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Equilibrium configurations of rigid building blocks with multiple embedded interaction sites are
investigated, as a coarse-grained approach for conformational sampling of protein structures with
known secondary structure. First, hypothetical structures of asymmetric shapes, and pairs of rods
composed of multiple interaction sites are considered. The rods are either disconnected or joined by
a flexible loop. The sites are assumed to interact with a classical 6-12 Lennard-Jones potential.
Subsequently, the investigation is extended to the study of two disconnebtigies composed of
homogeneous interaction sites and to the ROP monomer, a small protein consisting of two
heterogeneous helices connected by a loop. Residue-specific long-range and short-range potentials
extracted from a protein database are used. A Monte Carlo procedure combined with an energy
minimization algorithm, originally developed by Li and ScherfBeoc. Natl. Acad. Sci. US/&4,
6611(1987] is used to generate a set of low energy conformations over the full conformational
space. Results show thdi) The potential of mean force between two rods as a whole exhibits an
inverse linear dependence on the separation between rods despite the individual sites interacting via
a 6-12 Lennard-Jones potentiéil) As the length of the rodgor helices increases, they tend to

align parallel to one othe(iii) This tendency to become parallel is enhanced when the density of
interaction sites is highefiv) The angle between the principal axes of the rods is found to scale as
n~%2 with the numbenm of sites.(v) The native conformation of the ROP monomer, including the
detailed rotational states of the virtual bonds located in the loop connectirgiékces is correctly
predicted. This lends support to the adoption of such a coarse-grained model and its parameters for
future simulations. ©1997 American Institute of Physid$S0021-960607)50430-2

I. INTRODUCTION ecules forming a complex or an aggregate may be viewed as
rigid building blocks whose mechanics and dynamics are of
The determination of the equilibrium configuration of interest.
structural elements containing rigidly embedded interaction  Here, we will concentrate on the spatial organization of
sites is a problem of interest in several disciplines. For exsuch rigid bodies. For a system af interaction sites, the
ample, in the investigation of complex biomolecular pro-determination of the global minimum in the
cesses such as protein folding, ligand binding, protein-3n-dimensional energy landscape is known as an NP-hard
protein interactions, etc., a simple approach is to assume groblem, elusive to conventional energy minimization
rigid-body approximation for some structural elementssearches on computer, i.e., the complexity of the problem
which possess sufficient internal stability, and simulate théncreases exponentially, and not via a polynomial with the
statistics and dynamics of these bodies. Likewise, in polymeincreasing size of a molecule. Embedding these sites into
simulations monomeric repeat units are conveniently apm rigid blocks, m<n, on the other hand, reduces the total
proximated by unified groups? In the case of proteins, de- number of degrees of freedom tong or to 6(m—1) if the
pending on the degree of resolution, individual amino acidsabsolute location and orientation in space are neglected. This
as a whole or secondary structural elements such hsli-  brings a significant reduction in the complexity of the prob-
ces, may be approximated as rigid blodk.At a more  lem.
coarse-grained level, structural domains, or individual mol-  The key, general strategy for finding the minimum en-
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ergy configuration of such models is the following: First, the
relevant variables of the coarse-grained structure are chosen
Second, the total free energy is minimized with respect to
these variables. As shown in the Appendix, the equations of
motion controlling the linear and angular momentum of the
system are highly nonlinear and possess large numbers o
local minima. One may easily be trapped in a local mini-
mum, which depends on the starting point in the configura-
tion space. In order to avoid such events, we adopt here a
heuristic approach and generate a large number of “low en-
ergy conformations” starting from random initial points over
the complete phase space. The method closely resembles th
Monte Carlo(MC) procedure with minimization originally
developed by Li and Scherafand shown by Abagyan and
Maiorov to be an efficient conformational search technitjue.
We then analyze the ensemble of low energy conformations ‘\
to determine the most probable state. A key strategy adoptec "ij\ a o M
at this step is to determine the loci of the lowest energy states— \:_'__ 1 !
as a function of a single geometric varialgleall other vari-
ables being optimized to achieve the lowest energy configu-
ration subject to the fixed value. FIG_. 1. Model str‘uctures_used _for iIIustrativ_e ca!culat_io_(‘ee. Two rigid _
The paper is organized as follows: In the next Section"t\)ﬂodleleansz in two-dimensions. Intze_ractlon_§|tes rigidly emped_ded in
. . : ik . 1 andM,, are expressed by the respective position veapadb; , with
the basic theoretical approach is presented with illustrativ@espect to the molecule-embedded coordinate syst@ms,y,z, and
calculations for a few hypothetical collections of rigid build- O,x,y,z,. R is the vector pointing fromO; to O,. It is conveniently
ing blocks, including two disconnected rods and two rodsexpressed in terms of its magnituﬁéand the angles_? betwe_en the axes
connected by a flexible Ioop. In the Sec. Il B, these concept, 20V:. 1y 1 1" eparato veeor bevsen sanc . [0 Tu
are extended to helical protein fragments. Both d'sconneCted)nnected by a flexible spacer. The orighisandO, are chosen here at the
pairs of helices composed of homogeneous interaction sitesnnections of the spacer.denotes the separation between the centers of
and helices connected by a loop, comprising specific interaghe rods. Two supplemental anglég and 6,, and one torsional angle
tion sites, are considered. ROP monoHi& considered as a def_me_the 0r|entat|on_ a1, with respect taVl;, provided that the rods are
specific protein for illustrating the application of the method.cy“ndnca”y symmetric.
In addition to the correct registration of the two helices, the

detailed conformation of the loop connecting the helices isy yigiq podies. The interaction sites are located at the cor-

predicted by an efficient energy minimization algorithm.  ar5"of the blocks, in each case. The interaction energy be-
tween sites andj is assumed to obey a Lennard-Jo(ed

Il. RESULTS potential, with attractive and repulsive coefficients equal to

A. lllustrative calculations with simple models

1. Asymmetric shapes in two dimensions (a)

(c)
(!

In Fig. 1(a@), two rigid bodiesM; and M, in a two-
dimensional space are show@; and O, are two arbitrary M
points fixed in the two respective bodies, to which the coor-

dinate systems,y;z; andx,y,z, are affixed.a; andb; are

2(m+n) equations. Here, the problem reduces to the simul-
taneous solution of three equations, only, two linear momen- . Iﬁ

v
the position vectors of theth andjth sites inM; andM,. Q ] O O Q’
M, andM, are assumed to have andn rigidly embedded (b)
interaction sites, respectively. In the absence of the rigid <> ] <>
body assumption, the determination of the minimum energy Tt 2 Q Q
configuration would require the simultaneous solution of '<—-i77' i ] <> O

O

&

tum and one angular momentum balance, for three un- M,
knowns, sayR,, Ry, and 6. Here, R, and R, are the
components of the position vect®& pointing fromO; to kG, 2. Equilibrium states of collections of rigid bodies in two dimensions.
0,, and 4 is the angle between the axgs andy,, which  This illustrates some equilibrium configurations obtained from the solution
define the rotational state ™ 5 with respect tavl ;. The set  ©f Eas.(A8) for various collections of rigid bodies. The interaction sites are
. . . . . . located at the corners of the blocks, in each case. The interaction energy

of quatlons ,and their solution ar_e, O‘?t"“ed m, Appgndlx A. between sites and j is assumed to obey a Lennard-Joried) potential,

_ Figure 2 '”UStratefS some equilibrium F:onflguratlo.ns 0b-yith attractive and repulsive coefficients equalAg=1 kcal A%mol and
tained from the solution of Eq@A8) for various collections  B;;=1088 kcal A%mol, respectively.

J. Chem. Phys., Vol. 107, No. 6, 8 August 1997

Downloaded 08 Jul 2003 to 136.142.92.33. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



2048 Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies

Ajj=1 kcal ASmol and Bj;=1088 kcal &%mol, respec- 100 =
tively. This choice of parameters yields an equilibrium dis-
tance of 3.6 A between two single interacting points in
space.

The solutions displayed in Fig. 2 are obtained sequen-
tially. First, Egs.(A8) are solved for two bodies only. Their [
equilibrium positions obtained in this manner are then held %0
fixed, and the third body is placed at its equilibrium configu- T
ration by solving Eqs(A8), and so on. The configurations &
shown in Fig. 2 are unique and exactly reproducible, irre-
spective of the starting configurations. In order to test the
validity of keeping all previously placed—1 bodies fixed 20
while placing thenth body, relaxation experiments are per- I .
formed. For example, for Fig.(B), the triangles were ini- L e
tially placed in the orderM, M,, M, M. After placing 5 4 6 8 10 12 14 16
the fourth triangleM’, the triangleM, is relaxed and its n
new equilibrium configuration relative to the other three
fixed triangles is recalculated. The result did not differ no-'C: 3 Dependence of the angiebetween the axes of the rods on the
. . . ) . number of interaction sites, rigidly embedded in the rods. The curves are
ticeably from the original equilibrium configuration &,  rawn for various choices of the density paramejerr o/, wherer o is
relative toM;. This is due to the presence bf; between the equilibrium distance between two nonbonded interaction sites &nd
M, Mé andm;_ The distances between the interaction sitesf,h_e sepa.ration 'betwe_en. two consecutive sites on a given rod. The logarith-
of M, and those Oﬂ\/lé and M; are much larger than the mic plot in the inset indicates a power law of the form-n~5%,
effective range of the LJ potentials so that the location of
M, is predominantly determined by its interaction with
Mj. 3. Pair of rods composed of multiple interaction sites,

Joined by a loop

40

2. Pair of rods composed of multiple interaction sites The presence of a flexible connector at the ends of the
rods modifies the problem of the previous section. The total

In Fig. 1(b), two rods with their centers at a separation Offree energy of the system is now found from the sum of

R are displayed. When the interaction sites are located SyMptermolecular interactions and the free energy of the loop.
metrically with respect to the center of each rédbecomes  the |atter may conveniently be chosen as the elastic free

mutually perpendicular to the two rods and the solution forenergy change of entropic origiiA,=—kT INW(R) for a

the equilibrium configuration of the two rods simplifies con- flexible chain whose end-to-end separation obeys the Gauss-
siderably. Then, the two unknowns to be evaluated are thg,, distribution

magnitude ofR and the angler between the two rods. Re- _
sults of calculations with the same potential and coefficients 3(R—R)?
as those of Sec. Il A 1 are presented in Fig. 3. The ordinate is W(R) =K exp{ _WJ :
the anglex and the abscissa is the number of interaction sites 0 —
on each rod. The three curves are obtained for different valHere,K is the normalization constant aRlis the equilib-
ues of the parametes, where n=r.y/| is the ratio of the rium end-to-end separation of the connector in the absence of
equilibrium distance between two sites to the separation bghe rods. The loop is therefore approximated as a spring with
tween consecutive sites on a given rod. Defined in this mana force constant equal tok3/2<(R—R)?>0. A suitable
ner » is a measure of the density of interaction sites on achoice of geometric variables for determining the minimum
given rod. The range® <3 is typical of atomic sites, real energy configuratiais) may be the magnitud® of the vec-
bond lengths being about two or three times shorter than thr R joining the two ends of the loop, the anglg between
sum of the van der Waals radii of the atoms. For C—C bondsR and the first rod, the torsion anglg by which M, has
for example,»=2.35, takingl =1.53 A andr .= 3.6 A. rotated abouR, and the angl#, betweenR andM,. The

The most probable angle between the rods decreases problem of obtaining the equilibrium configuration is more
from 90° to 0° with an increasing number of interaction  complicated relative to that of Fig.(l). This is because the
sites(Fig. 3), the decrease being sharper in the case of morprevious symmetry no longer holds due to the constraints
distant interaction site&maller ») along the chain. The de- imposed by the loop, unless the loop were sufficiently flex-
cay curves are plotted on a logarithmic scale in the inset. Thible so as to permit the optimal placement of the two discon-
straight lines in the latter, which are obtained by leastnected rods.
squares fits, have approximately equal slopes 6f3. Thus A set of low energy conformations is determined by the
« may be expressed by a power relation-n~%3 In gen-  solution of Eq.(A8), as outlined in Appendix A. The con-
eral, the distance between the centers of the two rods atfigurational energy values associated with these most likely
equilibrium is observed to remain slightly below the equilib- states are presented in Fig. 4 as a function of the distance
rium distance between two free sites. between the midpoints of the rods. The curves are obtained

@
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r FIG. 5. Another representation of the results displayed in Fig. 4. The slope

of the upper line drawn through the data is equaktd, showing that the
FIG. 4. Energies of the lowest energy states of the pair of rods shown in Figenergy of the most probable configurations decreases linearly with the sepa-
1 as a function of the separatiorbetween the centers of the rods. The upper rationr between the centers of the rods. Thus the potential of mean force
curve represents the loci of local minima for the case of rods connected byetween the rods obeys a relationship of the fdfn)~ — (1/)P with p
a flexible spacer whose equilibrium end-to-end separatidt=49 A with =1 in the range@=<20 A, approximately, although the individual sites in-
a force constant of 3 kT{2R—R)?),=0.5 kcalmolt A=2, The lower teract via a 6—12 LJ potential.
curve is obtained for the same pair of rods in the absence of the loop. The
lowest energy configuration is obtainedrgf,=3.5 A. In the lowest energy

configuration, the ends of the two rods are positioneR-atl6.5 A. Here, ergy curves up to about 20 A. This indicates that although an
the loop constrains the rods to assume a relatively higher energy configura- )

tion, and the most probable separation between the rods is shifted from 3'|g1vers§ sixth powe(LJ) rejlat!o.n 1S Lljsed fOI_’ the.attraCt'Ve
to 4.4 A. The ordinate values are normalized with respect to the LJ attractivPpotential between all the individual interaction sites embed-
energy parameteAij and the equilibrium separation, of nonbonded sites,  ded in the rods, the potential of mean force between the rods

by dividing with 103Aij/req5. A very sharp increase in energy occurs at as a whole obeys a Trelation. over a wide range of
shorter separations due to strong repulsive interactions. The energy ap- !

proaches zero at about 20 A, indicating that the attractive potential betwee alue_s. ] ] ) ) ]
the rods is highly nonlocal. Finally, in Fig. 6, the energy of interaction is plotted as a

function of the anglex between the rods. In parallel with

Figs. 4 and 5, the ordinate displays the total potential of
for n=20 and»=2.35. The energies are normalized by di-
viding by 1GA;; /r¢. The lower curve is obtained in the

absence of the loop. The lowest energy configuration occurs sk ' ﬁ _ 1‘9 A T ‘ ]
atrm»=3.5 A. In the lowest energy configuration, the ends . “a ® 5 Fo
of the two rods are positioned ®=16.5 A. The upper 4L Ooﬁch’ )
curve is obtained in the presence of a loop which obeys the ; ]
distribution of Eq.(1) with R=19 A and % T/2((R—R)?)o S SE &Q;"'Q ]
=0.5 kcal mol't A 2. These values cause the energy of the =Gk ot ]
spring to compete with the intermolecular energy of the rods = . M ]
andr is shifted to a larger value,,,=4.4 A. An extremely i s @53 ]
sharp increase in the energy takes place at shorter separeé ™ [ 5 ]
tions, i.e., the repulsive part of the interaction is very strong. -8 - -;'; 7
The curve levels off at values ofas high as 20 A, indicating . i &3{ ]
that the attractive potential between the centers of the two Tl el Tl ]
rods is highly nonlocal. 10 b ¥ No loo ]

In Fig. 5, the data of Fig. 4 are plotted in double loga- T Y RO T ]
rithmic coordinates after removing the leftmost, rising por- 0 15 30 45 60 75 90
tion of the curves. Presented in this form, the slopes of the a (deg)

curves provide an estimate of the power la(r)
P P ) FIG. 6. Energies of the lowest energy states of the pair of rods shown in

P ) . .
(1/r) governing the attra?t've part of the pot.entlal of Figs. Xa and Xb), as a function of the angle between their axes. In
mean force between the rods in the absence and in the prasarallel with Figs. 4 and 5, the filled and open circles refer to the most

ence of a connector. The two curves exhibit a qualitativelyprobable states of disconnected and connected pairs of rods, respectively. As
'? the two figures, the ordinate displays the total potential of mean force

similar character, regardless of the presence of a connect , . .

. . . etween the rods at the lowest energy configuration found for each fixed
The upper stralght line, drawn for comparison, has a slope Qfajye of the abscissa. Again, the two curves exhibit a similar dependence on
—1, and approximately matches the portion of the two en.
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FIG. 7. Schematic representation of twdelicesM,; andM, connected by |
a flexible spacer. The anglésandy define the orientation dR with respect —a—side group-side group
to the frameO;X,y,2; . R is the separation vector between the centroids of —o— side group - backbone
the helices. The orientation of the second helix is defined in terms of the -0.5 L . ‘ ! ! !
three Euler anglea, 8, andy, which are illustrated on the right panel. In the 2 4 6 8 10 12
case of anidealizedpair of a-helices, in which the heterogeneity of the distance (A)
interaction sites is neglected and thereby the cylindrical symmetry assump-
tion holds, the variableg and x are eliminated. FIG. 8. Potentials of mean force between sidech&ngnd backboneR)

sites of amino acids in globular proteins, averaged over all types of residues.
E(S-S), E(S-B), andE(B-B) refer to sidechain—sidechain, sidechain—
backbone, and backbone—backbone interaction energies, respectively, ex-
mean force between the rods at the lowest energy configuraracted from known protein structures using all pairs of sites separated by
tion found for each fixed value of the abscissa. The filled andive or more virtual bond¢Ref. 14. Here, these potentials account for the
. . interactions between the homogeneous sites affixed tid&adizedpair of
empty circles show results for disconnected and connecteﬁ_helices
pair of rods, respectively. Again, the two curves exhibit a

similar dependence om. A shallow minimum is found

arounda=5° in both cases. The similarity of the curves for M, with respect toOx;y,z; (see Appendix B These six

connected rods to those for disconnected rods in Figs. 4—@ariables{R,9,4,a,5,x} fully describe a given configuration
indicates that the interactions between the sites embedded {tb} of the pair of helices.

the two rods dominate the observed qualitative behavior,

rather than the elastic characteristics of the loop. The_ CON3 A p idealization: Two disconnected e« helices
straints imposed by the loop have a secondary effect, in thgomposed of homogeneous interaction sites

sense that they affect the equilibrium energies without sig- . o
nificantly altering the dependence of the lowest energy states Here, the local geometric characteristics and the energy
on the geometric variableR and . functions and parameters associated with BreB, B—S,
and S-S interactions are taken to be those of an average
amino acid, derived from known protein structufgsg. 8).
This simplification, referred to as d@dealizedpair of « he-
lices, permits us to eliminate two geometric variables, gay

In this sectionM; andM, are modeled so as to mimic and y, in the search for the most probable states. Residue-
the behavior ofa-helices in proteins. Each residue is repre-specific characteristics will be taken into consideration in the
sented by two interaction sites, one on the backb@®)eand  next subsection, when analyzing a real pair @telices.
the other on the sidechairs). These sites may be conve- Details about the model and parameters are presented in Ap-
niently identified with thea and 8 carbons of amino acids. pendix B.
The number of unknowns required to characterize a configu- The results obtained for helices of 30 residues are shown
ration{d} of the two bodies is equal to four provided that the in Fig. 9. The most probable states are selected from a large
helices are cylindrically symmetric, i.e., the interaction sitesnumber(of the order of 10) of local minima located with a
are all equivalent and uniformly distributed along the helicesMC—Metropolis procedure coupled with a simptéenergy
These four variables may conveniently be taken as those deainimization algorithm, which closely conforms with a pre-
scribed in Fig. 1c). One has to add to this set two more viously developed conformational search technifjtidn
variables, say the torsion angles about the principal axes gfarallel with the basic approach outlined above, the curves
M, andM,, if the helices are not cylindrically symmetric. display the energies of the most probable states as a function
This choice of variables is not unique, certainly. Another sef a given geometric variabl® and« in parts(a) and(b) of
of variables, also suitable for calculation, is illustrated in Fig.Fig. 9, respectivelyE(R) in part(a) represents, for example,
7. This consists of the pold®) and azimuthaly) angles of the energyE{R}=E{R,J,a,8} minimized with respect to
the vectorR connecting the centroids of the two helices, {9,a,8} within the full range accessible to these angles, and
expressed in the syste@x,y,z;, the magnitude oR, and  with respect toR within each successivR+0.25 A. Like-
three Euler angles, B, and y describing the orientation of wise, E(«) represents the energy minimized with respect to

B. Extension to protein helices
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FIG. 9. Energies of the most probable configurations of a pair of idealized
helices ofn=30 residues as a function ¢d) the separatiofR between the
centroids of the helices, anl) the angle between the principal axes of the
helices. The ordinate values represent the loci of the local minima located b,
the simplex algorithm for each fixed value of the geometric vari&bie (a)

or « in (b). A global minimum is observed &=8.5 A anda=7.5°.

100 S
o (deg) 150 0

¥IG. 10. Loci of the lowest energy configurations as a functioR @ind «,

for the pair of idealized helices af=30 residues. The energy values are
obtained after minimization of eadh{®}=E{R, ¥, , 8} value with respect

to B and¥ within square bins of sizAR=0.25 A andA «=1° in the range
0<R<20A and 0<a<180°. The surface is smoothed out over segments
é)f 40 grids, which permits a clearer visualization of a global minimum. The

th remaining variables. Th lowest ener tat - ;
€ ema 9 ariables € lowest energy sia general roughness can be estimated from Fig. 9.

(~—140RT) is indicated by an arrow in each case. Both
curves reveal that the optimal distariRdetween the centers

of helices and the angle between their principal axes are The following two points observed for the pair of rods

uniquely determined by the present analysis. These minimeay provide guidelines for estimating the lowest energy con-
appear furthermore to be easily accessible in view of thdiguration of a pair of helices:

shallow shape of the energy profile in their neighborhood. .

Results of similar calculations for energy as a function(')
of 9 and B, not shown for brevity, exhibit multiple minima
of comparable depths. The most probable polar angle is
found to be confined to the region 68%9<120°. E(8), on
the other hand, displays three minima differing £0.5RT
in depth with the most favorable value gf~=0°. Inas-
much as the two helices are almost parallel to each other in
the most stable configuration, the exact choice of the variable
B is relatively unimportant.

Examination of two-dimensional energy surfaces per-
mits one to distinguish coupling between the different de
grees of freedom. Loci of approximatelyx4(* minima,
E(R,«), are displayed as a function & and « in Fig. 10.
These are obtained after minimization of ea&{®d} : i :
=E{R,9,a, 8} value with respect t@ and 9 within square energy curves displayed n Fig. 8, and may be v!ewed
bins of size AR=0.25 A and Aa=1° centered around as an equmbrlum. separathneq, between collect!ve
(R,a) values in the range R<20 A and 0<a<180°. sites representanv_e ak-helical tur_ns. Ea_ch helical
The surface is drawn by smoothing out the energies over 40 fcurn may thu_s be viewed as an entity e_quwalent tq the
grids along the horizontal axes. This permits a clearer visu- |nter_act|on sites of the rods treated in the previous
alization of the global minimum, although the depth of the section, such that=5.41 A _and the parameten
well is somewhat reduced. éreq/l becomes 1.6, appromma;ely. T_he corres_pond—

Calculations were repeated for pairs of helices of differ- Ing a values f_or the. presently .|nves.t|gated pairs of
ent lengths. A distinctive feature in shorter helices is that the helices comprising eight turns, OIS es.tlmated upon ex-
low energy(<3RT above the most stable stateonfigura- trapolation from Fig. 3 too be 6°. This may be com-
tions are obtainable over a wide range{8<50°) of tilting pared to the value:=7.5° at the lowest energy com-
angle a« between helices, although in the case of longer he- puted in the present section.
lices configurations of comparable stability were confined to
the range Za<9°, only. The decrease in the angle be-2- A protein consisting of two heterogeneous
tween the principal axes with increasing asymmetry or@-helices connected by a loop: ROP monomer
length of the rigid building blocks emerges as a general ROP is a bacterial protein involved in regulating DNA
property, irrespective of the detailed structural and energeticeplication!? This is a dimeric four-helix bundle, the mono-
characteristics. mers being identical but oppositely oriented helical

For two identical rods, the angkbetween the vector

t and the rod axis was 90°. In the present section the
corresponding angle is found to he=90°+12°. If

one accepts the valué=90°, obtained for the pair of
rods as a reference, the deviationsdofrom 90° may

be regarded as perturbations resulting fr@minho-
mogeneities at the ends of the helicép), the three-
dimensional geometry of the helical structure as op-
posed to linear structure of the rods, afii) the
shape of the non-bonded interaction potential dis-
) played in Fig. 8.

(i)  The distance between the centers of the helices is
found to be about 8.5 A. This value approximates the
weighted average of the two minima of the potential
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2052 Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies

hairpinsw of 63 residues, each. Thus each monomer may b@&ABLE |. Backbone geometry of ROP monomér in the virtual bond
modeled as two rigidr helicesM; and M, comprisingm  @pproximatiorf
and n sites, respectively, and connected by a loop. Threé

essential features differing from the above idealized pair of ' ' ' '
helices are considered in this case: ;‘ ‘g‘li-g ggg 2(1) 2§31~8 8291-7
_ (i) The interaction s!tes are heterogeneous. Sdecham— 6 _1262 90 4 30 272 756
S|dgchaln 5i—.SJ-), and sidechain—backbon&;(-B;) inter- 7 ~130.0 88.1 33 —1373 87.9
action potential€,5(S—S;) andEA(S—B;), characteristic 8 -132.0 88.2 34  -130.6 87.1
of each particular typ€A, B, etc) of residue are used, as 9 —131.0 88.5 35 —1294 90.4
opposed to the homogeneous potentials of Fig. 8. These po-i(l’ *Eg-g gg-é gg *g;-z gg-g
tentials vg/grﬁ recently extracted from 302 known protein 12 1306 011 38 —1295 85.8
structures:™ _ 13 -1303 896 39 1252 91.5
(i) As a natural consequence of the heterogeneity and 14 -129.3 86.9 40  —1333 91.2
specificity of the interaction sites, the cylindrical symmetry 15 —-1321 89.7 41 —126.7 87.4
approximation is no longer valid, and the angieand y are 16 ~-1268 9038 42 —1299 90.4
included in the analysis. These angles are expected to be’ ~135.2 8.1 43 1297 0.8
ysis. g pec 18 -1268  85.7 44 —1314 90.7
related to the hyd_rophob|0|ty moments of the helitemas- _ 19 —125.9 91.6 45  —1285 89.2
much as the helices have a tendency to assume torsional2o -129.1 89.6 46  —129.4 90.3
angles that minimize the solvent exposure of their hydropho- 21 —129.8 89.4 47 —-125.4 89.8
bic residues. Accordingly, the helix-embedded coordinate 22 ~ —1334  87.8 48 —1335 86.6
systemsO,x,y,z; andO,x,y,z, displayed in Fig. 7 are de- 2 C1al6 912 a9 1294 87.9
Y 3J1X1Y171 2X2Y22; diISplayed In F1g. ~1321 886 50 1335 89.4
fined with reference_to the hyd_r(_)phoblcny_ mo_me_nt vectors og —128.2 89.0 51 —-126.9 89.8
mq and u, of the helices in addition to their principal axes. 26 -132.1 90.1 52 —13238 88.2
They, axis is chosen in the plane spannedyand u; . 27 —126.6 91.2 53 —1271 88.6
The x, axis completes a right-handed coordinate system. Its 28~ —1257 898 54 -1327 86.3
29 -134.0 88.0 55  —138.4 79.9

angular deviation from the projection of ttzg axis on the

O;x;y; plane defines the anglgg. The same recipe iS @The virtual bonds of the monomer are indexed from 2 to 63, in conformity

adopted for defining the axeg, and Xo of the system with the residue indices in the PDB coordinates; the terminal bonds, which

O,X,Y525. The rotationX is accounted for by the angle be- are not determined by x ray, are not present in the table. iThdond

tween the hvdrophobicity moments of the r tive heli connects thei(+ 1)st andith alpha carbons. The dihedral angles refer to
ee . e hydrop Oo City moments Of the respeclive NeliCes, , ;g relative to therans conformer, such that,=0°, —120° and

In partlcula_r,)(= 180° refers to the_ face-to-fac_e placem_ent Of 4 120° for thetrans gauche- and gauche- states. Bond bending angle

hydrophobic momentg, and u,, i.e., the optimal configu- @, refers to the angle between the virtual boridandi+1. The virtual

ration from the point of view of burial of hydrophobic resi- bonds have torsional angles of 1288° and bending angles of 88.5°

dues at the interface. The other extreme cage (—180°) +3.5°, which are typical ofx-helices in the virtual bond approximation,

. except for the central bonds 29-31 which fold into a tight turn.
corresponds to the full exposure of hydrophobic surface to P 9

solvent. over all sites Xi<m embedded irM,. The second sum-
(iii) The connectivity of the helices, and the constraintsmation of the first sum is performed over all sites: fl<s
imposed by the finite size and specific energetics of the resi+ n on the flexible spacer and dvi,, provided that the sites
dues in the loop region are rigorously considered here. Let andj are separated by at least five bonds along the back-
the flexible spacer comprise virtual bonds. The bond pone. The last two summations are performed over the bonds
lengths and angles in the spacer are held fixed at valuest the loop region, using residue-specific short-range confor-
characteristic of the particular residues in the native primarymational potentiald® ¢, and ¢, ; are adopted for the dihe-
structure(Table ). The flexibility of the loop is ensured by dral angles of the bonds flanking the spacer, as the torsional
the torsional mobility of the virtual bonds of the loop. The states of these two bonds also affect the overall potential
corresponding dihedral angles are indicatedpas with 1 E{®}. In general, the contribution of the dihedral angle tor-
<iss. The overall configurational potentialE{®}  sjons(last two summationsin Eq. (2) is negligibly small

=E{R,0,¢,a,B,x} becomes compared to that of the nonbonded interactitfirst double
summation.
E{®}= 2 2 [E(S—S)+E(S—B)+E(Bi—S) The. lowest energy configuratipns among Fhe 60 000 lo-
P cal minima determined by the simplex algorithm are pre-
s s+1 sented in Table Il. Only those configurations with#BRT
+E(Bi_Bj)]+z E(e)+ > AE(@r_1,90). of the lowest energy configuration are listed in the table.
k=1 k=1 These are classified in order of increasing energy or decreas-

) ing stability. The dihedral angleg,;—¢; of the fragment
Asn27-GIn34 are listed in columns 2—9. The succeeding six
Here, the subscripté, B, etc., are omitted for brevity, al- columns list the variable$R, 9,¢,a,8,x} characterizing the
though each term depends on the specific type of interactingelative position of the two helices. The terminal column is
residuei or j. The first summation in Eq2) is performed the energy of the particular configuration. The structural
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TABLE Il. Characteristics of the lowest energy configurations of the fragment Asn27—GIn34 in ROP mdéhomer.

{®} @ ®; @3 ®4 @5 @6 @7 R(A) O} W a B X E{®}/RT
1 —1341 -1325 492 -349 21 -1250 -1262 895 812 151.0 195 429 1008 —12.0
2  —1277 -1558 265 -85 357 —130.6 -—1215 846 793 137.1 195 428 1248 —120
3 —111.0 —164.2 53.3 —4.8 15.6 —122.8 —131.2 8.58 83.3 138.8 19.3 38.1 1195 —-12.0
4 —-1303 -1282 453 -298 169 -—1341 -—1187 879 748 1508 180 485 1040 —117
5 —129.7 —129.3 549 —33.6 44 —130.1 —118.4 8.90 80.8 149.2 15.1 44.0 99.2 —-11.2
6 —130.6 —131.7 413 -263 217 -—1340 -1134 880 779 1435 157 453 1117 —11.1
7 —1343 —132.9 461 -343 67 -—1258 —1229 868 821 1468 17.9 434 1050 —10.6
8 —1241 —151.9 469 -17.4 152 —1207 -1215 865 87.2 1429 188 395 1208 -9.1
9 -1244 -—1338 489 -221 298 -—1286 -780 902 863 1200 16 —163.8 1324 -87
10 -1085 —161.4 51.2 121 253 —1454 —1248 899 749 1379 176 438 1140 -85
11 -1218 -152.3 300 -11.7 329 -1293 -1268 9.00 751 1407 20.0 419 1179 -84
12 —123.3 —138.4 34.2 —39.3 274 —1116 —123.9 8.36 79.2 142.2 17.1 42.9 118.7 —-7.7
13 —1486 —1335 313 -282 122 -1329 -—1221 842 846 1386 201 404 1162 -7.1
14 -1339 -—125.1 493 -379 256 -—1143 -66.1 897 90.0 1155 49 —149.7 1414  —-7.0
15 —1227 -1558 —117 -—146 741 -1317 -—1201 984 66.6 1244 12.7 338 1306 -54
16 -1154 —133.1 534 -208 322 -—1251 -77.9 916 837 1273 11 —-1293 1307 —49
17 —122.0 —154.1 —-10.1 —-12.3 78.2 —134.2 —-111.3 9.72 66.9 124.4 10.9 37.0 1329 —-46
18 -1153 —1455 143 -203 560 -1294 —119.0 933 67.2 1343 140 429 1233 —4.2
19 —138.7 —133.8 23.1 -—-321 29.4 —126.0 —118.6 8.87 78.9 135.7 18.1 37.7 123.1 —4.0
b _1221 —1340 538 -211 27 -—137.4 —1186 895 742 1515 189 496 940 0.0

2All angles are in degreeR is in Angstroms.
PNative structure.
‘Native energy taken as reference point.

characteristics of the native structure are presented in the lastates may be carried out by examining the dependence of
row. We note that the most stable states reached by the sine{®} on each of the geometric variablBs 9, ¢, «, 8, and
plex algorithm have energies lower than that of the nativey. The results are displayed in Figs. (&1-11(f). These
state. curves provide an estimate of the depth and width of the
Specification of the variableR, 3,,a,8,x} is sufficient  lowest energy states along the six variables of the multidi-
for defining a given configuratiofib} of the pair of helices, mensional energy surface. In parallel with the curves of Figs.
and there may be several sets of dihedral angled—6 and 9, the dots represent the lowest energy states ob-
{01,902,93,94,¢5,0¢, 97} compatible with a given con- tained upon minimization of the total energy with respect to
figuration{®}={R,9,¢,a,8,x}. In a sense the latter may all variables other than the one shown on the abscissa.
be viewed as a macrostate achieved by several microstatds(R) represents, for example, the energy of the lowest en-
We will concentrate on the most stable macrostates, althougérgy state achievable at the givBn by optimizing the vari-
the results in Table Il indicate that even the microstates deablesé, ¢, «, and 8 over their full range, and repeating this
scribed by the sefe;,@,,93,04,05,¢6,¢7} exhibit some for successiveR at 0.25 A intervals. LikewiseE(«),
well defined characteristic; whereas two stable macrostateg (), E(B), E(#), andE(yx) shown in Figs. 1(b)—11(f)
shortly referred to ag®}, and{®},, are distinguishable: are the loci of the most stable microstates obtained by con-
These are characterized by[®},={8.7+0.3 A, 81° fining the arguments to fixed, small intervals along the ab-
+7°,144:7°, 17.6£2.5°, 44-6°, 112+13°} and {®}, scissa, while allowing the remaining five variables to take
={9.0+0.03 A, 88+2°, 118+3°3. 3+1.7°,—157+7°,  the energetically most favorable combination. The native
137+5°. The former is energetically more favorable thanvalue is written on each figure, for comparison with the pre-
the latter by an energy difference of about 3 RT, and is indicted lowest energy value.
close agreement with the native structure. Furthermore, the The following properties are extracted from Fig. 11. Fig-
fact that 16 out of the 19 lowest energy microstates belong tare 11a) demonstrates that a uniqgue minimum, which coin-
macrostatg®}, suggests that the latter is also favored bycides exactly with the native value is predicted for the spatial
kinetic effects. In particular, we note that the lowest energyseparatiorR of the helices. Figure 1) shows that the an-
microstate shown in the first row of the table, exhibits struc-gular inclination ofa=19.5° between the principal axes of
tural characteristics quite close to those of the native conthe helices is preferred over the approximately parallel align-
figuration: The separatioR=8.95 A between the centroids ment of the helices taking place in the macros{abé, not
of the helices is exactly reproduced, the angleetween the only by its lower energy, but also by the shape of the poten-
two principal axes and the azimuthal angleagree within tial energy surface. The valug=74.17° of the native struc-
less than 1°. The remaining three variabbe@, andy differ  ture is located within the lowest energy well, as may be
by <7° compared to the corresponding values in the nativeverified from Fig. 11c). This implies that the centroids of
protein. the helices are not necessarily at the same elevation but the
A more critical analysis of the loci of the lowest energy second helix is located slightly upwards, which is correctly
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FIG. 11. Results obtained for the ROP monomer. Energies of the most probable conformations are displayed as a function of the geomettiig) variables
R, (b) a, (c) 9, (d) B, (e) ¢, and(f) x. The geometric data of the crystal structure are indicated in each case, demonstrating the close agreement between the
native structure and the predicted lowest energy configuration. Here, an enlarged set of local (80n®@ of themis generated in parallel with Figs. 5-7

and 9, and the lowest energy configurations are plotted as a function of each geometric variable after minimization with respect to the other five.

J. Chem. Phys., Vol. 107, No. 6, 8 August 1997

Downloaded 08 Jul 2003 to 136.142.92.33. Redistribution subject to AIP license or copyright, see http://ojps.aip.org/jcpo/jcpcr.jsp



Erman, Bahar, and Jernigan: Equilibrium states of rigid bodies 2055

predicted. As to Fig. 1), in parallel with the results ob- state in such multiple minima problem. Low energy confor-
tained for idealized helicegd assumes quite distinct values mations are used here to determine the effective energy pro-
in different macrostates. This is explained by the fact that théile, or the potential of mean force as a function of each of
two helices are almost parallel to each other and therefore thihe generalized coordinates.
choice of a given azimuthal angle has a weak effect on the Exploratory calculations with simple models such as
overall energy. Nevertheless, the broadest and most stabpmirs of rods comprising uniformly distributed interaction
minimum is in satisfactory accord with the native structure.sites reveal some characteristics that may have important im-
The most stabley value in Fig. 11e) is easily recognized to plications insofar as real molecular structures are concerned.
overlap with the native value. Finally, a deep well xat First, the potential of mean force between the rods as a
=90-125° is observed in Fig. if). Here, negativey values  whole exhibits a linear dependence on the separation be-
are quite unfavorable. As described aboyes0° refer to  tween rods(Fig. 5), despite the individual sites interacting
configurations in which the hydrophobic residues are exvia a classical 6—12 Lennard-Jones potential. This implies
posed to solvent. Such configurations are disfavored by ehat the range of the effective potential between the rods is
significant energy difference~<50 RT). It is interesting to  much longer than may be inferred from its individual embed-
note that the rotatioy=180°, which should allow for maxi- ded sites. And the existence of such a long-range smooth
mal interaction of the hydrophobic groups is not energetipotential can explain the recognition of the lowest energy
cally favorable here, presumably due to a steric overlap. Inconformation of the two bodies from a relatively distant ini-
stead the angley~105° is preferred. This is slightly tial position. That the native supersecondary and tertiary
(~10°) distorted in favor of the association of the two hy- structure is spontaneously found, in spite of the enormous
drophobic surfaces compared to the native structure. The dgumber of accessible conformations, i.e., the Levinthal para-
viation of about 10° may be the result of a fine tuning upondox, may be partly explained by the fact that the range of the
dimerization of the ROP monomer, inasmuch as a smgller gperating potentials of mean force between secondary struc-
angle would allow for a better association of the two mono-tyral elements is sufficiently long.
mers at the interface. By the same reasoning, one can antici- Second, as the length of rodsr helices increases, they
pate that the macrostae}, which involves an even tighter tend to align more parallel to each other. Also, as the density
interaction of the hydrophobic groups between the two heliof interaction sites increases they exhibit a stronger tendency
ces of a given monomer, thus lacking enough hydrophobicit¥o become parallel. This conforms with observations that he-
at the interface of the monomers, which could be unfavorjices of four or more turns pack optimally into elongated
able for the dimer. bundles; whereas shorter helices can pack into a number of
Finally, the most probable energy surfaEéR,a) ob-  other geometrie¥’ Such criteria are pointed out to be impor-
tained for ROP monomer, not shown for brevity, is found totant in designing protein structuréSHere, the angler be-
exhibit the same characteristics as the loci of energy minimMeen the principa| axes of the rods is found to scale as
displayed in Fig. 10, i.e., a broad global minimum. Its loca-n =52 with the numbenm of sites, the absolute value depend-
tion is slightly shifted towards a largervalue(19.59. Like-  ing on the densityy of sites. Fora helices usingy=1.6, an
wise the separation between the centers of the helices is igstimate of the angle between two adjacent helices—in the
creased by 0.5 A compared to the idealized helices, which ighsence of the perturbations due to specific effects—may be
understandable in view of the bulkier side chains existing inmade directly from Fig. 3.
ROP monomer. However, the essential features, i.e., a Calculations for the ROP monomer depart from previous
funnel-like distribution in favor of an entropically favorable sjmulations?!in both the model and the method of calcula-
energy minimum is again observed with the present coarsejon. Here, a recently developed coarse-grained model with
grained approach. The general roughness of the surface cafergy parameters extracted from known structures has been
be estimated from the graphs given in Fig. 11. employed-*1822| oci of energy minima are plotted with re-
spect to one variable, after minimizing with respect to all
others, which is helpful in locating the most probable state.
In fact, good conformations could be built by choosing these
Here, a Monte Carlo procedure combined with a simpleindependent average values for each variable. This confirms
energy minimization algorithm is used to generate a stack obur previous experiences applying this approach to BRIA.
low energy conformations. Full coverage of the conforma-The fact that the native conformation of the monomer is
tional space is accomplished, inasmuch as the loci of energgorrectly reproduced, and even the detailed rotational states
minima are obtainable as a function of the geometric vari-of the virtual bonds located in the loop connecting tae
ables or generalized coordinates in the form of smooth, dishelices are satisfactorily accounted for, lends support to the
continuous curves. Such a combination of MC procedureadoption of the present coarse-grained model and parameters
with energy minimization goes back to the original work of for future simulations. A major advantage of such low reso-
Li and Scheragd.As pointed out in recent studié&8visit-  lution models and empirical potentials is certainly the elimi-
ing a maximum number of different local energy minima nation of several degrees of freedom which might complicate
using a minimal number of function evaluations, and creatthe energy surface.
ing a stack of low energy conformations within a certain  An interesting observation is that the most probable state
energy range are essential for identifying the most probables also entropically favorable, i.e., the energy surface exhibits

Ill. DISCUSSION AND CONCLUSION
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a funnel-like shape, in conformity with recent theoretical associated with the interaction of thesites inM; with the
argument£*?° provided that the loci of local minima are n sites inM,, and the conformational energy of the loop. By
examined as a function of two generalized coordinates, afteassuming a Gaussian end-to-end distribution for the loop and
minimization with respect to all others. Such a sufficientlya Mie type potential for the interaction between all sites, the
broad global minimum may indeed be a prerequisite for theotal free energy change may be written as

correct folding of proteins, as suggested by lattice

simulations?®?’ 1 A B 3kT —,

If folding nuclei could be predicted, then the present AA:E Z 2]: _rTJFrT W (R=R)
method could be utilized directly for the construction of the 4 g 0 (A2)
remainder of the protein, insofar as it were within computa-
tional limits. Another possible application of our approach Here, A;; andB;; are the parameters associated with the at-
would be to use it together with secondary structure predictractive and repulsive parts of the potential, respectivply,
tions. Usually the most certain parts of these predictions argnd q are the exponents(R—R)?), is the mean square
the centers of helices. These central helix parts were usegltference betweemR and its free state valug, i.e., in the
here in the ROP example, and the ends of the helices next ighsence of the two rods. The Mie potential reduces to the
the loop were permitted to be flexible. For larger helical| gnnard-Jones potential when=6 andg=12. The equilib-
proteins, sequentially adjacent helices are not always thgym separation between two independent interaction sites is

strongest interacting pairs, but presumably the present. — (qB;; /pA;) Y@ P, The vector between sitésandj is
method is sufficiently robust to be able to detect the strongegionyeniently expressed as

interacting pairs.

rij=R+T1T2bj—a1-=R+bj’—ai, (A3)
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APPENDIX A cosf, sinf, 0
T,=|singd; —cosoh; O0Of;

Here, the method of calculation for the minimum energy 0 0 1
configuration of two rods joined by a loop is described. The i
application to the case of disconnected rods or asymmetric I cos 6, sin 6, 0
bOdl'?r? in tévo-dlme_nsmnsds _stralght_forwgrd. ol T,=| cos ¢, sin 6, —COS ¢, COSH, SN b,y

e rods contaimm andn interaction sites, respectively. | sin ¢, sin 6, —sin ¢, oSO, —COS b,

The origins of the molecule-embedded coordinate systems (A4)

0O, andO, are assumed to be located at the end of the rods,

such thatR defines the end-to-end separation vector of thdn calculations, it proves convenient to express the square
loop between the rods. One of the rodls;, is assumed to magnituderizj as

be fixed in space. The, axis is taken along the axis of rod

M,. They, axis is chosen such that tixgy; plane contains ri=R%+2R-U;+U;-U; (AS5)

the vectorR. The z; axis completes a right-handed system.

9, is the angle between thg axis andR. The position of ~ With the vectorsR andU;; given by

the second rod in space is determined uniquelydby the

magnitudeR, the torsion anglep aboutR, and the angle C(.)S 0,
6, between the axis of roM, andR, provided that the two R=R| sin 0, | =Rug, (A6)
rods are cylindrically symmetric. 0
The four equations required for the solution of the four
unknownsR, 6;, 6, and¢ are obtained by minimizing the Uj=TiTobj—a=bj—4. (A7)
Helmholtz free energp A of the system with respect to four ) I i
variables The four scalar equations of equilibrium given by Eqgs.
(A1) are written explicitly for the casp=6 andq=12 as
JAA & JAA o , ,
0_§_i:21 ]_21 ?ﬁa_é_—_ov §=R,01,0,,0, (Al) R +0[k1R +ak2R+ ak3=0, 1sk=4, (A8)

wherer;; is the magnitude of the separation vectqr=r; where
—r; between thdth andjth interaction sites belonging to

M1 and_Mz, 1<i<m and l<j=<n. The H_elmholtz free 011532 gijUij'uR/ 2 9i; (A9)
energy is taken to be the sum of the potentials of mean force i i
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a12=3i2;, 9ij| Uij-Uij — Ujj -Ug+2(U;; -ug)? alf% gijUij'UR(Uij'Uij_Uij'UR)/ ; gij » (Al1)
kT — 2 j0ij[(Uj; - €bj +2Uj; - Up(Ug- €bj + Uj; - eug) ]
+—2<(R—R_)2> (R—R) % gij » (A10) a1 Sl jgij(uR'ebj,+Uij'€UR) )
° ’ ' (A12)
N :Ei,jgij[(uij‘Uij_r(ZeOP(uR'Ebj,"—Uij’euR)+2(Uij'UR)(Uij'Ebj,)] (AL3)
2 2 9ij(Ur- €b) +Uj; - eug) '
azsziEj gij[(Uij'Uij_rgq)Uij'ebj’]/ ; 0ij (Ugr- €b + Ujj - eug), (A14)
tsr= 25 G| (Ui TuTzebj+ 2(Uyj-Up) TaToeb-Ug] / 20 05 (TaT2eb;-ug), (A15)
E,ng”[(U” U” — riU)Tszfbj ‘Ug+ 2(U|J 'UR)Uij 'T]_Tszj] (A16)
Ayp— 3
2 2 i9ij(T,To€b;-ug)
a33=i§j: gij[(uij'Uij_rgq)uij'TlTZEbj]/ IEI: gij(T1Toeb;-uUg), (A17)
N :Ei’jgij[Uij Tszer + 2(U|] 'UR)T]_TzFbj 'UR] (A18)
o 2 i9ij(T1ToI'bj-ug) ’
N _Ei,jgij[(uij'Uij_rgq)TZFbj'uR+2(Uij'UR)Uij'TlTZFbjTl] (AL9)
42 2 i9ij(T1ToI'bj-ug) ’
a43=i2j gij[(Uij'Uij_rgo)uij'Tszrbj]/ IE] 9ij(T1T,I'bj-ug), (A20)
|
with gj;, € andI” expressed as dominant in obtaining the roots. This form is especially suit-
B 4,4 2.2 _a able for iterative solution using either a simplex or a
Gij = (A /T (T FTed i T eq) (A21) Newton—Raphson algorithm for nonlinear systems of equa-
0O -1 0 tions. The solution was checked each time whether it was a
e=|1 0 o0 local minimum or not by evaluating the energy values in its
0O 0 O neighborhood.
_ For the case of two rods not connected by a loop, the
0 0 sin 6, problem simplifies significantly, because the loci of the en-
r= 0 0 —Cos 0, |. (A22)  ergy minima is characterized by = 6,=90°, provided that
—sinf, coséb, 0 the interaction sites are homogeneously distributed on the

rods. Also, we haveb= «, wherea is the angle between the

which appears in the derivativ@AA/ar?=gi-(r$—r§o) two rods. The two unknowns of the problem d@eand «

-g;; is positive for all values oR, as may Be seJeanrom Eq which are determined from the simultaneous solution of the
1] 1 .

(A21); whereas the ternrf —r2) may be either positive or first and the fourth of EG4AS). o . .
negative, and therefore is the important term in determining  FOr two disconnected rigid bodies in two dimensions,
the roots of Eq.(A8). Equation(A8) also contains a third the three unknowns of the problem may be taken ax tred
type of term corresponding to the gradientsrgfwith re- Y components oR [Fig. 1(@], and the orientatio of the
spect to the four unknowns. These terms are also not th#l, with respect toM;. In this case¢=0, R;=R cos#é;,
important terms inasmuch as they do not change sign. Thu3,=R sin ¢;, 6,= 6, and the three unknowns in the problem
Eq. (A8) contains all the expressions explicit Rithat are  can be solved from the first three of E4838).

The coefficients of Eqs(A8) are proportional tog;;
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APPENDIX B angle betweerR and &,;, and 8 is the angle between the
) .. xq axis and the projection of the principal axisif,, on the
Details about the geometry and energy characteristics qulyl plane. Two additional angleg and ¢ are required to

the model helices illustrated in Fig. 7 are presented here.p5racterize the configuratid®} in the case of reak heli-
These aim at modeling helices in proteins. Each residue is ces.y refers to the rotation of1, about its own axis, and

represented by two siteB,andS located on the backborie  ig the azimuthal angle describing the orientationFofvith

carbon and on the sidechaifB carbon or sidechain interac- respect toOx,y,z,. The anglesd, a, B, and y are readily
tion centey, respectively. In the case of an idealized paieof  jotarmined from R

helices, i.e., disconnectedhelices composed of sites exhib-

iting the geometry and energy characteristics of an average 9=c0s *(5,1-R)/R,

residue in globular proteins, the lengthsf the virtual bonds a=cos (8,1 5,

B-B and the anglé® between backbone virtual bonds are 2" Ta2l (B2
taken as 3.81 A and 88°, which conform with the geometry  B=cos Y{5,,- (S,,— 8,1 COSa)}/|8,0— 8,1 COSal,

of a helices. Backbone bond dihedral angles are assigned the _

fixed value of—128° with respect to the planarans con- x=00S {T(—a) b 8},

formation of three successive bonds. This angle asserts WhereT(— a) is the transformation matrix operating on the
right'haﬂded rise of 536A per helix tUr@r 1.49 A per Systemozxzyzzz SO as to Superimpose the a)@_sand Z5.
residug, in conformity with right-handedr helices. In the In the case of the pair of helices connected by a loop, the
case of more realistic models, such as that of ROP monomegihedral angles; of the virtual bonds &i<s located in the
the exact bond lengths, bond angles and dihedrals of thgop, and those of the last virtual bondMf; and first virtual
known structure are taken, together with residue-specifigond of M,, ¢,, and ¢s.;, are assumed to be variable,
S-S andS-B potentials. while all other degrees of freedom are fixed. As a convenient
For the idealized pair of helices, the loci of the interac-representation of the coordinates of the sites, we append a
tion sites on the backbone and on the side groups are gengjond-based fram&)&#¢ to the last virtual bond ok, . All
ated by using the conventional bond-based coordinate sysite coordinates itM, are fixed with respect to that frame.
tems of pOlymer Statistic@.ACCOl’dingly, theXi axis of the Those in |\/|2 are expressed by operating the product
local system appended to théh bond is taken along the T(@o)T(¢1)-- T(¢s+1) ON their local position vectorb; .
bond vectorl; connecting thex carbonsi—1 andi, they;  Here, T(¢;) is the transformation matrix operating between
axis makes an acute angle with the axis; of the preceding  the above described bond-based frajed andj; the local
bond-based frame, and lies in the plane spanned byand  position vectorsh; refer to the bond-based frame appended

X;; the z; axis completes a right-handed coordinate systemig the first bond of helix 2. Therefore, the counterpart of Eq.
In these local bond-based frames, the backbone bond vectofa3) in the present model reads

are expressed 48.81 0 ", where the superscrifit denotes
the transpose. The side group bond vector is taken as
[—0.5110.87 1.1F, assuming bond lengths of 1.53 A, and
by adopting bond angles typical of*€C? bonds. The con-
figurational energies of the pair of helices are evaluated o
the basis of the homogeneous interaction poteifialis-
played in Fig. 8 as

s+1

IT T(ew
k=0

rij:R+ bj_aj, (B3)
Whereg; is the position vector of thith site inM; expressed
in the frameO &7, The bonds in the loop region are subject
to pairwise interdependent torsional potentials of the form

m n Ea(i ¢ir1) =Ea(@) T Ea(@ir1) +AEA(®;  @i11)
E(®}=3 3 [E(S-S)+E(S—B)+E(B—S) (
i=1j=1 which vary with the type of the amino acil between the
+E(B;—B))]. (B1) consecutive bonds andi+1. Here,Ex(¢;) refers to the
torsional potential of theéth virtual bond when the latter is
Here,E(S-S)) is the interaction potential between side rotated by a dihedral anglg, , and is succeeded by a residue
groupsS; andS; belonging to the respective helicks, and  of type A. Likewise,Ex(¢j 1) refers to the torsional poten-
M,, E(S-B;) and E(B;-S;) refer to the backbone- tial of a bond preceded by a residue of typ&.
sidechain interaction energies of the two helices, andAEA(¢;, i, 1) is the additional coupling energy between the
E(B;-B;) is the backbone-backbone interaction energy. Thawo consecutive dihedral angles flanking the residuérhe
summations in Eq(B1) are performed over all interaction reader is referred to previous work for a detailed presentation
sites on the backbone and side groups of the two helices. of the energieE (¢;) and AEA(¢;,¢; 1) for the 20 types
The configuratiof{®} of the pair of helices is character- of naturally occurring amino acid§.The overall energy of
ized by a suitable set of variables, 6, , 6, ¢} as above the system consisting of the pair of helices connected by a
[Fig. 1(c)] or the sef{R,?,«,B} described in Fig. 7. In the loop is found from Eq(2).
latter case, the axes andz, are chosen along the principal The torsional angle§¢g,¢1,....¢s+ 1) fully define a
axes of the respective helices 1 and 2. The correspondingpnfiguration{®} in the loop region composed sfinexten-
unit directional vectors are denoted &g and §,,. « is the  sible bonds with constant bond angles. The number of vari-
angle between the principal axes of the two heliagggs the  ables for determining the minimum energy configuration in-
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