1) **Lattice discretization of the Diffusion Equation: operational details.** Consider simple diffusion on the interval \(0<x<L\) subject to absorbing boundary conditions at \(x=0,L\). Thus, the probability distribution of diffusing particles obeys the 1D Diffusion Equation:

\[
\frac{\partial p(x,t)}{\partial t} = D \frac{\partial^2 p(x,t)}{\partial x^2}
\]

[1]

with \(p(0,t) = 0 = p(L,t)\). [D is the appropriate diffusion constant.] Let the \(N\times N\) matrix \(\Delta^{(N)}\) be defined as the banded matrix having -2 on the diagonal, 1 on the first band above and below the diagonal, and 0 elsewhere. For example, for \(N=4\):

\[
\Delta^{(4)} = \begin{pmatrix} -2 & 1 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & 1 & -2 & 1 \\ 0 & 0 & 1 & -2 \end{pmatrix}.
\]

Discretizing \(p(x,t)\) into an \(N\)-dimensional vector \(\left[p_1, p_2, \ldots, p_N\right]^T\) such that \(p_j(t) = p(ja,t)\), where \(j=1,2,\ldots,N\) and \(a\) is the grid spacing, \(a = L/(N+1)\), it can be shown that the discrete analog of Eq. 1 is:

\[
\dot{\vec{p}} = \frac{D}{a^2} \Delta^{(N)} \vec{p}.
\]

[2]

Eq. 2 can be directly integrated to give:

\[
\vec{p}(t) = \exp\left(\frac{D}{a^2} \Delta^{(N)} t\right) \vec{p}(0).
\]

a) Setting \(L=1\) and \(N=21\), let \(p_{11}(0) = 1\) and all other components equal to 0. (This corresponds to placing a particle at the center of the box.) Calculate and plot the time evolution of the probability distribution. [Hint: Use the result of Lab work 1 to exponentiate the matrix \(\frac{D}{a^2} \Delta^{(N)} t\).]
b) All the eigenvalues of $\Delta^{(N)}$ are negative. Identify the least negative eigenvalue: call this λ and the corresponding unit normed eigenvector v. Show that the approximation

$$p(t) \equiv (v_1)_{11} v_1 e^{\lambda t}$$

becomes very accurate after short-time transients die off.

2) Relaxation Method for solving the 2D Laplace Eq. Given any analytic function

$$f(z) = u(x, y) + iv(x, y)$$

of a complex variable $z = x + iy$, it can be shown that both u and v satisfy the 2D Laplace Equation. That is,

$$\frac{\partial^2 u(x, y)}{\partial x^2} + \frac{\partial^2 u(x, y)}{\partial y^2} = 0$$

and likewise for v. [Note: Roughly speaking, an analytic function is one which can be represented as a sum of integral powers of its argument.]

a) Pick an analytic function $f(z)$ (your choice!). Show that $u(x, y) = \text{Re}(f(z))$ satisfies the Laplace Eq. (3); also check that $v(x, y) = \text{Im}(f(z))$ satisfies the same equation.

Fig. 1: Contour plot of function $u(x, y) = x/(x^2 + y^2)$, which solves the 2D Laplace Eq.
b) Pick some function that satisfies the 2D Laplace Eq. (e.g., based on part a): denote this as \(u(x, y) \). Pick a rectangular perimeter in the x-y plane (again, your choice). [Note: An example is shown in Fig. 1.]

i) Using the known values of \(u \) on the perimeter, use the Mathcad subroutine `relax` to compute an approximate solution to the Laplace Eq. in the interior region. (The linear discretization index \(N \) is up to you, but check for convergence as described below.)

ii) Make a contour plot of the function computed using `relax` in part i). Compare this to the exact analytical solution obtained in part a). Show that as \(N \) is increased, the agreement between the numerical and analytical solutions for \(u(x, y) \) improves. (To see the convergence process more clearly, it may be useful to plot \(u(x, y_f) \) vs. \(x \), where \(y_f \) is a fixed value of \(y \) in the interior region.)

3) Lattice discretization of the Diffusion Equation: derivation. Returning to problem 1, derive the discretization of the diffusion Eq. [1] that is given in Eq. [2].