a classical 6–12 Lennard-Jones potential. This imp
that the range of the effective potential between the rod
much longer than may be inferred from its individual embe
ded sites. And the existence of such a long-range smo
potential can explain the recognition of the lowest ene
conformation of the two bodies from a relatively distant in
tial position. That the native supersecondary and terti
structure is spontaneously found, in spite of the enorm
number of accessible conformations, i.e., the Levinthal pa
dox, may be partly explained by the fact that the range of
operating potentials of mean force between secondary st
tural elements is sufficiently long.

Second, as the length of rods~or helices! increases, they
tend to align more parallel to each other. Also, as the den
of interaction sites increases they exhibit a stronger tende
to become parallel. This conforms with observations that
lices of four or more turns pack optimally into elongate
bundles; whereas shorter helices can pack into a numbe
other geometries.19 Such criteria are pointed out to be impo
tant in designing protein structures.20 Here, the anglea be-
tween the principal axes of the rods is found to scale
n25/3 with the numbern of sites, the absolute value depen
ing on the densityh of sites. Fora helices usingh51.6, an
estimate of the angle between two adjacent helices—in
absence of the perturbations due to specific effects—ma
made directly from Fig. 3.

Calculations for the ROP monomer depart from previo
simulations5,21 in both the model and the method of calcul
tion. Here, a recently developed coarse-grained model w
energy parameters extracted from known structures has
employed.14,16,22Loci of energy minima are plotted with re
spect to one variable, after minimizing with respect to
others, which is helpful in locating the most probable sta
In fact, good conformations could be built by choosing the
independent average values for each variable. This confi
our previous experiences applying this approach to DNA23

The fact that the native conformation of the monomer
correctly reproduced, and even the detailed rotational st
of the virtual bonds located in the loop connecting thea
helices are satisfactorily accounted for, lends support to
adoption of the present coarse-grained model and param
for future simulations. A major advantage of such low res
lution models and empirical potentials is certainly the elim
nation of several degrees of freedom which might complic
the energy surface.

An interesting observation is that the most probable s
is also entropically favorable, i.e., the energy surface exhi
, No. 6, 8 August 1997
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2056 Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies
a funnel-like shape, in conformity with recent theoretic
arguments,24,25 provided that the loci of local minima ar
examined as a function of two generalized coordinates, a
minimization with respect to all others. Such a sufficien
broad global minimum may indeed be a prerequisite for
correct folding of proteins, as suggested by latt
simulations.26,27

If folding nuclei could be predicted, then the prese
method could be utilized directly for the construction of t
remainder of the protein, insofar as it were within compu
tional limits. Another possible application of our approa
would be to use it together with secondary structure pre
tions. Usually the most certain parts of these predictions
the centers of helices. These central helix parts were u
here in the ROP example, and the ends of the helices ne
the loop were permitted to be flexible. For larger helic
proteins, sequentially adjacent helices are not always
strongest interacting pairs, but presumably the pres
method is sufficiently robust to be able to detect the strong
interacting pairs.
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APPENDIX A

Here, the method of calculation for the minimum ener
configuration of two rods joined by a loop is described. T
application to the case of disconnected rods or asymme
bodies in two-dimensions is straightforward.

The rods containm andn interaction sites, respectively
The origins of the molecule-embedded coordinate syst
O1 andO2 are assumed to be located at the end of the ro
such thatR defines the end-to-end separation vector of
loop between the rods. One of the rods,M1 , is assumed to
be fixed in space. Thex1 axis is taken along the axis of ro
M1 . They1 axis is chosen such that thex1y1 plane contains
the vectorR. The z1 axis completes a right-handed syste
u1 is the angle between thex1 axis andR. The position of
the second rod in space is determined uniquely byu1 , the
magnitudeR, the torsion anglef about R, and the angle
u2 between the axis of rodM2 andR, provided that the two
rods are cylindrically symmetric.

The four equations required for the solution of the fo
unknownsR, u1 , u2 , andf are obtained by minimizing the
Helmholtz free energyDA of the system with respect to fou
variables

]DA

]j
5(

i 51

m

(
j 51

n
]DA

]r i j
2

]r i j
2

]j
50, j5R,u1 ,u2 ,f, ~A1!

where r i j is the magnitude of the separation vectorr i j 5r j

2r i between thei th and j th interaction sites belonging t
M1 and M2 , 1< i<m and 1< j <n. The Helmholtz free
energy is taken to be the sum of the potentials of mean fo
J. Chem. Phys., Vol. 107
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associated with the interaction of them sites inM1 with the
n sites inM2 , and the conformational energy of the loop. B
assuming a Gaussian end-to-end distribution for the loop
a Mie type potential for the interaction between all sites,
total free energy change may be written as

DA5
1

2
(

i
(

j
F2

Ai j

r i j
p

1
Bi j

r i j
q G1

3kT

2^~R2R̄!2&0

~R2R̄!2

~A2!

Here,Ai j andBi j are the parameters associated with the
tractive and repulsive parts of the potential, respectivelyp
and q are the exponents.̂(R2R̄)2&0 is the mean square
difference betweenR and its free state valueR̄, i.e., in the
absence of the two rods. The Mie potential reduces to
Lennard-Jones potential whenp56 andq512. The equilib-
rium separation between two independent interaction site
r eq5(qBi j /pAi j )

1/(q2p). The vector between sitesi and j is
conveniently expressed as

r i j 5R1T1T2bj2ai5R1bj82ai , ~A3!

whereai andbj are the fixed position vectors of the respe
tive sites i and j , with respect to the molecule-embedde
coordinate systems affixed toO1 andO2•bj8 is the represen-
tation ofbj in the coordinate systemOx1y1z1 . T1 andT2 are
the transformation matrices given by

T15F cosu1

sin u1

0

sin u1

2cosu1

0

0
0
1
G ;

T25F cosu2 sin u2

cosf2 sin u2 2cosf2 cosu2

sin f2 sin u2 2sin f2 cosu2

0
sin f2

2cosf2

G .

~A4!

In calculations, it proves convenient to express the squ
magnituder i j

2 as

r i j
2 5R212R–Ui j 1Ui j –Ui j ~A5!

with the vectorsR andUi j given by

R5RF cosu1

sin u1

0
G5RuR , ~A6!

Ui j 5T1T2bj2ai5bj82ai . ~A7!

The four scalar equations of equilibrium given by Eq
~A1! are written explicitly for the casep56 andq512 as

R31ak1R21ak2R1ak350, 1<k<4, ~A8!

where

a11[3(
i , j

gi j Ui j –uRY (
i , j

gi j , ~A9!
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a1253(
i , j

gi j FUi j –Ui j 2Ui j –uR12~Ui j –uR!2

1
kT

2^~R2R̄!2&0

~R2R̄!G Y (
i , j

gi j , ~A10!
.
r
in

t
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a135(
i , j

gi j Ui j –uR~Ui j –Ui j 2Ui j –uR!Y (
i , j

gi j , ~A11!

a215
( i , jgi j @~Ui j •ebj812Ui j –uR~uR–ebj81Ui j •euR!#

( i , jgi j ~uR–ebj81Ui j •euR!
,

~A12!
a225
( i , jgi j @~Ui j •Ui j 2r eq

2 !~uR•ebj81Ui j •euR!12~Ui j •uR!~Ui j •ebj8!#

( i , jgi j ~uR•ebj81Ui j •euR!
, ~A13!

a235(
i , j

gi j @~Ui j –Ui j 2req
2 !Ui j •ebj8#Y (

i , j
gi j ~uR•ebj81Ui j •euR!, ~A14!

a315(
i , j

gi j F ~Ui j –T1T2ebj12~Ui j –uR!T1T2ebj–uR#Y (
i , j

gi j ~T1T2ebj–uR!, ~A15!

a325
( i , jgi j @~Ui j –Ui j 2r eq

2 !T1T2ebj–uR12~Ui j –uR!Ui j –T1T2ebj#

( i , jgi j ~T1T2ebj–uR!
, ~A16!

a335(
i , j

gi j @~Ui j –Ui j 2r eq
2 !Ui j –T1T2ebj#Y (

i , j
gi j ~T1T2ebj–uR!, ~A17!

a415
( i , jgi j @Ui j –T1T2Gbj12~Ui j –uR!T1T2Gbj–uR#

( i , jgi j ~T1T2Gbj–uR!
, ~A18!

a425
( i , jgi j @~Ui j –Ui j 2r eq

2 !T2Gbj–uR12~Ui j –uR!Ui j –T1T2GbjT1#

( i , jgi j ~T1T2Gbj–uR!
, ~A19!

a435(
i , j

gi j @~Ui j –Ui j 2req
2 !Ui j –T1T2Gbj#Y (

i , j
gi j ~T1T2Gbj–uR!, ~A20!
it-
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ua-
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its

the
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the
e
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m

with gi j , e, andG expressed as

gi j 5~Ai j /r i j
14!~r i j

4 1r eq
2 r i j

2 1r eq
4 !, ~A21!

e5F 0
1
0

21
0
0

0
0
0
G ;

G5F 0
0

2sin u2

0
0

cosu2

sin u2

2cosu2

0
G . ~A22!

The coefficients of Eqs.~A8! are proportional togi j

which appears in the derivative]DA/]r i j
2 5gi j (r i j

2 2r eq
2 )

•gi j is positive for all values ofR, as may be seen from Eq
~A21!; whereas the term (r i j

2 2r eq
2 ) may be either positive o

negative, and therefore is the important term in determin
the roots of Eq.~A8!. Equation~A8! also contains a third
type of term corresponding to the gradients ofr i j

2 with re-
spect to the four unknowns. These terms are also not
important terms inasmuch as they do not change sign. T
Eq. ~A8! contains all the expressions explicit inR that are
g

he
us

dominant in obtaining the roots. This form is especially su
able for iterative solution using either a simplex or
Newton–Raphson algorithm for nonlinear systems of eq
tions. The solution was checked each time whether it wa
local minimum or not by evaluating the energy values in
neighborhood.

For the case of two rods not connected by a loop,
problem simplifies significantly, because the loci of the e
ergy minima is characterized byu15u2590°, provided that
the interaction sites are homogeneously distributed on
rods. Also, we havef5a, wherea is the angle between th
two rods. The two unknowns of the problem areR and a
which are determined from the simultaneous solution of
first and the fourth of Eqs.~A8!.

For two disconnected rigid bodies in two dimension
the three unknowns of the problem may be taken as thex and
y components ofR @Fig. 1~a!#, and the orientationu of the
M2 with respect toM1 . In this case,f50, R15R cosu1,
R25R sinu1, u25u, and the three unknowns in the proble
can be solved from the first three of Eqs.~A8!.
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APPENDIX B

Details about the geometry and energy characteristic
the model helices illustrated in Fig. 7 are presented h
These aim at modelinga helices in proteins. Each residue
represented by two sites,B andS located on the backbone~a
carbon! and on the sidechain~b carbon or sidechain interac
tion center!, respectively. In the case of an idealized pair oa
helices, i.e., disconnecteda helices composed of sites exhib
iting the geometry and energy characteristics of an aver
residue in globular proteins, the lengthsl of the virtual bonds
B–B and the angleQ between backbone virtual bonds a
taken as 3.81 Å and 88°, which conform with the geome
of a helices. Backbone bond dihedral angles are assigned
fixed value of2128° with respect to the planartrans con-
formation of three successive bonds. This angle asser
right-handed rise of 5.36 Å per helix turn~or 1.49 Å per
residue!, in conformity with right-handeda helices. In the
case of more realistic models, such as that of ROP mono
the exact bond lengths, bond angles and dihedrals of
known structure are taken, together with residue-spec
S–S andS–B potentials.

For the idealized pair of helices, the loci of the intera
tion sites on the backbone and on the side groups are ge
ated by using the conventional bond-based coordinate
tems of polymer statistics.28 Accordingly, thexi axis of the
local system appended to thei th bond is taken along the
bond vectorl i connecting thea carbonsi 21 and i , the yi

axis makes an acute angle with the axisxi 21 of the preceding
bond-based frame, and lies in the plane spanned byxi 21 and
xi ; the zi axis completes a right-handed coordinate syste
In these local bond-based frames, the backbone bond ve
are expressed as@3.81 0 0#T, where the superscriptT denotes
the transpose. The side group bond vector is taken
@20.511 0.87 1.15#T, assuming bond lengths of 1.53 Å, an
by adopting bond angles typical of Ca–Cb bonds. The con-
figurational energies of the pair of helices are evaluated
the basis of the homogeneous interaction potentials14 dis-
played in Fig. 8 as

E$F%5(
i 51

m

(
j 51

n

@E~Si2Sj !1E~Si2Bj !1E~Bi2Sj !

1E~Bi2Bj !#. ~B1!

Here,E(Si –Sj ) is the interaction potential between sid
groupsSi andSj belonging to the respective helicesM1 and
M2 , E(Si –Bj ) and E(Bi –Sj ) refer to the backbone
sidechain interaction energies of the two helices, a
E(Bi –Bj ) is the backbone-backbone interaction energy. T
summations in Eq.~B1! are performed over all interactio
sites on the backbone and side groups of the two helice

The configuration$F% of the pair of helices is characte
ized by a suitable set of variables, say$R,u1 ,u2 ,f% as above
@Fig. 1~c!# or the set$R,q,a,b% described in Fig. 7. In the
latter case, the axesz1 andz2 are chosen along the principa
axes of the respective helices 1 and 2. The correspon
unit directional vectors are denoted asdz1 anddz2 . a is the
angle between the principal axes of the two helices.q is the
J. Chem. Phys., Vol. 107
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angle betweenR and dz1 , and b is the angle between th
x1 axis and the projection of the principal axis ofM2 , on the
Ox1y1 plane. Two additional anglesx andw are required to
characterize the configuration$F% in the case of reala heli-
ces.x refers to the rotation ofM2 about its own axis, andc
is the azimuthal angle describing the orientation ofR with
respect toOx1y1z1 . The anglesq, a, b, andx are readily
determined from

q5cos21~dz1•R!/R,

a5cos21~dz1•dz2!,
~B2!

b5cos21$dz2•~dz22dz1 cosa!%/udz22dz1 cosau,

x5cos21$T~2a!dx2•dx1%,

whereT(2a) is the transformation matrix operating on th
systemO2x2y2z2 so as to superimpose the axesz1 andz2 .

In the case of the pair of helices connected by a loop,
dihedral anglesw i of the virtual bonds 1< i<s located in the
loop, and those of the last virtual bond ofM1 and first virtual
bond of M2 , w0 , and ws11 , are assumed to be variabl
while all other degrees of freedom are fixed. As a conveni
representation of the coordinates of the sites, we appen
bond-based frame,Ojhz to the last virtual bond ofM1 . All
site coordinates inM1 are fixed with respect to that frame
Those in M2 are expressed by operating the produ
T(w0)T(w1)•••T(ws11) on their local position vectorsbj .
Here,T(w j ) is the transformation matrix operating betwe
the above described bond-based framesj 11 andj ; the local
position vectorsbj refer to the bond-based frame append
to the first bond of helix 2. Therefore, the counterpart of E
~A3! in the present model reads

r i j 5R1F )
k50

s11

T~wk!Gbj2aj , ~B3!

whereai is the position vector of thei th site inM1 expressed
in the frameOjhz. The bonds in the loop region are subje
to pairwise interdependent torsional potentials of the form

EA~w i ,w i 11!5EA~w i !1EA~w i 11!1DEA~w i ,w i 11!
~B4!

which vary with the type of the amino acidA between the
consecutive bondsi and i 11. Here,EA(w i) refers to the
torsional potential of thei th virtual bond when the latter is
rotated by a dihedral anglew i , and is succeeded by a residu
of type A. Likewise,EA(w i 11) refers to the torsional poten
tial of a bond preceded by a residue of typeA.
DEA(w i ,w i 11) is the additional coupling energy between t
two consecutive dihedral angles flanking the residueA. The
reader is referred to previous work for a detailed presenta
of the energiesEA(w i) andDEA(w i ,w i 11) for the 20 types
of naturally occurring amino acids.16 The overall energy of
the system consisting of the pair of helices connected b
loop is found from Eq.~2!.

The torsional angles$w0 ,w1 ,...,ws11% fully define a
configuration$F% in the loop region composed ofs inexten-
sible bonds with constant bond angles. The number of v
ables for determining the minimum energy configuration
, No. 6, 8 August 1997
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2059Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies
creases with the sizes of the loop. Fors.4, the solution is
preferably found in terms of the variables$R,q,c,a,b,x%
rather than$w0 ,w2 , . . . ,ws11%. For large values ofs a lim-
iting case obtains where the loop chain behavior approac
that of a freely jointed chain and its constraining action
the configurations of the two helices diminishes. In this ca
one should expect minimum energy conformations wh
would be only slightly perturbed compared to those obtain
for two disconnected helices.
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