Bahar Lab title bar Bahar Lab title bar



 
Dr. Ivet Bahar
Distinguished Professor & JK Vries Chair
Computational & Systems Biology Dept
School of Medicine, University of Pittsburgh
3064 Biomedical Science Tower 3
3501 Fifth Avenue, Pittsburgh, PA 15213

Chancellor's Distinguished Research Award

10 Years of Computational Biology at Pitt

Voice: 412 648 3332
Fax: 412 648 3163
email:
 

Pitt, CMU, PSC, and Salk Institute win grant for establishing a National Center, MMBioS,
for Multiscale Modeling of Biological Systems. December 3, 2012 Pittsburgh Post-Gazette.

See the Biophys Society 2014 video, and the International Innovation article.


Research Interests

Biomolecular systems dynamics at multiple scales; evolution of proteins' sequence, structure, dynamics and function; computer-aided drug discovery and polypharmacology; network models for protein-protein interactions, supramolecular machinery and allostery; modeling and simulations of membrane proteins dynamics and mechanisms of interactions.

 
Student Spotlight Heading Recent Publications image Research Progress Heading

Two outstanding Tsinghua University Research Scholars, Feizhuo Kaitlyn Hu and Wenzhi Mao have returned to their home institutions after successfully completing extensive research, resulting in several publications in the Bahar Lab. We wish them continued success on their scientific journeys!

kaitlyn and mao



Anindita Dutta's recent award for the "Outstanding Student Researcher in the Department of Computational & Systems Biology of 2012".

Anindita Dutta Award

 

Publications 2014

Most recent study of Dr. Gur (the Bahar lab) published in Biophys J is highlighted in Ricardo Baron's News & Notable, "Fast sampling of A-to-B Protein Global Conformational Transitions: From Galileo Galilei to Monte Carlo Anisotropic Network Modeling The new methodology, coMD, introduced by Gur et al is stated to "surely prompt new exciting routes to rapidly connect A to B, and vice versa."

ProDy Logo

"Allosteric Transitions of Supramolecular Systems Explored by Network Models: Application to Chaperonin GroEL." Yang, Z., Majek, P., & Bahar, I. (2009). PLoS Comput Biol. 5: e100360. PMID: 19381265.

Comput Biol 5(4) cover

 

"Significance of p53 dynamics in regulating apoptosis in response to ionizing radiation, and polypharmacological strategies" Liu B, Bhatt D, Oltvai ZN, Greenberger JS, Bahar ISci Rep (2014) 4:6245. PMID: 25175563

Controlling ionizing radiation (IR)-induced cell death mitigates radiation damage. Examining tumor suppressor protein p53 network dynamics in response to IR damage found that the strength of p53 transcriptional activity and its coupling (or timing with respect) to mitochondrial pore opening are major determinants of cell fate.

stochasticModelingBing_322

"Mechanisms of CFTR functional variants that impair regulated bicarbonate permeation and increase risk for pancreatitis but not for cystic fibrosis" LaRusch J et al.PLoS Genetics (2014) 10:e1004376. PMID: 2503378

Bahar research featured in winter 2014/2015 issue of Pitt Med.

more

 

more

 

more